IDAES Documentation
Release 0.60

IDAES team

Oct 31, 2018






1 Project Goals

2 Collaborating institutions
3 Contents

4 Indices and tables
Python Module Index

Index

CONTENTS

269
271

273







CHAPTER
ONE

PROJECT GOALS

The Institute for the Design of Advanced Energy Systems (IDAES) will be the world’s premier resource for the de-
velopment and analysis of innovative advanced energy systems through the use of process systems engineering tools
and approaches. IDAES and its capabilities will be applicable to the development of the full range of advanced fossil
energy systems, including chemical looping and other transformational CO, capture technologies, as well as integra-
tion with other new technologies such as supercritical CO,. In addition, the tools and capabilities will be applicable to
renewable energy development, such as biofuels, green chemistry, Nuclear and Environmental Management, such as
the design of complex, integrated waste treatment facilities.




IDAES Documentation, Release 0.60

2 Chapter 1. Project Goals



CHAPTER
TWO

COLLABORATING INSTITUTIONS

The IDAES team is comprised of collaborators from the following institutions:
* National Energy Technology Laboratory (Lead)
* Sandia National Laboratory
» Lawrence Berkeley National Laboratory
* Carnegie-Mellon University (subcontract to LBNL)

* West Virginia University (subcontract to LBNL)




IDAES Documentation, Release 0.60

4 Chapter 2. Collaborating institutions



CHAPTER
THREE

3.1 Installation Instructions

CONTENTS

Contents

* Installation Instructions
— Dependencies
* CPLEX
* Gurobi
* [POPT
— Installation on Linux/Unix
* Install Pyomo
* Install IDAES
* IDAES Developer installation
— Installation on Windows
« Python Distribution
* Pyomo

* IDAES

- Option 2: Using Git

- Option 1: Download zip file

The IDAES toolkit is written in Python. It should run under versions of Python 2.7 and 3.6, and above. The toolkit
uses [Pyomo](https://www.pyomo.org), a Python-based optimization language. See the Pyomo website for details.

Note: Although Python can run on most operating systems, we are currently only supporting installation of the IDAES
PSE framework on Linux. This is due largely to complications of installing third-party solvers, not inherent properties
of the PSE framework itself, and we plan to support Windows and Mac OSX installation in the not-too-distant future.



https://www.pyomo.org

IDAES Documentation, Release 0.60

3.1.1 Dependencies

Some of the model code depends on external solvers.

CPLEX

* Getting CPLEX
* Setting up CPLEX Python

Gurobi

¢ Gurobi license
¢ Gurobi solver

* Gurobi Python setup

IPOPT

* Installing [POPT

3.1.2 Installation on Linux/Unix

Install Pyomo

* Install the master branch of PyUtilib from GitHub using pip:
pip install git+https://github.com/PyUtilib/pyutilib

* Install the IDAES branch of Pyomo from GitHub using pip:
pip install git+https://github.com/Pyomo/pyomo @IDAES

Install IDAES

 The installation is performed by a script at the top level called install.sh. This script will work on UNIX and
MacOS systems. There is no Windows script at this time. See below for installation instructions on Windows.

 This script uses an advanced, but common, Python packaging system called [Conda](https://conda.io/docs/).
Please first consult the [Conda documentation](https://conda.io/docs/user-guide/) to install this on your system.
You can use either Anaconda or Miniconda.

* Conda allows you to to create separate environments containing files, packages and their dependencies that
will not interact with other environments. The install script will automatically create a conda environment,
but you need to pick a name for it. Pick a name using only letters, numbers, dashes, or underscores, such as
“idaes-python3”. Run the script with this name as the first argument:

./install.sh MY NAME °
* The script will run commands to:
1. Create the conda environment
2. Build and install the IDAES code into the environment
3. Build the HTML documentation

6 Chapter 3. Contents


https://www.ibm.com/developerworks/community/blogs/jfp/entry/CPLEX_Is_Free_For_Students?lang=en
http://www.ibm.com/support/knowledgecenter/SSSA5P_12.5.1/ilog.odms.cplex.help/CPLEX/GettingStarted/topics/set_up/Python_setup.html
https://user.gurobi.com/download/licenses/free-academic
http://www.gurobi.com/downloads/gurobi-optimizer
http://www.gurobi.com/documentation/6.5/quickstart_mac/the_gurobi_python_interfac.html
https://www.coin-or.org/Ipopt/documentation/node10.html
https://conda.io/docs/
https://conda.io/docs/user-guide/

IDAES Documentation, Release 0.60

« If the install succeeds, the console will display: ** SUCCESS **
o If the install fails, the console will display: // FAILURE !!

IDAES Developer installation

The following instructions are for developers and advanced users.
¢ Install the master branch of IDAES from GitHub:
git clone https://github.com/IDAES/idaes.git
¢ Create/switch to your preferred Python environment
¢ Install the requirements with pip install -r requirement.txt

* Run python setup.py develop.

3.1.3 Installation on Windows

Note: We are NOT supporting Windows at this time. Some developers on the team have had success with the
following instructions, but we do not promise that they will work for all users, nor will we prioritize helping debug
problems.

Python Distribution

¢ Install Anaconda for Windows

* Add Anaconda and Anaconda scripts to the path  “ciusers<user>Anaconda2”  and
“c:users<user>Anaconda2Scripts”. To do this, search for “Edit system variables” in Windows search.
Click on “Edit system environment variables”. Click on “Environment Variables”. Under “System Variables”,
search for the variable “Path” and click “Edit”

3.1. Installation Instructions 7


https://github.com/IDAES/idaes.git
https://www.anaconda.com/download/#download

IDAES Documentation, Release 0.60

System Properties

Computer Name Hardware Advanced  System Protection  Femote

You must be logged on as an Administrator to make most of these changes.

Performance

Visual effects, processor scheduling, memarny usage, and virtual memony

Izer Profiles
Desktop settings related to your sign-in

Settings...
Startup and Recovery
System startup, system failure, and debugging information
Settings...
Environment Variables...
QK Cancel Apply

1. For Windows 10:

1. In the new dialog box, click on “New” and add the path where you find the python.exe file.
If you installed Anaconda?2, this should be in “c:users<user>Anaconda2”. Copy the address
and paste it here.

2. Repeat for “c:users<user>Anaconda2Scripts”.
2. For earlier versions:
1. Add path to the existing list, use semicolon as separator
2. Type “c:users<user>Anaconda2;c:users<user>Anaconda2Scripts”

* Restart the command prompt and type python. If the path variable was added correctly, then you should be able
to see the python interpreter as shown below.

8 Chapter 3. Contents



IDAES Documentation, Release 0.60

BN Administrator: Windows Command Processor - python [ == i:hl

Microsoft Windows [Uersion €.1.7601] -
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Windows\System32>python
Python 2.7.15 | packaged by conda-forge | (default, May 8 2018, 14:46:56) [MSC
v.1500 64 bit (AMDE4)] on win32

Type “help”, “"copyright”, "credits"” or "license” for more information.

Pyomo
* See instructions for pyomo installation. As mentioned, you can either use the pip or the conda install methods
which come included with the Anaconda distribution but conda may be preferable if you installed Anaconda.
* To install pyomo using python’s pip package, follow these steps:
1. Launch the “Anaconda prompt”. You can find this in the start menu under Anaconda.

2. Navigate to the “Scripts” folder in Anaconda. Or simply type, where pip in the prompt. This should return
1 paths and this should be in the scripts folder.

3. Pip install pyomo from trunk (we recommend installing the IDAES branch of pyomo)
1. Install the master branch of PyUtilib from GitHub using pip:
pip.exe install git+https://github.com/PyUtilib/pyutilib
2. Install the master branch of Pyomo from GitHub using pip:
pip.exe install git+https://github.com/Pyomo/pyomo @IDAES
* To install using python’s conda package, follow the following steps:
1. Launch the “Anaconda prompt”. You can find this in the start menu under Anaconda.

2. Navigate to the “Scripts” folder in Anaconda. Or simply type, where conda in the prompt. This should
return 2 paths and one of these should be in the scripts folder.

3. In the scripts folder run the following commands:
conda.exe install -c conda-forge pyomo
conda.exe install -c conda-forge pyomo.extras

« If the installation was successful, you should see the pyomo executable listed in the Scripts folder. You can
check this using the where pyomo command.

IDAES

Option 1: Download zip file

* From the IDAES repository on GitHub, click on “Clone or download” on the right in green. Click on “Download

R T

zip”.

 Extract the contents in the desired directory you want IDAES in.

3.1. Installation Instructions 9


http://www.pyomo.org/installation/
https://github.com/IDAES/idaes

IDAES Documentation, Release 0.60

* Open command prompt and navigate to the folder where you extracted the contents of the IDAES repository (cd
<user>/.../<desired directory>/IDAES/).

1. Run: python setup.py develop

Option 2: Using Git

* Install git for Windows.

e If cloning the repository from the command line, move to a directory where you want to install the IDAES
repository. Then run the following command:

1. git clone https://github.com/IDAES/idaes.git

* Enter your github user id and password. The git installation in 1 should have added the git executable to your
system path and you should be able to execute git commands from the command line.

* Open command prompt and navigate to the folder where you extracted the contents of the IDAES repository (cd
<user>/.../<desired directory>/IDAES/).

1. Run: python setup.py develop

3.2 Core Library

Contents:

3.2.1 Introduction to IDAES Models

The IDAES Toolkit, based on Python and Pyomo, aims to provide multi-scale, simulation-based, open source com-
putational tools and Models to support the design, analysis, optimization, scale-up, operation and troubleshooting of
innovative, advanced fossil energy systems.

See the main IDAES web site for more information about the project.

3.2.2 IDAES Tutorials

The following tutorials have been prepared to guide new users through learning the IDAES modeling framework and
how to use the IDAES model library. The tutorials are written for users with little to no existing knowledge of Python
and Pyomo, however it is likely to be helpful to be familiar with these and the concepts of object-oriented programing
in general. The IDAES documentation contains some recommended resources for an introduction to Pyomo, Python
and object-oriented programming which the user is encouraged to read.

These tutorials all require Python, Pyomo and IDAES to be installed, as well as a non-linear program solver to be
installed for use in solving the flowsheets being generated. The tutorial uses IPOPT as the default solver, however
users may make use of any NLP solver they have available. If no solver is available, users should read the IDAES
documentation for guidance on finding and installing an NLP solver.

The tutorials are designed to be followed in order, and will gradually introduce users the different parts of the
IDAES toolset and how to use them. Completed examples of each tutorial and supporting models are available in
the idaes/examples/core/tutorials folder.

10 Chapter 3. Contents


https://git-scm.com/download/win
https://python.org
https://pyomo.org
https://idaes.org

IDAES Documentation, Release 0.60

Contents

Tutorial 1 - Basic Flowsheets

Introduction

For this tutorial on how to construct simple flowsheets within the IDAES framework, we will use a simple steady-state
process of two well-mixed reactors (CSTRs) in series, with the following system reactions occurring in each.

—

a+2b=c+d

a+2c=2e

a+b=f

In this tutorial, you will learn how to:

import the necessary libraries from Pyomo and IDAES
create a flowsheet object

add a property package to a flowsheet

add unit models to a flowsheet

connect units together

set inlet conditions and design variables

initialize a model

solve the model and print some results

First Steps

The first thing we need to do is import some components from Pyomo which will be used in our model:

ConcreteModel will be used to form the basis of our model, and

SolverFactory will be used to solve our flowsheet.

All of these can be imported from pyomo.environ using the following format:

from pyomo.environ import ConcreteModel, SolverFactory

3.2. Core Library 11



IDAES Documentation, Release 0.60

Next, we need to import FlowsheetBlock and Stream from the ideas.core. FlowsheetBlock used as the basis for
constructing all flowsheets in IDAES, and provides the necessary infrastructure for constructing a flowsheet, whilst
Stream is used to connect different Unit Models together.

from idaes.core import FlowsheetBlock, Stream

Finally, we need to import models for the reactors and the properties calculations we wish to use. For this tutorial we
will be using the CSTR model available in the IDAES model library, and a set of property calculations that has been
prepared and is available at idaes/examples/core/tutorials/tutorial_I_properties.py. We will also import and use the
IDAES Feed and Product Blocks to use in our flowsheet.

These can be imported with the following code:

import tutorial_ 1 properties as properties_rxn
from idaes.models import Feed, CSTR, Product

Setting up a model and flowsheet

Now that we have imported the necessary libraries, we can begin constructing the model of our process. The first
step in constructing a model within the IDAES framework is to create a ConcreteModel with which to contain the
flowsheet. This is the same as creating a ConcreteModel within Pyomo.

m = ConcreteModel ()

Next, we add a FlowsheetBlock object to our model. FlowsheetBlock is an IDAES modelling object which contains
all the attributes required of a flowsheet within the IDAES framework (such as the time domain for dynamic models).
FlowsheetBlock supports a number of different options, which can be set by providing arguments when the block
is instantiated. For the current example we want a steady-state flowsheet, which is done by setting the argument
dynamic=False.

