distributed-energy-resources

Provable Anonymization of Grid Data for Cyberattack Detection

This project aims to develop techniques for enabling data analysis for the purposes of detecting and/or investigating cyberattacks against energy delivery systems while also preserving aspects of key confidentiality elements within the underlying raw data being analyzed. The result will be a complete solution for anonymization of data collected from OT and IT networks pertaining to energy grid cyberattack detection that has been tested for its ability to retain privacy properties and still enable attack detection. It is funded by DOE CESER’s CEDS program and is led by Sean Peisert.

Supervisory Parameter Adjustment for Distribution Energy Storage (SPADES)

This project is developing the methodology and tools allowing Electric Storage Systems (ESS) to automatically reconfigure themselves to counteract cyberattacks, both directly against the ESS control systems and indirectly through the electric grid. It is funded by DOE CESER’s CEDS program and is led by Daniel Arnold.

Cybersecurity via Inverter-Grid Automatic Reconfiguration (CIGAR)

This project is performing R&D to enable distribution grids to adapt to resist a cyber-attack by (1) developing adaptive control algorithms for DER, voltage regulation, and protection systems; (2) analyze new attack scenarios and develop associated defensive strategies. It is funded by DOE CESER’s CEDS program and is co-led by Sean Peisert and Daniel Arnold.

Power Grid Threat Detection and Response with Data Analytics

The goal of this project is to develop technologies and methodologies to protect the nation’s power grid from advanced cyber and all-hazard threats. This will be done through the collection of disparate data and the use of advanced analytics to detect threats and response to them. It is funded by DOE OE’s CEDS program via the Grid Modernization Initiative and is co-led by Sean Peisert.