To add a flowsheet named fs to our model, we do the following:

m.fs = FlowsheetBlock (dynamic=False)

This creates a flowsheet block within our model which we can now start to populate with property calculations and
unit models. As unit models depend on property packages for part of their construction, we need to add the property
package to our flowsheet first. This is done by creating an instance of a PropertyParameterBlock, which is part of
all IDAES property packages. This block contains all the information required to set up a property package for our
flowsheet, and can be passed to a unit model in order to set up the property calculations within that model.

To add a property package with the name properties_rxn to our Flowsheet, we do the following:

m.fs.properties_rxn = properties_rxn.PropertyParameterBlock ()

The example property package for this tutorial is fairly simple, and does not need any arguments; however more com-
plex packages may have options that can be set during construction. Users should always refer to the documentation
for any property package they are using to understand any available options. It is also possible for a flowsheet to
contain multiple property packages, which can be used in different parts of the flowsheet.

The next thing we need for our Flowsheet is a source of material entering the process, for which we will use a Feed
Block. For now, we will just create the Feed Block, and we will come back later to specify the conditions of the
incoming material. When we create our Feed Block, we need to pass the property package we wish to use for the
mateiral stream to the unit model as an argument.

m.fs.Feed = Feed(property_package=m.fs.properties_rxn)

12 Chapter 3. Contents



IDAES Documentation, Release 0.60

Next, we can add our two CSTRs to the flowsheet, which we will call Tankl and Tank2. In both cases, we again need
to pass the property package to the unit model as an argument. Unit models can also take a number of other arguments,
however these will be covered in later tutorials.

To add a unit model to a flow sheet, create an instance of the model and pass any desired arguments to it. For example:

m.fs.Tankl = CSTR(property_package=m.fs.properties_rxn)
m.fs.Tank2 = CSTR(property_package=m.fs.properties_rxn)

Finally, let us add a Product Block to serve as a marker for the final state of the material. Just like for Feed and CSTR,
we need to provide the property package argument.

m.fs.Product Product (property_package=m.fs.properties_rxn)

Feed and Product Blocks are not necessary in flowsheets, and a fucntional flowsheet can be built without them. How-
ever, these serve as convenient markers for sources and destinations of material within the process.

The final stage in setting up the components in a flowsheet is to call post_transform_build. Due to some current
limitations in Pyomo (hopefully to be fixed in Pyomo 5.5), there are some parts of IDAES models that cannot be
constructed until after any DAE transformations have been applied. post_transform_build is a method attached to
FlowsheetBlock which automatically goes through all unit models attached to the flowsheet and performs any tasks
that must be performed after DAE transformations (more on this in later tutorials). This is most commonly associated
with the time domain in dynamic models, and is not required in the current model. Thus, for steady-state models,
post_transform_build can be called immediately after the unit models have been declared.

m.fs.post_transform build()

Connecting Units

Now that we have added our unit models to the flowsheet and called post_transform_build on our flowsheet, we can
begin connecting units together. Connections need to be made after post_transform_build is called, as these are some
of the things that cause problems with Pyomo’s DAE transformation. Each unit model will contain a number of inlets
and outlets Port objects, which can be connected using IDAES Stream objects. In our flowsheet, each unit has a single
inlet and a single outlet, named inlet and outlet respectively. For our flowsheet, we need to connect the following:

* outlet of Feed to the inlet of Tank1 (Stream 1),
¢ outlet of Tankl1 to the inlet of Tank2 (Stream 2),

 outlet of Tank2 to the inlet of Product (Stream 3).

m.fs.stream_1 = Stream(source=m.fs.Feed.outlet, destination=m.fs.Tankl.inlet)
m.fs.stream_2 = Stream(source=m.fs.Tankl.outlet, destination=m.fs.Tank2.inlet)
m.fs.stream_3 = Stream(source=m.fs.Tank2.outlet, destination=m.fs.Product.inlet)

At this point, we have finished constructing our flowsheet, and can now move onto specifying our operating conditions
and solving the model.

Setting Operating Conditions

In setting the operating conditions, the first thing we need to specify are the inlet conditions to process, which can be
done through the Feed Block. For our model, we need to specify flow rates of each component (a through f) as well
as the pressure and temperature of the inlet stream.

The conditions we need to fix are:

3.2. Core Library 13




IDAES Documentation, Release 0.60

* flow_mol_comp[“a”] = 1.0 [mol/s]
e flow_mol_comp[“b”] = 2.0 [mol/s]
e flow_mol_comp[“c”] = 0.1 [mol/s]
e flow_mol_comp[“d”’] = 0.0 [mol/s]
e flow_mol_comp[“e”] = 0.0 [mol/s]
e flow_mol_comp[“f’] = 0.0 [mol/s]
* temperature = 303.15 [K]

e pressure = 101325.0 [Pa]

.fs.Feed.fix
.fs.Feed.fix
.fs.Feed.fix

("flow_mol_comp', comp='a', value=1.

(

(
.fs.Feed.fix(

(

(

(

(

'flow_mol_comp', comp='b', value=2.
'flow_mol_comp', comp='c', value=0.
flow_mol_comp', comp='d', value=0.
flow_mol_comp', comp='e', value=0.
'flow_mol_comp', comp='f', value=0.
'temperature', value=303.15)

.fs.Feed.fix ('
.fs.Feed.fix
.fs.Feed.fix
.fs.Feed.fix

235 33 3 3 3 B
oo or oo

pressure', value=101325)

Additionally, we need to specify some design conditions for the system — in this case the volume and heat of both
tanks. Let us fix the volume of each tank to be 10 m? and the heat duty to be 0 J/s. The variable names are “volume”
and “heat”.

3

.fs.Tankl.volume.fix (10.0)
m.fs.Tankl.heat.fix (0.0)

3

.fs.Tank2.volume.fix (10.0)
m.fs.Tank2.heat.fix (0.0)

Initializing and Solving the Model

Now that the model has been constructed and the inlet and design conditions have been specified, we can now work
on solving the model. However, most process engineering models cannot be solved in a single step, and require
some degree of initialization to get to a solvable state. The models within the IDAES model library contain prebuilt
initialization routines which can be used to get each model to a solvable state. For this tutorial, we will use a sequential
modular type approach to initializing our flowsheet using these prebuilt methods.

We will begin with initializing the Feed Block, as it is the first unit in our flowsheet. The initialization routine for a
Feed Block expects the conditions of the inlet stream to be provided as initial guesses along with any design conditions
required to have zero degrees of freedom. However, as the conditions for the Feed are specified (fixed), there is no need
to provide additional guesses for these and the initialization routine will make use of the specified value automatically.

The initialization routines also require a non-linear solver to be available to solve the model. This tutorial assumes that
you have IPOPT installed, however you can substitute this for other NLP solvers you may have available. In order to
do this, you can set the solver keyword when calling the initialization routine with the name of your NLP solver (e.g.
solver="ipopt’).

m.fs.Feed.initialize ()

Now that the Feed has been initialized, we can use the outlet conditions for the initial guesses for the inlet of Tankl.
These are provided to the initialization routine through the state_args argument (which is a Python dict). To get the
values from the outlet of Feed, we can use the outlet Port object, using the stream keys to access each variable. Note

14 Chapter 3. Contents




IDAES Documentation, Release 0.60

that we need to specify a time index for the outlet Port, which for a steady-state model is just 0. Additionally, we need
to use the Pyomo value method to get the actual value of the variable in question.

m.fs.Tankl.initialize (state_args={
"flow_mol_comp": {
"a": m.fs.Feed.outlet[0].vars["flow_mol_comp"]["a"].value,
"b": m.fs.Feed.outlet[0].vars["flow_mol_comp"]["b"].value,
"c": m.fs.Feed.outlet[0].vars["flow_mol_comp"]["c"].value,
"d": m.fs.Feed.outlet[0].vars["flow_mol_comp"]["d"].value,
"e": m.fs.Feed.outlet[0].vars["flow_mol_comp"]["e"].value,
"f": m.fs.Feed.outlet[0].vars["flow_mol_comp"]["f"].value},
"pressure": m.fs.Feed.outlet[0] .vars["pressure"].value,
"temperature": m.fs.Feed.outlet[0].vars["temperature"].value})
We can then repeat this process for Tank2.
m.fs.Tank2.initialize (state_args={
"flow_mol_comp": {
"a": m.fs.Tankl.outlet[0] .vars["flow_mol_comp"]["a"].value,
"D": m.fs.Tankl.outlet[0].vars["flow_mol_comp"]["b"].value,
"c": m.fs.Tankl.outlet[0].vars["flow_mol_comp"]["c"].value,
"d": m.fs.Tankl.outlet[0] .vars["flow_mol_comp"]["d"].value,
"e": m.fs.Tankl.outlet[0].vars["flow_mol_comp"]["e"].value,
"f": m.fs.Tankl.outlet[0O].vars["flow_mol_ comp"]["f"].value},
"pressure": m.fs.Tankl.outlet[0] .vars["pressure"] .value,
"temperature": m.fs.Tankl.outlet[0].vars["temperature"].value})

At this point, our model should now be initialized and ready to solve. In order to do this, we need to create a solver
using Pyomo’s SolverFactory, which is done the same way in IDAES as in Pyomo.

solver = SolverFactory ('ipopt')

Just like in Pyomo, solver options can be provided as well by attaching a dictionary of keywords to the solver object,
however these are not needed for this tutorial. Once the solver object is created, we can call it to solve the model and
return the results object.

’results = solver.solve(m, tee=True)

Let us print the results object to get more details about our solution.

’print(results)

Finally, let’s display the Product Block so we can see what the conditions of the product stream are.

’m.fs.Product.display()

Hopefully you get an output reporting “Optimal Solution Found”. You should also see that there were 154 variables
and constraints in the problem. If the number of constraints and variables are not equal, check that you specifed all
the required inputs (there should be 12 variables which were fixed). You might also see some warnings at the begining
about equilibrium reaction, but these can be ignored.

If all has gone well, you should see the following conditions in the Product Block.
e flow_mol_comp[“a”] = 0.216 [mol/s]
* flow_mol_comp[“b”’] = 0.978 [mol/s]
e flow_mol_comp[“c”] = 0.332 [mol/s]

* flow_mol_comp[“d”’] = 0.244 [mol/s]

3.2. Core Library 15



IDAES Documentation, Release 0.60

 flow_mol_comp[“e”] = 0.011 [mol/s]
e flow_mol_comp[“f’] = 0.534 [mol/s]
e pressure = 101325 [Pa]

e temperature = 402.15 [K]

Moving On

The next tutorial will build on this one, so it is recommended that you save this tutorial so you don’t have to rewrite
the model code.

Tutorial 2 - Basic Flowsheet Optimization
Introduction

In the previous tutorial, we developed a model for a simple flowsheet to simulate the performance of a series of
reactions occurring in two CSTRs in series. In this tutorial, we will move from simulating to optimizing the flowsheet
by trying to improve the yield of specific components.

—

a+2b=c+d

a+2c=2e

a+b=f
In this tutorial, you will learn how to:
* add an objective function to a model,
¢ set bounds on variables,
¢ add degrees of freedom to the model, and

* solve the resulting optimization problem.

First Steps

The first step in setting up an optimization problem is to create and a flowsheet for the problem and initialize it. Given
that most problems of interest to engineers are complex and highly non-linear, it is general best to start with a fully
defined problem and solve it for an initial set of conditions (from which we will try to find the optimal solution).

16 Chapter 3. Contents



IDAES Documentation, Release 0.60

Hopefully you saved the file from the previous tutorial which we will extend to include optimization - otherwise please
refer to Tutorial 1 for instructions on how to construct the flowsheet.

Next Steps

Next, we need to import a couple of additional things from Pyomo in order to create and optimization problem:
* Objective will be used to define our objective function, and
» minimize will be used to tell our solver that it needs to minimize the objective.

These can be added to the existing import from pyomo.enivron at the beginning of our file.

from pyomo.environ import ConcreteModel, SolverFactory, Objective, minimize

Adding an Objective Function

Now that we have an initialized flowsheet for our problem, we can go about adding an objective function. For this
tutorial, let us consider component “f” to be an undesired side product of our reactions, and try to minimize to amount
of this component produced.

For this, we add an Objective object to our flowsheet (m.fs as you may recall) and provide it with an expression for the
objective function (in this case the flowrate of component f leaving Tank2) and an instruction on whether to minimize
and maximize this expression.

m.fs.obj = Objective (expr=m.fs.Tank2.outlet[0] .vars["flow_mol_comp"]["f"],
sense=minimize)

Adding Variable Bounds

Next, we need to add some limits on our problem to make sure the results of the optimization are physically reasonable.
For this problem, we will add some bounds on the temperatures in both tanks, to make sure that they do not get too hot
or too cold. For this tutorial, let us set a lower bound on temperature in both tanks to be 300 [K], and an upper bound
of 400 [K] in Tank1 and 450 [K] in Tank?2.

As we are using CSTRs for our reactors in this tutorial, the temperatures within the tanks are equal to the temperatures
in the outlets, so we can apply our bounds to the outlet temperatures. We can set the upper and lower bounds of a
variable by using the Pyomo sefub and setlb methods as shown below.

m.fs.Tankl.outlet[0] .vars["temperature"].setlb (300)
m.fs.Tank2.outlet [0] .vars["temperature"].setlb (300)
m.fs.Tankl.outlet [0] .vars["temperature"].setub (400)
m.fs.Tank2.outlet[0] .vars["temperature"].setub (450)

Adding Degrees of Freedom

Finally, we need to provide our problem with some degrees of freedom that the solver can use to try to find the optimal
solution to our problem. The IDAES CSTR model allows for the addition or removal of heat from the reactor, so let’s
use the reactor heat duties as our degrees of freedom for this problem.

When we were initializing the problem, we specified that the reactor heat duties were fixed variables with a value of 0
[J/s] to make our problem fully defined. We can now unfix these variables to allow the solver to manipulate them, and
thus adjust the temperatures in the reactors.

3.2. Core Library 17




IDAES Documentation, Release 0.60

m.fs.Tankl.heat.unfix ()
m.fs.Tank2.heat.unfix ()

Solving the Optimization Problem

Now that our optimization problem is fully defined, we can go ahead and try to solve it. We should already have a
solver object defined within our flowsheet from Tutorial 1, so we can now apply it to the optimization problem to find
our optimal solution.

results = solver.solve(m, tee=True)

Once again, let us print the results object to get more details about our solution.

’print(results)

Hopefully we will see that our problem has 154 constraints and 156 variables (thus two degrees of freedom), and that
an optimal solution was found.

Finally, let’s display the Product Block and reactor heat duties so we can see what solution the optimizer found.

m.fs.Product.display ()
m.fs.Tankl.heat.display ()
m.fs.Tank2.heat .display ()

If all has gone well, you should see the following conditions in the Product Block.
* flow_mol_comp[“a”] = 0.497 [mol/s]
* flow_mol_comp[“b”] = 1.315 [mol/s]
* flow_mol_comp[“c”] = 0.279 [mol/s]
* flow_mol_comp[“d”’] = 0.184 [mol/s]
* flow_mol_comp[“e”] = 0.006 [mol/s]
e flow_mol_comp[“f”] = 0.316 [mol/s]
e pressure = 101325 [Pa]
* temperature = 300.0 [K]
You should also see the following heat duties:
» Tankl =-7364.4 [J/s]
e Tank2 =-4201.7 [J/s]

Compared to Tutorial 1, we can see that the amount of component “f” being produced has dropped from 0.534 [mol/s].
This has been achieved by reducing the temperature in both reactors by removing heat, and limiting the temperature
in the system to the lower bound (300 [K]). This makes sense, as all the formation of component “f” in our example
is exothermic, so reducing temperature will reduce the yield of this component. However, the other reactions are also
exothermic, so we also see reduced yields of all other components.

Tutorial 3 — Advanced Flowsheets

18 Chapter 3. Contents



IDAES Documentation, Release 0.60

Introduction

The previous flowsheets have demonstrated how to construct a flowsheet for a simple process with two units. However,
actual processes of interest are generally far more complicated and involve many units and potential many different
sets of property calculations.

In this tutorial we will we will add heat exchangers after each of the CSTRs from the previous tutorials to reduce the
temperature of the reactant streams. For this, we will need to include a second property package for the cooling water
to be used in the heat exchangers.

—

This tutorial will teach you how to:
* Add multiple property packages to a flowsheet,
» Assign a default property package to use within a flowsheet
» Assign different property packages to different unit models
¢ Create and utilize sub-flowsheets
* Adjust variable bounds

* Use the model_check utility

Initial Setup

Firstly, we need to import the necessary libraries we will use for our Flowsheet. This is much the same as
for the last tutorial, with the addition of importing the IDAES Heat Exchanger, as well as a property pack-
age for the cooling water. A set of property calculations has been prepared for this and is available at
idaes/examples/core/tutorials/tutorial_3_H2O_properties.py.

from pyomo.environ import ConcreteModel, SolverFactory
from idaes.core import FlowsheetBlock, Stream

import tutorial_1_properties as rxn_properties
import tutorial_3_H20_properties as H20_properties

from idaes.models import Feed, CSTR, HeatExchanger, Product

Next, we need to create our ConcreteModel and Flowsheet.

3.2. Core Library 19




IDAES Documentation, Release 0.60

m = ConcreteModel ()
m.fs = FlowsheetBlock (dynamic=False)

Processes with Multiple Property Packages

Most real chemical processes involve multiple groups of streams which have limited interaction with other streams.
Some common examples are hot and cold utility streams which never come into direct contact with the other process
streams, yet play an important role in the overall process performance.

These different groups of streams likely contain different chemical components and have different thermophysical
properties which need to be calculated. Thus, we often want to include multiple sets of property calculations within a
single flowsheet to represent these different groups of streams. The IDAES framework fully supports flowsheets with
multiple property packages, and facilitates assigning different property packages to different unit models.

Multiple property packages can be assigned to a flowsheet in the same manner as before, as long as each has a unique
name. For this tutorial, we will name our property packages rxn_properties and H20_properties.

m.fs.rxn_properties = rxn_properties.PropertyParameterBlock ()
m.fs.H20_properties = H20_properties.PropertyParameterBlock ()

IDAES Flowsheets also support the assignment of a default property package, which is used by unit models if they are
not assigned a property package at creation. The default property package for a flowsheet can be set by assigning the
value of flowsheet.config.default_property_package to the desired property parameter block. For our flowsheet, let us
assign m.fs.rxn_properties as the default property package.

m.fs.config.default_property_package = m.fs.rxn_properties

Next, let us add the Feed Block, first reactor and first heat exchanger to our flowsheet, which we will call Feed, Tankl
and HXI. Adding the Feed Block and CSTRs has been covered in the previous tutorials, so we will focus on the heat
exchanger models here. Like the other models, the heat exchanger model can also be given a number of arguments as
instructions on how to construct the model. The most important of these are the property packages for each side of the
heat exchanger; side_1_property_package and side_2_property_package. We will not worry about the other options
in this tutorial.

As we have assigned rxn_properties as the default property package for our flowsheet, we do not need to assign it
whilst adding unit models to our flowsheet (as long as they are to use this property package). Thus, for the CSTR and
side 1 of our heat exchanger, we do not need to assign a property package. Thus, all we need to do to add Feed, Tank
and HX1 is the following:

m.fs.Feed = Feed()
m.fs.Tankl = CSTR()
m.fs.HX1 = HeatExchanger (side_2_property_package=m.fs.H20_properties)

Subflowsheets

Next, we need to add the remaining CSTR and heat exchanger to our model. Rather than attach them directly to our
flowsheet, we will instead create a sub-flowsheet to contain them in order to demonstrate how to use these. IDAES
flowsheet blocks (both FlowsheetBlock and FlowsheetBlockData) can be used to as a top level flowsheet or as a sub-
flowsheet within a higher level flowsheet. Flowsheets can be nested to any depth desired, however some parts of the
core code that need to search the model tree have an arbitrary depth limit of 20 (e.g. unit models will only search up
20 levels of flowsheets looking for a default property package).

When a FlowsheetBlock (or a class which inherits from FlowsheetBlockData) is created, it checks to see whether it
has a parent object which contains a time domain (parent.time). If so, it assumes that it is a sub-flowsheet, and makes

20 Chapter 3. Contents




IDAES Documentation, Release 0.60

use of the parents time domain and dynamic flag, rather than creating new ones. Thus, a consistent time domain is
maintained throughout all the sub-flowsheets and associated models. Each sub-flowsheet is self-contained, and can
contain any of the elements a top-level flowsheet can, including property packages, unit models and connections.
Sub-flowsheets may also access any component their parent (or higher level flowsheets) contains. Sub-flowsheets may
also specify a different default property package from their parent, which will be used by any unit model within the
sub-flowsheet in preference to that of their parent.

Creating a sub-flowsheet is done in the same manner as creating a top-level flowsheet, by creating an instance of Flow-
sheetBlock (or a class inheriting from FlowsheetBlockData). As a sub-flowsheet inherits its time domain and dynamic
status from the parent flowsheet, it is not necessary to specify the dynamic argument in this case. For our example,
we will also assign a different default property package for our sub-flowsheet, in this case m.fs. H2O_properties. This
can be done in the same way as for a top-level flowsheet, however if the property package already exists (such as in
this case where we have already added it to the top-level flowsheet) the default property package can be passed as an
argument when creating the sub-flowsheet.

m.fs.block = FlowsheetBlock (default_property_package=m.fs.H20_properties)

The default_property_package argument sets the default_property_package flag directly during the construction of the
flowsheet.

Next, we can add the second CSTR (7ank2) and Heat Exchanger (HX2) to our new flowsheet in the same way that we
would normally. As we have set H20_properties as our default properties of the subflowsheet, in this case we need to
specify a property package for Tank2 and side 1 of HX2. Remember to assign these to m.fs.block.

m.fs.block.Tank2 = CSTR (property_package=m.fs.rxn_properties)
m.fs.block.HX2 = HeatExchanger (side_1_property_package=m.fs.rxn_properties)

Finally, let us add the Product Block to the Flowsheet. We could add this to either flowsheet, but for this tutorial we
will add it to the top-level flowhseet (fs).

’m.fs.Product = Product ()

Finally, we can call post_transform_build on our main flowsheet to finish the construction of our model. This will
automatically call post_transform_build on our sub-flowsheet.

’m.fs.post_transform_build()

Connecting Units

Now that we have added all the unit models and sub-flowsheets to our main flowsheet, we can start connecting the
units together. We will start with the units in the top-levle flowsheet:

m.fs.stream_1 = Stream(source=m.fs.Feed.outlet,
destination=m.fs.Tankl.inlet)

m.fs.stream_2 = Stream(source=m.fs.Tankl.outlet,
destination=m.fs.HX1l.side_1_inlet)

We can connect units across different sub-flowsheets in exactly the same way as we connect units within a single
flowsheet, just with the inclusion of the extra flowsheet leyer:

m.fs.stream_3 = Stream(source=m.fs.HX1l.side_1_outlet,
destination=m.fs.block.Tank2.inlet)

When connecting units within subflowsheets (e.g. Tank2 and HX2), be careful where you place the connecting Con-
straint. The constraint can be placed in the subflowsheet that contains the unit models, or in any higher level flowsheet,

3.2. Core Library 21



IDAES Documentation, Release 0.60

and the model will be constructed successfully. However, placing the connecting constraints in higher level flowsheets
may become confusing, so we recommend keeping the connecting constraints with the sub-flowsheet which contains
the units being connected. For our example, we would place the constraint in m.fs.block as shown below:

m.fs.block.stream_4 = Stream(source=m.fs.block.Tank2.outlet,
destination=m.fs.block.HX2.side_1_inlet)

m.fs.block.stream_5 = Stream(source=m.fs.block.HX2.side_1_outlet,
destination=m.fs.Product.inlet)

Setting Inlet Conditions

From here, everything follows in the same way as in the earlier tutorials. First, we need to set our inlet and design
conditions. We will use the same inlet and design conditions for Tankl from the previous tutorials (don’t forget that
Tank?2 is now in a sub-flowsheet).

.fs.Feed.fix
.fs.Feed.fix
.fs.Feed.fix
.fs.Feed.fix
.fs.Feed.fix
.fs.Feed.fix
.fs.Feed.fix
.fs.Feed.fix

'flow_mol_comp', comp='a', value=l.
'flow_mol_comp', comp='b', value=2.
'flow_mol_comp', comp='c', value=0.
'flow_mol_comp', comp='d', wvalue=0.

'flow_mol_comp', comp='e', value=0.

o O O+ OO

flow_mol_comp', comp='f', value=0.
'temperature', value=303.15)
'pressure', value=101325)

2383333353 3

3

.fs.Tankl.volume.fix (10.0)
.fs.Tankl.heat.fix (0.0)

3

m.fs.block.Tank2.volume.fix (10.0)
m.fs.block.Tank2.heat.fix (0.0)

For the heat exchangers, we will set the following inlet conditions for the side_2_inlet in both HX1 and HX2. As we
do not have a Feed Block for these stream, we will set the value of the varaibles directly through the Port object. The
conditions we will use are:

e flow_mol = 5 [mol/s]
* temperature = 303.15 [K]
e pressure = 101325.0 [Pa]

One important thing to note is that IDAES Port objects (and many other things) are always indexed by time (even for
steady-state models). Thus, when specifying conditions we need to include the time index(es) at which we wish to fix
the value. For our steady-state model, there is only a single time index of 0 which we could use to specify the inlet
conditions. However, more generally we use Pyomo slice notation () to set the value at all time indexes.

To fix an variable in a Connecotr object, we need to use the form:
m.fs.Tankl.inlet[: |.vars[ “variable name” ].fix(value)

If the variable we are trying to fix is indexed by something (for example a flow rate which is indexed by component),
we also add the index of the variable as follows:

m.fs.Tankl.inlet[: |.vars[ “variable name” J[index].fix(value)

Thus, we need to write the follwing for our Heat Exchanger inlets:

22 Chapter 3. Contents




IDAES Documentation, Release 0.60

m.fs.HX1.side_2_ inlet[:].vars["flow mol"].fix(5.0)
m.fs.HX1.side_2_inlet[:].vars["temperature"].fix (303.15)
m.fs.HX1l.side_2_inlet[:].vars["pressure"].fix (101325.0)

m.fs.block.HX2.side_2_ inlet[:].vars["flow mol"].fix (5.0)
m.fs.block.HX2.side_2_inlet[:].vars["temperature"].fix(303.15)
m.fs.block.HX2.side_2_inlet[:].vars|["pressure"].fix (101325.0)

We also need to set the volume for both sides of each heat exchanger, plus the heat_transfer_coefficient and
heat_transfer_area variables. Let us use the following conditions (don’t forget to set them for both heat exchang-
ers).

¢ heat transfer coefficient = 100 [W/m”2.K]

¢ heat transfer area = 2.0 [m"2]

3

.fs.HX1.heat_transfer_coefficient.fix (100.0)
m.fs.HX1l.heat_transfer_area.fix (2.0)

3

.fs.block.HX2 .heat_transfer_ coefficient.fix (100.0)
m.fs.block.HX2.heat_transfer_area.fix (2.0)

Using the Model Check Utility and Setting Variable Bounds

Models of chemical processes are generally very complex, and even simple mistakes can make a problem difficult or
impossible to solve. In order to assist users with solving models (and debugging them when they fail), the IDAES
framework contains tools which allow model developers to write simple tests for common problems that may arise
when using their models. Some examples of potential model tests include:

* checking for variables with values set outside of the variable bounds,
* “sanity checks” for model behavior - e.g. a compressor with a negative pressure change.

IDAES flowsheets contain a method called model_check which searches through all the unit models attached to the
flowsheet and calls the models model_check method (if it exists). The developer of each unit model (and each submodel
and property package) is responsible for writing any model checks which makes sense for their particular model.

All the core IDAES unit models contain model checks, and the H2O_properties package contains a simple
model_check method which checks that the remperature and pressure variables fall within the bounds set for those
variables. Let’s call the model_check method on our main flowsheet (m.fs) and see the results (you will need to run the
flowsheet to see the results).

m.fs.model_check ()

You should see an output saying “INFO - idaes.core - Executing model checks.”. This indicates that the model_check
method has been called, and will be followed by any outputs from the model_check methods. In this case, there should
be no other outputs, as all the checks for our model should pass.

In order to demonstrate a model check which fails, let’s change the lower bound on femperature in one of our heat
exchangers to 310.0 K (which is higher than our fixed inlet value). AS discussed in the last tutorial, the upper and
lower bounds of a variable can be set using the setub and setlb methods respectively, which all Pyomo variables have.
To set the lower bound of the side 2 inlet temperature to HX1, we use the following code (this needs to go before the
model_check call):

m.fs.HX1.side_2_inlet[:].vars["temperature"].setlb (310.0)

3.2. Core Library 23




IDAES Documentation, Release 0.60

CAUTION - users should be careful when changing preset variable bounds in any model, especially when trying to
widen the bounds. Many models are fitted to a limited range of data, and bounds are set to prevent these from being
extrapolated beyond the fitted region where the quality of the fit may not be guaranteed (or in many cases, where the
fit is known to be bad). Users should keep this in mind when looking at and adjusting bounds in models they did not
create.

Another thing users should be aware of is that bounds are set independently for each instance of a model. In our
current example, there are multiple instances of the H2O_properties model throughout our flowsheet (2 instances in
each unit model to be precise, for a total of 8). When we changed the lower bound above, we changes the bound in
only one of these instances, and the remaining 7 instances still have the old bound set.

Now that we have changed the lower bound on temperature, let us run the model checks again. This time we would
expect to see a warning that our inlet temperature has a value lower than the lower bound.

We should now see a second line in the output from the model_check method, which says “ERROR -
idaes.unit_model.properties - fs.HX1.side_2.properties_in[0.0] Temperature set below lower bound.”.

The first part of the message tells us the severity of the problem found, in this case “ERROR”. IDAES model checks
use the following levels for model checks:

* ERROR - indicates an issue that is likely to cause a problem when solving the model (e.g. variables out of
bounds),

¢ WARNING - indicates something that may be wrong, but may still be solvable (e.g. a compressor with negative
pressure increase),

* INFO - message for information only.

The second part of the message indicates which part of the IDAES framework raised the issue. This is mostly useful
for debugging by advanced users and won’t be covered here.

The important part of the output comes from the last two parts of the message. The third part tell us which part of our
particular model the issue came from, in this case fs.HX1.side_2.properties_in[0.0]. We already know that fs. HX1 is
our first heat exchanger, and side_2.properties_in[0.0] indicates that the issue came from the inlet properties for side
2 of this heat exchanger (at time 0.0). More detail on understanding the internal structure of IDAES unit models will
be given in the next tutorial.

The final part of the message was written by the developer of the H2O_properties package, and tells us what caused
the issue - in this case the lower bound of the temperature variable. Hopefully this message will make it clear what
needs to be fixed, however the quality of these messages depends on the model developer.

Before we continue, let us change the lower bound on temperature back to its original value (298.15 K) so that our
model is feasible.

Initializing and Solving the Model

Next we need to initialize our model. We will use the same procedure as in previous tutorials, sequentially initializing
units using the outlet of the previous unit (the side_2 inlets of the Heat Exchangers are fixed, so we do not need to
provide conditions for these).

m.fs.Feed.initialize ()
m.fs.Tankl.initialize (state_args={
"flow_mol_comp": {

"a": m.fs.Feed.outlet[0].vars["flow_mol_comp"]["a"].value,
"b": m.fs.Feed.outlet[0].vars["flow_mol_comp"]["b"].value,
"c": m.fs.Feed.outlet[0].vars["flow_mol_comp"]["c"].value,
"d": m.fs.Feed.outlet[0].vars["flow_mol_comp"]["d"].value,
"e": m.fs.Feed.outlet[0].vars["flow_mol_comp"]["e"].value,
"f": m.fs.Feed.outlet[0].vars["flow_mol comp"]["f"].value},

(continues on next page)

24 Chapter 3. Contents




IDAES Documentation, Release 0.60

(continued from previous page)

"pressure": m.fs.Feed.outlet[0] .vars["pressure"].value,

"temperature": m.fs.Feed.outlet[0] .vars["temperature"].value})
m.fs.HX1.initialize (state_args_1={

"flow_mol_comp": {

"a": m.fs.Tankl.outlet[0].vars["flow_mol_comp"]["a"].value,
"b": m.fs.Tankl.outlet[0].vars["flow_mol_ comp"]["b"].value,
"c": m.fs.Tankl.outlet[0] .vars["flow_mol_comp"]["c"].value,
"d": m.fs.Tankl.outlet[0].vars["flow_mol_comp"]["d"].value,
"e": m.fs.Tankl.outlet[0O].vars["flow_mol_ comp"]["e"].value,
"f": m.fs.Tankl.outlet[0] .vars["flow_mol_comp"]["f"].value},
"pressure": m.fs.Tankl.outlet[0] .vars["pressure"].value,
"temperature": m.fs.Tankl.outlet[0].vars["temperature"].value})
m.fs.block.Tank2.initialize (state_args={
"flow_mol_comp": {
"a": m.fs.HX1l.side_1_outlet[0].vars["flow_mol_comp"]["a"].value,
"b": m.fs.HX1.side_1_outlet[0].vars["flow_mol_comp"]["b"].value,
"c": m.fs.HX1.side_1_outlet[0].vars["flow_mol_ comp"]["c"].value,
"d": m.fs.HX1l.side_1_outlet[0].vars["flow_mol_comp"]["d"].value,
"e": m.fs.HX1l.side_1_outlet[0].vars["flow_mol_comp"]["e"].value,
"f": m.fs.HX1.side_1_outlet[0].vars["flow_mol_comp"]["f"].value},

"pressure": m.fs.HX1.side_1_outlet[0].vars|["pressure"].value,
"temperature": m.fs.HX1l.side_1_outlet[0].vars["temperature"].value})
m.fs.block.HX2.initialize (state_args_1={

"flow_mol_comp": {
"a": m.fs.block.Tank2.outlet[0] .vars["flow_mol_comp"]["a"].value,
"b": m.fs.block.Tank2.outlet[0] .vars["flow_mol_comp"]["b"].value,
"c": m.fs.block.Tank2.outlet[0].vars["flow_mol_comp"]["c"].value,
"d": m.fs.block.Tank2.outlet[0] .vars["flow_mol_comp"]["d"].value,
"e": m.fs.block.Tank2.outlet[0] .vars["flow_mol_comp"]["e"].value,
"f": m.fs.block.Tank2.outlet[0] .vars["flow_mol_comp"]["f"].value},

"pressure": m.fs.block.Tank2.outlet[0].vars["pressure"] .value,

"temperature": m.fs.block.Tank2.outlet[0].vars["temperature"].value})

Now that our model is initialized, we can create a solver and use it to solve our flowsheet.

solver = SolverFactory ('ipopt')
results = solver.solve(m, tee=True)

Finally, let’s display the both of the outlets from HX2 (side_1_outlet and side_2_outlet) and check our results.

print (results)

m.fs.block.HX2.side_1_outlet.display ()
m.fs.block.HX2.side_2_outlet.display ()

The expected conditions are:

Side 1
* flow_mol_comp[“a”] = 0.275 [mol/s]
* flow_mol_comp[“b”] = 1.047 [mol/s]
e flow_mol_comp[“c”] = 0.323 [mol/s]
* flow_mol_comp[“d”’] = 0.233 [mol/s]

* flow_mol_comp[“e”] = 0.010 [mol/s]

3.2. Core Library 25




IDAES Documentation, Release 0.60

* flow_mol_comp[“f’] = 0.487 [mol/s]
e pressure — 101325.0 [Pa]
* temperature = 324.82 [K]
Side 2
¢ flow_mol = 5.0 [mol/s]
e pressure = 101325.0 [Pa]
* temperature = 318.79 [K]

Tutorial 4 — Dynamic Flowsheets
Introduction

Up until now, we have only looked at steady-state flowsheets, so in this tutorial we will look at how to build a dynamic
flowsheet. To do this, we will modify the process from Tutorial 1 to simulate dynamic behavior by including:

* accumulation and holdup,
* a Mixer for the different feed components,
* pressure driven flow leaving each Tank, and
* astep-change in feed rates.
This tutorial will teach you how to:
* Set up a dynamic flowsheet,
* Add steady-state models to dynamic flowsheets,
* Add constraints to existing unit models,
* Transform the time domain using Pyomo.dae,
* set steady-state initial conditions, and

* plot some results.

First Steps

Firstly, we need to import the necessary libraries we will use for our Flowsheet. In addition to the imports from
Tutorial 1, we need to import Constraint, Var and TransformationFactory.

from pyomo.environ import ConcreteModel, Constraint, SolverFactory,
—TransformationFactory, Var

from idaes.core import FlowsheetBlock, Stream

import tutorial_1l_ properties as properties_rxn
from idaes.models import CSTR, Mixer

We also need to import a library to use to plot our results, for which we will use matplotlib:

import matplotlib.pyplot as plt

26 Chapter 3. Contents




IDAES Documentation, Release 0.60

Dynamic Flowsheets

In order to create a dynamic model for a flowsheet, we start with a ConcreteModel as before.

m = ConcreteModel ()

When we add our FlowsheetBlock however, we need to indicate that this will be a dynamic flowsheet. We have already
seen that FlowsheetBlock, which we have so far set to False (this is the default setting by the way, so it is not necessary
to specify dynamic = False for steady-state flowsheets). For a dynamic Flowsheet, we simply need to specify dynamic
= True when creating our FlowsheetBlock.

FlowsheetBlock also accepts another argument named fime_set that can be used to specify a set of points within the
time domain. The time domain needs to be set with a start and end point at a minimum, and the user can specify
additional intermediate points if desired. time_set expects a list of points, and has the following defaults:

¢ if dynamic = True, time_set = [0.0, 1.0]
¢ if dynamic = False, time_set = [0.0]
For our flowsheet, let us add the following points to our time domain:
e Start point=0.0 s
* End point = 5e5 s
¢ Internal point at 1.0 s

Thus, we write the following to create our FlowsheetBlock:

m.fs = FlowsheetBlock (dynamic=True, time_set=[0, 1, 500000])

Adding Property Packages and Models

Dynamic FlowsheetBlocks behave the same way as steady-state FlowsheetBlocks, so we can add our property pack-
ages and unit models in the same manner as before. First, we need to create the property package, and we will also set
it as the default property package for our flowsheet.

m.fs.properties_rxn = properties_rxn.PropertyParameterBlock ()
m.fs.config.default_property_package = m.fs.properties_rxn

Whilst we have declared our flowsheet to be a dynamic process, there are many circumstances where we would have
unit operations which react sufficiently quickly that we would like to consider them to be steady-state operations.
The IDAES framework supports this by allowing us to declare Unit Models as steady-state model by specifying
dynamic = False when declaring Unit Models (note that the reverse is not supported, i.e. dynamic models in steady-
state flowsheets). If the dynamic argument is not provided when a Unit Model is added to a Flowsheet, it takes this
argument from its parent object. This can also be applied to sub-flowsheets, allowing for steady-state sub-Flowsheets
within dynamic Flowsheets.

For this tutorial, let us add a Mixer unit at the beginning of our process to mix two feed streams prior to being fed to
Tank1. We will assume this is an ideal mixer, which means that we can assume it can be represented by a steady-state
model.

m.fs.Mix = Mixer (dynamic=False)

Next, we can add our two Tank models as before. As we have set a default property package and we want our CSTRs
to be dynamic models, we do not need to provide any arguments when adding these to our Flowsheet (the dynamic
argument will be inherited from the Flowsheet).

3.2. Core Library 27




IDAES Documentation, Release 0.60

m.fs.Tankl = CSTR()
m.fs.Tank2 CSTR ()

Adding Variables and Constraints to Existing Models

For our dynamic process, we want to model the flow of material leaving each tank as being pressure driven flow; that
is flowrate leaving each tank is proportional to the depth of fluid in each tank. However, the core CSTR model does not
include the calculations necessary for modeling this behavior. Thus, we will need to add these Constraints ourselves.

First, we will need to add some additional Variables to our Tank models that we will use in our calculations. We can
do this by simply adding Pyomo Var objects to the CSTR objects already constructed in our Flowsheet. We need to
add the following Variables to Tank1 (Note: volume_flow is a state variable and thus technically belongs in a Property
Block. As we have not covered these yet, we will place it in the Unit Model for now).

m.fs.Tankl.height = Var (m.fs.Tankl.time,
initialize=1.0,
doc="Depth of fluid in tank [m]")
m.fs.Tankl.area = Var(initialize=1.0,
doc="Cross—-sectional area of tank [m"2]")
m.fs.Tankl.volume_flow = Var (m.fs.Tankl.time,
initialize=4.2e5,
doc="Volumetric flow leaving tank")
m.fs.Tankl.flow_coeff = Var(m.fs.Tankl.time,
initialize=5e-5,
doc="Tank outlet flow coefficient")

Next, we can add the extra Constraints we need. This is done using Pyomo Constraint objects, which again can be
added directly to our CSTR objects. To create a Constraint, we first need to write a rule describing the equation we
wish to write, and to then create a Constraint using this rule. Let us start with a Constraint relating the volume of
reacting fluid, V;, to the cross-sectional area of the tank, A, and the depth of the fluid, h;, at a given point in time ¢ (we
will assume A is constant with time):

Vi = A x hy
To do this, we first write the following rule:
def geometry(b, t):
return b.volume([t] == b.areaxb.height[t]

This is a Python method that returns an expression involving Pyomo objects (volume, area and height). In this rule
we have used b to represent the object to which we are adding the Constraint (and from which we will gather these
variables). When we create the Constraint in the next step, Pyomo automatically passes the object that the Constraint
is being added to (in this case Tank1) to the rule, allowing us to write the rule in a general form.

‘We then use this rule to construct the actual Constraint in our model.

m.fs.Tankl.geometry = Constraint (m.fs.Tankl.time, rule=geometry)

We also need to write the following Constraints for volume_flow:
Fvol,t = Fmol,t/pmol,t

Foorp = Cy X by

where F 1 is volume_flow, F},,,; ; is the total molar flowrate of material leaving the tank, p,,;  is the total density
of the fluid in the tank and Cy is flow_coeff. F},,,; + and pp,q1,« both come from the Property Block associated with the

28 Chapter 3. Contents




IDAES Documentation, Release 0.60

fluid in the tank (and thus the tank outlet), which is called Tankl.holdup.properties_out. To write these Constraints,
we use the following code:

def volume_flow_calculation(b, t):
return b.volume_flow[t] == (
b.holdup.properties_out[t].flow_mol /
b.holdup.properties_out[t].dens_mol_mol['Lig'])
m.fs.Tankl.volume_flow_calculation = Constraint (
m.fs.Tankl.time,
rule=volume_flow_calculation)

def outlet_flowrate (b, t):
return b.volume_flow[t] == b.flow_coeff[t]+b.height[t]
m.fs.Tankl.outlet_flowrate = Constraint (m.fs.Tankl.time,
rule=outlet_flowrate)

We then need to repeat this for Tank?2.

m.fs.Tank2.height = Var (m.fs.Tank2.time,
initialize=1.0,
doc="Depth of fluid in tank [m]")
m.fs.Tank2.area = Var(initialize=1.0,
doc="Cross—-sectional area of tank [m"2]")
m.fs.Tank2.volume_flow = Var (m.fs.Tank2.time,
initialize=4.2e5,
doc="Volumetric flow leaving tank")
m.fs.Tank2.flow_coeff = Var (m.fs.Tank2.time,
initialize=5e-5,
doc="Tank outlet flow coefficient")

When it comes to adding the Constraints to Tank2, we can reuse the rules we wrote for Tank1, as we wrote these in a
general form. When we create the Constraints in Tank2 now, the Variables in Tank2 will be used instead.

m.fs.Tank2.geometry = Constraint (m.fs.Tank2.time, rule=geometry)
m.fs.Tank2.volume_flow_calculation = Constraint (
m.fs.Tank2.time,
rule=volume_flow_calculation)
m.fs.Tank2.outlet_flowrate = Constraint (m.fs.Tank2.time,
rule=outlet_flowrate)

Transforming the Time Domain

At this point in previous tutorials, we would now call post_transform_build to finish constructing our models. How-
ever, in dynamic flowsheets, we first need to transform the differential equations into a form that can be handled by
our solver. When the time domain is created for a dynamic flowsheet, it is created as a Pyomo ContinuousSet object
and the associated derivatives as DerivativeVars. However, most solvers do not understand these types of objects so
they need to be transformed prior to solving. This is done using Pyomo’s TransformationFactory; for more details on
what happens during DAE transformation, see the Pyomo documentation.

Pyomo provides support for a number of types of DAE transformation:
* finite difference methods - backward, forward and central difference methods, and
* orthogonal collocation methods - Lagrange-Radau and Lagrange-Legendre roots.

For time domains, we generally use a 1st order backward finite difference method.

3.2. Core Library 29




IDAES Documentation, Release 0.60

To use Pyomo’s DAE Transformation, we first need to create a Transformation object, and to then apply it to our model
object.

discretizer = TransformationFactory('dae.finite_difference')
discretizer.apply_to(m.fs,

nfe=200,

wrt=m.fs.time,

scheme="'BACKWARD ")

Once the DAE transformation has been applied to the time domain, we can call post_transform_build to finish the
model construction.

m.fs.post_transform build()

Connecting Units

As before, we cannot start connecting units together until post_transform_build has been called. Now that that is done,
we can add Streams as necessary:

m.fs.stream_1 = Stream(source=m.fs.Mix.outlet,
destination=m.fs.Tankl.inlet)

m.fs.stream_2 = Stream(source=m.fs.Tankl.outlet,
destination=m.fs.Tank2.inlet)

Setting Design and Operating Constraints

For this tutorial, let us split our feed into two parts (with the same temperature and pressure):
* a stream with 10.0 mol/s of “a” and 1.0 mol/s of “c”
¢ a stream with 20.0 mol/s of “b”

As we did not add Feed Blocks to this flowsheet, we will fix these through the inlet Port objects of the Mixer. Note
that for a Mixer, there is a single inlet object which is indexed by time and inlet name. Thus, when we fix the feed
conditions, we need to do so at all points in time for each inlet. We can do this using slice notation as shown below:

m.fs.Mix.inlet[:, "1"].vars["flow _mol_comp"]["a"].fix(10.0)
m.fs.Mix.inlet[:, "1"].vars["flow_mol_comp"]["b"].£fix(0.0)
m.fs.Mix.inlet[:, "1"].vars["flow_mol_comp"]["c"].fix (1.0)
m.fs.Mix.inlet[:, "1"].vars["flow_mol_comp"]["d"].£fix(0.0)
m.fs.Mix.inlet[:, "1"].vars["flow_mol_comp"]["e"].£fix(0.0)
m.fs.Mix.inlet[:, "1"].vars["flow_mol_comp"]["f"].£fix(0.0)
m.fs.Mix.inlet[:, "1"].vars["temperature"].fix(303.15)
m.fs.Mix.inlet[:, "1"].vars["pressure"].fix (101325.0)
m.fs.Mix.inlet[:, "2"].vars["flow_mol_comp"]["a"].£fix(0.0)
m.fs.Mix.inlet[:, "2"].vars["flow_mol_comp"]["b"].£fix(20.0)
m.fs.Mix.inlet[:, "2"].vars["flow_mol_comp"]["c"].fix (0.0)
m.fs.Mix.inlet[:, "2"].vars["flow_mol_comp"]["d"].£fix(0.0)
m.fs.Mix.inlet[:, "2"].vars["flow_mol_comp"]["e"].£fix(0.0)
m.fs.Mix.inlet[:, "2"].vars["flow_mol_comp"]["f"].£fix(0.0)
m.fs.Mix.inlet[:, "2"].vars["temperature"].fix(303.15)
m.fs.Mix.inlet[:, "2"].vars["pressure"].fix (101325.0)

We also need to fix values for area, flow_coeff and heat duty in both Tanks.

30 Chapter 3. Contents




IDAES Documentation, Release 0.60

m.fs.
m.fs.

m.fs.
m.fs.

.Tankl
Tankl.
.heat . fix (0.

Tank1l

Tank2.
Tank2.
.Tank2

.area.fix (0.

flow_coeff.

area.fix (0.
flow_coeff.

.heat . fix (0.

5)
fix (5e-6)

Setting Initial Conditions

When setting up dynamic models, we also need to provide initial conditions for the system. One approach is to specify
that the system is at steady-state initially (i.e. all time derivatives are equal to zero at the starting time). In order to
simplify specifying this, IDAES FlowsheetBlocks have the following method:

m.fs.fix_initial_conditions ('steady-state')

Steady-state initial conditions are often only useful for modeling simple systems under ideal circumstances, and users
should choose a set of initial conditions that suit their actual circumstances.

Initializing the Flowsheet

The best method for initializing dynamic problems is an open question, and it is often difficult to find a good way to
do this. For this tutorial, it is sufficient to initialize the entire model at a single, steady-state operating condition and
to then introduce a time disturbance later. Thus, we can just use the same approach that we have used previously to
initialize the flowsheet.

m.fs.Mix.initialize ()
m.fs.Tankl.initialize (state_args={

"flow_mol_comp": {
"a": m.fs.Mix.outlet[0].vars["flow _mol comp"]["a"].value,
"D": m.fs.Mix.outlet[0].vars["flow_mol_comp"] ["b"].value,
"c": m.fs.Mix.outlet[0].vars["flow_mol_comp"]["c"].value,
"d": m.fs.Mix.outlet[0].vars["flow_mol_ comp"]["d"].value,
"e": m.fs.Mix.outlet[0].vars["flow_mol_comp"]["e"].value,
"f': m.fs.Mix.outlet[0].vars["flow_mol_comp"]["f"].value},

"pressure": m.fs.Tankl.outlet[0] .vars["pressure"] .value,

"temperature": m.fs.Tankl.outlet[0].vars["temperature"].value})

m.fs.Tank2.initialize (state_args={

"flow_mol_comp": {
"a": m.fs.Tankl.outlet[0] .vars["flow_mol_comp"]["a"].value,
"D": m.fs.Tankl.outlet[0].vars["flow_mol_comp"]["b"].value,
"c": m.fs.Tankl.outlet[0].vars["flow _mol_ comp"]["c"].value,
"d": m.fs.Tankl.outlet[0].vars["flow_mol_comp"]["d"].value,
"e": m.fs.Tankl.outlet[0O].vars["flow_mol_comp"]["e"].value,
"f": m.fs.Tankl.outlet[0].vars["flow _mol_comp"]["f"].value},

"pressure": m.fs.Tankl.outlet[0] .vars["pressure"].value,

"temperature": m.fs.Tankl.outlet[0].vars["temperature"].value})

Before moving on, we should also solve the entire flowsheet at our initial conditions, as the Constraints within the

Streams are not yet initialized (even though the values on both sides should be the same).

solver =
results =

SolverFactory ('ipopt")

solver.solve (m, tee=True)

3.2. Core Library




IDAES Documentation, Release 0.60

Creating a Disturbance

Now that our model is initialized, let’s create a disturbance in the system so that we can observe the response. For
now, let us halve the flowrate of component “b” at time 1, which is done as follows:

for t in m.fs.time:
if t >= 1.0:
m.fs.Mix.inlet[t, "2"].vars["flow_mol_comp"]["b"].£fix(10.0)

Then, we can solve the model with the new disturbance and print the results so that we can see if the problem con-
verged.

results = solver.solve(m, tee=True)
print (results)

Hopefully you will see that the solver found an optimal solution, and that the problem had 40588 variables and
constraints.

Plotting the Results

The best way to observe the results of our disturbance is to plot the flowrates of the different components leaving
Tank2. To do this, we first need to collect the time and flow information in a form that can be understood by our
plotting library.

To begin with, we create an empty list to hold the values of each variable we wish to plot (and the time domain).

[]

]
]
]
]
]
]

Next, we iterate over the time domain, and append the value of each variable to the appropriate list.

for t in m.fs.time:
time.append(t)

a.append(m.fs.Tank2.outlet[t] .vars["flow_mol_comp"]["a"].value)
b.append(m.fs.Tank2.outlet [t].vars["flow_mol_comp"] ["b"].value)
c.append (m.fs.Tank2.outlet [t] .vars["flow_mol_comp"]["c"].value)
d.append (m.fs.Tank2.outlet [t] .vars["flow_mol_comp"]["d"].value)
e.append(m.fs.Tank2.outlet[t] .vars["flow_mol_comp"]["e"].value)
f.append(m.fs.Tank2.outlet [t].vars["flow_mol_comp"]["f"].value)

Next, we need to create a plot object, and to add each curve that we wish to plot.

plt.figure (1)
plt.plot (time, a, label='a')
plt.plot (time, b, label='b'")
plt.plot (time, c, label='c'
plt.plot (time, d, label='d'
plt.plot (time, e, label='e'
(

)
)
)
plt.plot (time, £, label='f")

We can also add legends and axis labels as follows:

32 Chapter 3. Contents




IDAES Documentation, Release 0.60

plt.legend()

plt.grid()

plt.xlabel ("Time [s]")

plt.ylabel ("Molar Flowrate [mol/s]")

Finally, we need to display the plot object so that we can see it.

plt.show(block=True)

If all goes well, you should see something like this:

12 ~

=
=)
1

a1 T = S o R = T

[#e]
1

Molare Flowrate [mol/s]

T T T T T
0 100000 200000 300000 400000 500000
Time [s]

Tutorial 5 — Modifying Unit Models
Introduction

In the previous tutorial we, we added a set of Variables and Constraints to two CSTRs to simulate pressure driven flow.
In cases where we would like to make repeated use of the same modifications to a model, it would be convenient to
create a new model with these modification instead of making the changes to each instance of a simpler model. This
tutorial will teach you how to take an existing model and add modifications to it such that it can be used repeatedly in
a flowsheet.

For this tutorial, we will create a new model for a CSTR with pressure driven flow.

This tutorial will teach you about:

3.2. Core Library 33




IDAES Documentation, Release 0.60

* Pyomo component structure,
* building on an existing unit model (class inheritance),
* replacing existing methods (overloading), and

¢ adding new components to a unit model.

Pyomo Component Structure

The first thing we need to cover before we go further is to briefly introduce Pyomo’s underlying component struc-
ture, and how IDAES interacts with this. When we add a Pyomo component to a model, we call the Component
class along with some arguments (for example, Block). Behind the scenes, the Pyomo Component class then checks
whether the component is indexed or not, and calls either SimpleComponent or IndexedComponent as appropriate (i.e.
SimpleBlock or IndexedBlock). This class then calls upon a ComponentData class (i.e. BlockData) to populate the
component with the necessary information. This is shown in the figure below.

Component

| |

SimpleComponent IndexedComponent

l ................................................................

ComponentData

As model developers in IDAES, we are most interested in the BlockData class, as this is where we write the instructions
for a given instance of a Block - i.e. the Variables and Constraints that make up our models. We would prefer not the
have to worry about the other three classes, as these are instructions on how to construct the underlying objects (and
are standard across all our models).

IDAES handles all of this for us using the declare_process_block_class decorator, so that we only need to write the
BlockData object for our model. The remaining three class are handled through meta-class, and those who wish to
know more should read the documentation on process_block. For the rest of us, it is important to keep this behavior
in mind, as it affects the underlying class structure we are working with.

First Steps

The first steps as always are to import the necessary components from the Pyomo and IDAES libraries. First, we will
need to import Var from Pyomo and declare_process_block_class from IDAES.

34 Chapter 3. Contents



IDAES Documentation, Release 0.60

from pyomo.environ import Var
from idaes.core import declare_process_block_class

We also need to import the model we are going to use as the basis for our new model, which in our case is CSTR.
However, the class we want to modify is the CSTRData class (the BlockData class associated with the CSTR model)
instead of CSTR (the equivalent Block class for a CSTR).

from idaes.models.cstr import CSTRData

Inheriting from Existing Models

The next step is to create a new set of model classes for our CSTR with pressure driven flow, which we will call CSTR2
for this tutorial. To do this, we need to declare a new class (which will form our BlockData class) which inherits from
CSTRData, and to apply the declare_process_block_class decorator to it. This is done as shown below:

@declare_process_block_class ("CSTR2")
class CSTR2Data (CSTRData) :

The first line above is the decorator, which creates a new set of meta-classes with the name CSTR2 for us, based on the
class declared in the second line. This handles all the work of setting up the CSTR2, SimpleCSTR?2 and IndexedCSTR2
classes for us, so that we don’t need to worry about them. The second line declares our new CSTR2Data class, which
inherits from CSTRData (as indicated by the argument in the parentheses).

The build Method

In order to populate our model with the necessary Variables and Constraints, we need to point Pyomo to a set of
instructions for creating these. For this, we create a method named build, which is called by default whenever we add
a model to a Flowsheet. This build method belongs in the CSTR2Data class.

For our new pressure-driven CSTR model, our build method needs to do two things:
1. construct the base CSTR model, and,
2. add the Constraints for pressure-driven flow.

The base CSTR model which we have inherited from has its own build method, which contains the instructions
for constructing a standard CSTR. Rather than rewrite all these instructions, we can instead call the original CSTR
model’s build method to do this for us. We do this by making use of Python’s super() method, which allows us to
access the methods of our parent class. We will also call a second method (which we haven’t written yet) to add the
pressure-driven flow constraints. All of this is shown below:

def build(self):
super (_CSTRData, self).build()

self.add_pressure_driven_flow ()

Adding New Methods, Variables and Constraints

Next, we will declare the new add_pressure_driven_flow method, which will contain the instructions for adding the
Variables and Constraints we need for pressure-driven flow.

def add_pressure_Driven_flow(self):

3.2. Core Library 35




IDAES Documentation, Release 0.60

Here, self is a standard placeholder for the object to which the method belongs (in this case our new model). Within

this method, we can now write the code necessary to declare the new Variables and Constraints much like we did in
Tutorial 3.

We need to add the following:
* height, area, volume_flow and flow_coeff variables,
¢ V, = A x h; Constraint,
* Foot,t = Frnol,t X pmoi,t Constraint, and,
* Fyor,t = Cy x hy Constraint.

All of this is shown below (along with the method declaration - note the indentation).

def add_pressure_driven_flow(self):
self.height

Var (self.time,

initialize=1.0,

doc="Depth of fluid in tank [m]")
self.area = Var(initialize=1.0,
doc="Cross—-sectional area of tank [m"21")

self.volume_flow = Var (self.time,
initialize=4.2e5,
doc="Volumetric flow leaving tank")

self.flow_coeff = Var(self.time,
initialize=5e-5,
doc="Tank outlet flow coefficient")

def geometry (b, t):
return b.volume[t] == b.area*b.height[t]

self.geometry = Constraint (self.time, doc="Tank geometry constraint",
—rule=geometry)

def volume_flow_calculation (b, t):
return b.volume_flow[t] == (
b.holdup.properties_out[t].flow_mol /
b.holdup.properties_out[t].dens_mol_phase['Lig'])
self.volume_flow_calculation Constraint (self.time, doc="Flow volume constraint",
— rule=volume_flow_calculation)

def outlet_flowrate(b, t):
return b.volume_flow[t] == b.flow_coeff[t]+b.height[t]

self.outlet_flowrate = Constraint(self.time, doc="Outlet flow correlation",
—~rule=outlet_flowrate)

Replacing Other Methods

The above is all we need to change for this tutorial, however with more complex models the are other methods that we
might need to replace. The three most important ones are:

e post_transform_build
¢ model check

e initialize

36 Chapter 3. Contents



IDAES Documentation, Release 0.60

In our case, the existing versions of these we inherit from CSTR are sufficient for our this tutorial, however in many
cases we will need to make changes to these as well. If there is anything that needs to be done after the DAE
transformation (such as adding new inlets or outlets), this needs to go in post_transform_build. We can also write
model_check and initialize methods customized for our new model if needed.

Using Our New Model

To put our new model to use, all we need to do is import our CSTR2 class (the one created by the decorator), and use
it in the same way as we have used CSTR previously. Try to repeat Tutorial 3 using our new class instead - all you
should need to do is use CSTR2 in place of CSTR (and skip the part on adding the new Variables and Constraints -
our new model does this for us).

Tutorial 6 — Creating New Unit Models
Introduction

The previous tutorial demonstrated how we can modify existing unit models, but we will often run into situations
where there is no existing model that is suitable for our needs. In these cases, we will need to build a model for our
unit from the ground up.

The IDAES modeling framework has been built to provide a large degree of flexibility to the user when developing
new models, whilst providing tools to facilitate many of the common tasks associated with developing new models.
This tutorial will guide you through the development of a new unit model using the IDAES CSTR unit model as an
example. The actual IDAES CSTR unit model can be found at idaes/core/models/cstr.py for those who wish to see the
final code.

This tutorial will teach you about:
* IDAES modeling standards,
* IDAES core modeling classes,
* Creating a new unit model,
* Config blocks and how they are used,
* Holdup blocks and how to interact with them,
e the build _inlets and build_outlets methods, and,

* writing initialization methods.

IDAES Modeling Standards

The IDAES modeling framework relies on Flowsheets, Unit Models and Property Packages being able to communicate
to each other with a minimum of effort on the part of the user. In order to do this, IDAES has developed a set of
modeling standards which all models should conform to. For developers of unit models, the most important of these
to be aware of is the IDAES standard naming convention for thermophysical, transport and reaction properties. The
standard names for all properties are listed in the IDAES standards documentation.

Components of Unit Models

Whilst every unit model is different, there are many common features between them. Every unit model will have some
number of inlets and outlets, and at least one set of balance equations. The IDAES modeling framework endeavors to

3.2. Core Library 37



IDAES Documentation, Release 0.60

facilitate the construction of these common features by providing a set of core classes and methods to automate their
construction.

All unit models in IDAES start by inheriting from the IDAES UnitBlockData class. This class contains a set of
methods for automating things like setting up the time domain and creating the inlets and outlets to the unit. Users can
find documentation on the UnitBlockData class in the Unit Model documentation.

The next class used in developing unit models within IDAES are the Holdup block classes. These classes are used
to automatically generate the material, energy and momentum balances for a specified volume of material (control
volume) within the unit. The user is able to provide a simple set of instructions on what terms they wish to include in
a given Holdup, and a unit model may contain as many Holdup blocks as required. The IDAES modeling framework
currently supports three different types of Holdup blocks, and details of each can be found in the IDAES documentation
for Holdup Blocks.

* 0D Holdup Block
* ID Holdup Block
e Static Holdup Block

Some additional classes that are indirectly with the development of unit models, which you will not need to use directly
but should be aware of are:

* Property Package classes
e Inlet Mixer and Outlet Splitter classes

As we have seen in earlier tutorials, property packages are used to calculate the various properties required for solving
process models. Within the IDAES framework, each Holdup block is associated with a number of Property Blocks,
each of which represents a single material state within the unit.

Inlet Mixers and Outlet Splitters are used to support multiple streams connecting to a single inlet or outlet in a unit
model. These are used within IDAES for developing general mixer, splitter and separator models, as well as for
developing superstructure based process synthesis problems.

The general structure of an IDAES unit model is shown in the figure below.

( Unit Model N
m Performance Outlets
Equations

( Holdup Block(s) h

Mass, Energy and Momentum Balances
Phase fraction, Holdups and Volume

Property
Calculations
/)

N\

Creating a New Unit Model

As with any model, the first steps in developing a new unit model are to import the necessary components from the
Pyomo and IDAES libraries. For this tutorial, the first thing we need to import is the Var object from pyomo.environ.

38 Chapter 3. Contents



IDAES Documentation, Release 0.60

from pyomo.environ import Var

The next thing we are going to need is ConfigValue from pyomo.common.config. pyomo.common is a library of
useful tool provided as part of Pyomo, and the config sub-library contains a number of tools that facilitate passing and
validation of construction arguments to Pyomo models.

from pyomo.common.config import ConfigValue

From the IDAES core libraries, we are going to need to import UnitBlockData, declare_process_block_class,
HoldupOD and CONFIG_Base.

from idaes.core import UnitBlockData, declare_process_block_class, HoldupOD, CONFIG_
—Base

Additionally, we will also make use of the following utility functions provided by IDAES.

from idaes.core.util.config import is_parameter_block, list_of_strings
from idaes.core.util.misc import add_object_ref

Creating the Unit Model Class

The next step is to create the class which will be used to construct our new unit model. Similar to the previous tutorial,
we need to declare a new class (which will form our BlockData class) and to apply the declare_process_block_class
decorator to it. In this case, our class will inherit from UnitBlockData, which is the IDAES core class which forms the
basis of all unit models in the core library.

@declare_process_block_class ("CSTR")
class CSTRData (UnitBlockData) :

Config Blocks

As we have seen in the previous tutorials, many models within IDAES (in fact all models) have optional construction
arguments that the user can provide to control what type of model is constructed. This is automatically handled
within IDAES by using config blocks, which are a Pyomo feature designed specifically for handling and organizing
construction arguments for models (Note: despite the name, config blocks are not Blocks in the sense of the Pyomo
component). For those with understanding of Python dict objects, config blocks can be thought of as specialized dicts
with added the added features of validation and documentation of each key-value pair.

Each model class must define its own config block, along with the different construction arguments that it contains and
their default values, domains (valid values) and documentation. To save model developers from having to write all of
these themselves, IDAES provided a default config block which is suitable for many common unit models. In order to
make use of this config block, all we need to do is make a local instance of the config block at the class level of our
new class (i.e. immediately after the class declaration and not inside any method definition) as shown below:

CONFIG = CONFIG_Base ()

The default IDAES config block defines a number of construction arguments which are common to most unit models,
and further documentation on these can be found in the documentation for Holdup blocks. The arguments in the default
config block are used by any associated Holdup blocks to determine which terms should be included in the material,
energy and momentum balances when they are constructed.

Each of the construction arguments present in the default config block indicates whether a specific phenomenon is
expected to occur within a unit, or what form of balance equation needs to be written for the unit in question. The

3.2. Core Library 39




IDAES Documentation, Release 0.60

default config block assigns a default value to each of these, however each unit model is different, and will have
different combinations of phenomena that are expected to occur. Being that we are developing a model for a CSTR,
we would expect there to be some form of chemical reaction occurring within our unit, as well as the possibility of a
heating or cooling jacket. Among the construction arguments in the default config block are the following:

¢ has_rate_reactions,
* has_equilibrium reactions, and,
¢ has_heat_transfer.

Each of these construction arguments are used to tell the unit model (and any associated Holdup blocks) whether or
not to include these terms in the material and energy balances. Seeing as we expect these phenomena to be present in
our unit, let’s set the default value for these arguments to True.

CONFIG.get ("has_rate_reactions") ._default = True
CONFIG.get ("has_equilibrium reactions") ._default = True
CONFIG.get ("has_heat_transfer")._default = True

Property Package Arguments

The next thing we need to do is add some extra arguments to the config block for our new class. One important thing
that is not included in the default config block are arguments for providing information on property blocks to the unit
model. The reason for this is that some unit models may involve more than one material (e.g. heat exchangers), and
thus require multiple property packages. Unit models require two arguments for each property package which they
will use:

* areference to a Property Parameter Block, and,
* a set of construction arguments to pass onto the Property Block when it is constructed (generally optional).

Our CSTR only requires one Property Package, so let’s create two new entries in the config block. Each new entry
needs to be given a unique name, and can also be given a default value, a domain and a set of documentation strings
(long and/or short). The domain is a callable object of some type that can be used to validate the value provided by
the user, thus ensuring a meaningful value is provided. For our example, let us add the following two arguments:

CONFIG.declare ("property_package", ConfigValue (
default=None,
domain=is_parameter_block,
description="Property package to use for holdup")
CONFIG.declare ("property_package_args", ConfigValue (
default={},
description="Arguments to use for constructing property packages")

In the above code, we first declare a new entry in our config block and provide a name for the argument (e.g. “prop-
erty_package”). We then need to specify the type of entry, which in this case is a “ConfigValue” - for more information
on the different types available see the Pyomo documentation for config blocks. We can then provide a default value
for the argument, and set the domain and documentation strings. In our example, we set the domain for “prop-
erty_package” to is_parameter_block, which is an IDAES method that checks that the value provided by the user
points to a valid Property Parameter Block.

Accessing Construction Arguments

Now that we have set up our config block the next question is how do we make use of it? When we create an instance
of a class, the IDAES framework automatically passes any arguments provided in the object declaration to the new

40 Chapter 3. Contents




IDAES Documentation, Release 0.60

objects config block so they are available for use in the object. So, in order to make use of the construction arguments,
all we need to do is look to object.config.argument_name to get the current value of the construction argument.

The build Method

After setting up our config block, the next step is to write the build method for our new class, and to then call the
UnitModelData build method (see the documentation on Unit Model classes for information on what is performed by
this method).

def build(self):
super (CSTRData, self).build()

Holdup Blocks

Once we have the basic framework of our unit model set up, the next thing we should do is add some Holdup blocks to
represent any control volumes we have in our model. The Holdup Blocks take a set of construction arguments similar
to those in CONFIG_Base, and write a set of material, energy and momentum balances based on these arguments
(see documentation on Holdup Blocks for more details). For a CSTR, we have a single well-mixed control volume
representing the material in the tank, so we can use a single HoldupOD to represent our system.

self.holdup = HoldupOD ()

In this case, we do not need to provide any arguments to the Holdup block when we create it - if we do not provide any
arguments the Holdup block will automatically look to the unit model’s config block for its construction arguments.

Adding Performance Equations

Adding the Holdup block to our model automatically generates the material, energy and momentum balances we need,
so all that is left is to write some Constraints describing how the unit performs. For a CSTR, the key performance
equation is the relationship between the extent of reaction, rate of reaction and the volume of the tank:

Xii=VixXry,

where X ,. is the extent of reaction of reaction 7 at time ¢, V; is the volume of the reacting material at time ¢ (allows
for varying reactor volume with time) and r; ,. is the volumetric rate of reaction of reaction r at time ¢.

In order to implement this Constraint, the first thing we are going to need is the volume material in the tank. One of
the options for the Holdup block is include_holdup, which tells the Holdup block to calculate the holdup of material
and energy within the control volume. This of requires the Holdup block to have a volume, so we should make use of
this if it is present (i.e. if include_holdup is True). Otherwise, we need to create a new variable for volume. We do this
as shown below:

if self.config.include_holdup:
add_object_ref (self, "volume", self.holdup.volume)
else:
# Add a volume variable, as CSTRs always need a volume
self.volume = Var (self.time,
initialize=1.0,
doc="Reactor volume")

Next, we need the extent of reaction and rate of reaction terms to write our Constraint. Rate of reaction is a property
of the state of the material and thus can be found in the outlet Property Block, whilst the Holdup Block automatically

3.2. Core Library 41




IDAES Documentation, Release 0.60

generates an extent of reaction term for each reaction when the has_rate_reaction construction argument is True
(which we set earlier). Let us create a reference to the extent of reaction in our unit model for convenience:

add_object_ref (self, "rate_ reaction idx", self.holdup.rate_reaction_idx)

Now that we have the terms we need, let’s write our performance Constraint (indexed across all points in time so it
can handle dynamic problems).

def rate_reaction_extents (b, t, k):
return b.holdup.rate_reaction_extent[t, k] == (
b.volume[t] =
b.holdup.properties_out[t].reaction_ratel[k])
self.rate_reaction_extents = Constraint (self.time,
self.rate_reaction_idx,
doc="Extents of reaction")

Whilst it might not seem like much, that is all we need to write to create the Constraints necessary to describe a CSTR.
A lot of the work is being done automatically for us by the Holdup block (such as setting up property calculations,
writing material, energy and momentum balances), so we as model developers only need to provide a set of instruction
on what to build and a few important Constraints to describe the performance of our unit.

The post_transform_build Method

As has been discussed in previous tutorials, there are some parts of model construction that cannot be completed
until after all model transformations have been applied. The most significant of these is the construction of the inlet
and outlet Port objects which are used to connect unit models together. In order to facilitate this, any steps that
need to be performed after transformations are applied are placed in a separate method in the model class named
post_transform_build, which can be called by the flowsheet model.

build_inlets and build_outlets Methods

In order to simplify the construction of the inlet and outlet Port objects, the IDAES UnitBlockData class contains two
methods which automate this for the user. These methods have three arguments which describe the Port object to be
constructed.

* holdup - indicates which Holdup block the Port should be associated with. If not specified, the methods assume
there is a Holdup block with the name holdup.

* an optional list of names to use if multiple Streams are to be connected to a single Port (with inherent mix-
ing/splitting of the flows).

* an optional number of Streams that will be connected to the Port (with inherent mixing/splitting).

Only one of the list of names or number of Streams needs to be specified (and an Exception will be raised if both are
provided and are not consistent). More documentation on the build_inlets and build_outlets methods can be found in
the Unit Models documentation.

Writing Initialization Routines

To be added once the new initialization framework is completed.

42 Chapter 3. Contents




IDAES Documentation, Release 0.60

Writing Model Checks

To be added once the new initialization framework is completed (as we might overhaul this at the same time).

3.2.3 IDAES Modeling Standards

Contents

* IDAES Modeling Standards
— Model Formatting and General Standards
* Headers and Meta-data
+ Version Numbering

* Licensing Information and Disclaimers

*

Coding Standard

*

Model Organization
* Commenting
— Units of Measurement and Reference States
— Standard Variable Names
* Standard Naming Format
x Constants
* Thermophysical and Transport Properties

* Reaction Properties

*

Solid Properties

*

Naming Examples

Model Formatting and General Standards

The section describes the recommended formatting used within the IDAES framework. Users are strongly encouraged
to follow these standards in developing their models in order to improve readability of their code.

Headers and Meta-data

Model developers are encouraged to include some documentation in the header of their model files which provides a
brief description of the purpose of the model and how it was developed. Some suggested information to include is:

¢ Model name,

* Model publication date,

* Model author

* Any necessary licensing and disclaimer information (see below).

¢ Any additional information the modeler feels should be included.

3.2. Core Library 43



IDAES Documentation, Release 0.60

Version Numbering

TBD

Licensing Information and Disclaimers

TBD

Coding Standard

All code developed as part of IDAES should conform to the PEP-8 standard.

Model Organization

Whilst the overall IDAES modeling framework enforces a hierarchical structure on models, model developers are
still encouraged to arrange their models in a logical fashion to aid other users in understanding the model. Model
constraints should be grouped with similar constraints, and each grouping of constraints should be clearly commented.

For property packages, it is recommended that all the equations necessary for calculating a given property be grouped
together, clearly separated and identified by using comments.

Additionally, model developers are encouraged to consider breaking their model up into a number of smaller methods
where this makes sense. This can facilitate modification of the code by allowing future users to inherit from the base
model and selectively overloading sub-methods where desired.

Commenting

To help other modelers and users understand the how a model works, model builders are strongly encouraged to
comment their code. It is suggested that every constraint should be commented with a description of the purpose
of the constraint, and if possible/necessary a reference to a source or more detailed explanation. Any deviations
from standard units or formatting should be clearly identified here. Any initialization procedures, or other procedures
required to get the model to converge should be clearly commented and explained where they appear in the code.
Additionally, modelers are strongly encouraged to add additional comments explaining how their model works to aid
others in understanding the model.

Units of Measurement and Reference States

Due to the flexibility provided by the IDAES modeling framework, there is no standard set of units of measurement
or standard reference state that should be used in models. This places the onus on the user to understand the units of
measurement being used within their models and to ensure that they are consistent.

The IDAES developers have generally used SI units without prefixes (i.e. Pa, not kPa) within models developed by
the institute, with a default thermodynamic reference state of 298.15 K and 101325 Pa. Supercritical fluids have been
consider to be part of the liquid phase, as they will be handled via pumps rather than compressors.

Standard Variable Names

In order for different models to communicate information effectively, it is necessary to have a standard naming conven-
tion for any variable that may need to be shared between different models. Within the IDAES modeling framework,
this occurs most frequently with information regarding the state and properties of the material within the system,

44 Chapter 3. Contents



IDAES Documentation, Release 0.60

which is calculated in specialized property blocks, and then used in others parts of the model. This section of the
documentation discusses the standard naming conventions used within the IDAES modeling framework.

Standard Naming Format

There are a wide range of different variables which may be of interest to modelers, and a number of different ways
in which these quantities can be expressed. In order to facilitate communication between different parts of models, a
naming convention has been established to standardize the naming of variables across models. Variable names within
IDAES follow to format below:

{property_name}_{basis}_{state}_{condition}

Here, property_name is the name of the quantity in question, and should be drawn from the list of standard variable
names given later in this document. If a particular quantity is not included in the list of standard names, users are
encouraged to contact the IDAES developers so that it can be included in a future release. This is followed by a
number of qualifiers which further indicate the specific conditions under which the quantity is being calculated. These
qualifiers are described below, and some examples are given at the end of this document.

Basis Qualifier

Many properties of interest to modelers are most conveniently represented on an intensive basis, that is quantity per
unit amount of material. There are a number of different bases that can be used when expressing intensive quantities,
and a list of standard basis qualifiers are given below.

Basis Standard Name
Mass Basis mass

Molar Basis mol

Volume Basis | vol

State Qualifier

Many quantities can be calculated either for the whole or a part of a mixture. In these cases, a qualifier is added to the
quantity to indicate which part of the mixture the quantity applies to. In these cases, quantities may also be indexed
by a Pyomo Set.

Basis Standard Name | Comments
Component comp Indexed by component list
Phase phase Indexed by phase list
Phase & Component | phase_comp Indexed by phase and component list
Total Mixture No state qualifier

Phase Standard Name

Supercritical Fluid | liq

Tonic Species ion

Liquid Phase liq

Solid Phase sol

Vapor Phase vap

Multiple Phases e.g. ligl

3.2. Core Library 45



IDAES Documentation, Release 0.60

Condition Qualifier

There are also cases where a modeler may want to calculate a quantity at some state other than the actual state of the
system (e.g. at the critical point, or at equilibrium).

Constants

Basis Standard Name
Critical Point crit
Equilibrium State equil
Ideal Gas ideal
Reduced Properties | red
Reference State ref
Constant Standard Name

Gas Constant | gas_const

Thermophysical and Transport Properties

Below is a list of all the thermophysical properties which currently have a standard name associated with them in the

IDAES framework.

Variable Standard Name
Activity act

Activity Coefficient act_coeff
Bubble Temperature t_bub
Compressibility Factor compress_fact
Concentration conc

Density dens

Dew Temperature temperature_dew
Diffusivity diffus

Diffusion Coefficient (binary) | diffus_binary
Enthalpy enth

Entropy entr

Fugacity fug

Fugacity Coefficient fug_coeff

Gibbs Energy energy_gibbs
Heat Capacity (const. P) cp

Heat Capacity (const. V) cv

Heat Capacity Ratio heat_capacity_ratio
Helmholtz Energy energy_helmholtz
Henry’s Constant henry

Mass Fraction mass_frac

Material Flow flow

Molecular Weight mw

Mole Fraction mole_frac

pH pH

Pressure pressure

Continued on next page

46

Chapter 3. Contents



IDAES Documentation, Release 0.60

Table 1 — continued from previous page

Variable Standard Name
Speed of Sound speed_sound
Surface Tension surf_tens
Temperature temperature
Thermal Conductivity therm_cond
Vapor Pressure pressure_sat
Viscosity (dynamic) visc_d

Viscosity (kinematic) visc_k

Vapor Fraction vap_frac

Volume Fraction vol_frac

Reaction Properties

Below is a list of all the reaction properties which currently have a standard name associated with them in the IDAES
framework.

Variable Standard Name
Activation Energy energy_activation
Arrhenius Coefficient | arrhenius

Heat of Reaction dh_rxn

Entropy of Reaction ds_rxn
Equilibrium Constant | k_eq
Reaction Rate reaction_rate
Rate constant k_rxn
Solubility Constant k_sol

Solid Properties

Below is a list of all the properties of solid materials which currently have a standard name associated with them in
the IDAES framework.

Variable Standard Name
Min. Fluidization Velocity | velocity_mf
Min. Fluidization Voidage | voidage_mf
Particle Size particle_dia

Pore Size pore_dia
Porosity particle_porosity
Specific Surface Area area_{basis}
Sphericity sphericity
Tortuosity tort

Voidage bulk_voidage

Naming Examples

Below are some examples of the IDAES naming convention in use.

3.2. Core Library 47



IDAES Documentation, Release 0.60

Variable Name Meaning

enth Specific enthalpy of the entire mixture (across all phases)
flow_comp[“H20”’] Total flow of H20 (across all phases)

entr_phase[“liq”] Specific entropy of the liquid phase mixture
conc_phase_comp[“liq”, “H20”] | Concentration of H20 in the liquid phase
temperature_red Reduced temperature

pressure_crit Critical pressure

3.2.4 IDAES Modeling Framework

The IDAES Modeling Framework is divided into a number of layers in order to facilitate the modular construction
of complex flowsheets. Each part of the framework has an associated base class, which serves as a foundation for
constructing different types of models and to automate the tasks common to all models of that type. Understanding the
different layers within the IDAES Framework, and what Variables and Constraints belong in which layer, is important
for anybody wishing to use the full capabilities available.

The different parts of the IDAES modeling framework are described in the following section, along with a general
discussion of the concepts behind the framework.

Modeling Classes

IDAES Modeling Concepts

Contents

* IDAES Modeling Concepts

Introduction

— Time Domain

Flowsheets

Unit Models

Streams

What Belongs in Each Type of Block?

Introduction

The purpose of this section of the documentation to explain the different parts of the IDAES modeling framework,
and what components belong in each part for the hierarchy. Each component is described in greater detail later in the
documentation, however this section provides a general introduction to different types of components.

Time Domain

Before starting on the different types of models present in the IDAES framework, it is important to discuss how time is
handled by the framework. When a user first declares a Flowsheet model a time domain is created, the form of which
depends on whether the Flowsheet is declared to be dynamic or steady-state (see FlowsheetBlock documentation).

48 Chapter 3. Contents



IDAES Documentation, Release 0.60

When other models are added to the Flowsheet, or to a descendant of the Flowsheet, that model makes a reference
to the original time domain. This is handled automatically by the framework so that the user does not need to worry
about it. This ensures that all models within the Flowsheet have a consistent time domain.

Different models may handle the time domain differently, but in general all IDAES models contain a component
named time, which is a reference to the original time domain. The only exception to this are blocks associated with
Property calculations. PropertyBlocks represent the state of the material at a single point in space and time, and thus
do not contain the time domain. Instead, PropertyBlocks are index by time (and space where applicable) - i.e. there is
a separate PropertyBlock for each point in time. The user should keep this in mind when working with IDAES models,
as it is important for understanding where the time index appears within a model.

Another important thing to note is that steady-state models do contain a time domain, however this is generally a
single point at time = 0.0. However, models still contain a reference to the time domain, and any components are still
indexed by time even in a steady-state model (e.g. PropertyBlocks).

Flowsheets

The top level of the IDAES modeling framework is the Flowsheet model. Flowsheet models represent traditional
process flowsheets, containing a number of Unit models representing process unit operations connected together into
a flow network. Flowsheets generally contain three types of component:

1. Unit models, representing unit operations,
2. Streams, representing connections between Unit models, and,

3. Property Parameter blocks, representing the parameters associated with different materials present within the
flowsheet.

Flowsheet models may also contain additional constraints relating to how different Unit models behave and interact,
such as control and operational constraints. Generally speaking, if a Constraint is purely internal to a single unit, and
does not depend on information from other units in the flowsheet, then the Constraint should be placed inside the
relevant Unit model. Otherwise, the Constraint should be placed at the Flowsheet level.

Unit Models

Unit models generally represent individual pieces of equipment present within a process which perform a specific task.
Unit models in turn are generally composed of two main types of component:

1. Holdup Blocks, which represent volume of material over which we wish to perform material, energy and/or
momentum balances, and,

2. PropertyBlocks, which represent the thermophysical and transport properties of the material at a specific point
in space and time.

3. Inlets and Outlets, which allow Unit models to connect to other Unit models.

Unit models will also contain Constraints describing the performance of the unit, which will relate terms in the balance
equations to different phenomena.

Holdup Blocks

A key feature of the IDAES modeling framework is the use of Holdup Blocks. As mentioned above, Holdup Blocks
represent a volume of material over which material, energy and/or momentum balances can be performed. Holdup
Blocks automate the task of writing these balance equations, writing a set of generic balance equations containing
specific terms based on instructions from the modeler (see Holdup documentation for more details). Holdup Blocks

3.2. Core Library 49



IDAES Documentation, Release 0.60

also automate the creation of Property Blocks associated with the flow of material in and out of the holdup volume so
that the user does not need to do this.

Holdup Blocks maybe associated with inlets and/or outlets from their parent unit model, in which case the material,
energy and momentum flows that make up these inlets and outlets connect directly to the Holdup block. The IDAES
framework support having multiple inlets or outlets to a single Holdup block, in which case the flows are mixed or
split within the Holdup block. In these cases, separate Mixer and Splitter sub-models are created by the Holdup block
to perform the mixing and/or splitting.

Property Blocks

Property blocks represent the state of a material at a given point in space and time within the process flowsheet, and
contain the state variables, thermophsyical, transport and reaction properties of a material (which are functions solely
of the local state of the material). Additionally, Property blocks contain information on the extensive flow of material
at that point in space and time, which is a departure from how engineers generally think about properties. This is
required to facilitate the flexible formulation of the IDAES Framework by allowing the property package to dictate
what form the balance equations will take, which requires the Property Block to know the extensive flow information.

The calculations involved in Property Blocks generally require a set of parameters which are constant across all
instances of that type of Property Block. Rather than each Property Block containing its own copy of each of these
parameters (thus duplicating parameters between blocks), each type of Property Block is associated with a Property
Parameter Block. Property Parameter Blocks serve as a centralized location for the constant parameters involved in
property calculations, and all Property Blocks of the associated type link to the parameters contain in the Parameter
block.

Mixers and Splitters

Mixers and Splitters are created automatically inside of Holdup blocks when a user declares multiple inlets and/or
outlets to a Unit model. Mixer and Splitter blocks contain a set of material, energy and momentum balances for
mixing or splitting the material flow as necessary.

Streams

Streams are used to connect different Unit models together within a Flowsheet. The contents of Streams are generated
automatically when a user declares a Stream, and include:

* constraints linking the source outlet and destination inlet states,

* values for the state variables being transferred.

What Belongs in Each Type of Block?

A common question with the hierarchical structure of the IDAES framework is where does a specific variable or
constraint belong (or conversely, where can I find a specific variable or constraint). In general, variables and constraints
are divided based on the following guidelines:

1. Property Parameter Blocks - any parameter or quantity that is consistent across all instances of a Property Block
belongs in the Property Parameter Block. This includes:

e component lists,
* lists of valid phases,

 universal constants (e.g. R, 7),

50 Chapter 3. Contents



IDAES Documentation, Release 0.60

L]

constants used in calculating properties (e.g. coefficients for calculating c,,
reference states (e.g. Prey and Th.cf),
lists of reaction identifiers,

reaction stoichiometry.

2. Property Blocks - all state variables (including extensive flow information) and any quantity that is a function
only of state variables plus the constraints required to calculate these. These include:

flow rates (can be of different forms, e.g. mass or molar flow, on a total or component basis),
temperature,
pressure,

intensive and extensive state functions (e.g. enthalpy); both variables and constraints.

3. Holdup Blocks - material, energy and momentum balances and the associated terms. These include:

balance equations,
holdup volume,
material and energy holdups; both variables and constraints,

material and energy accumulation terms (Pyomo.dae handles the creation of the associated derivative con-
straints),

material generation terms (kinetic reactions, chemical and phase equilibrium, mass transfer),
extent of reaction terms and constraints relating these to the equivalent generation terms,
phase fraction within the holdup volume and constrain on the sum of phase fractions,

heat and work transfer terms,

pressure change term

diffusion and conduction terms (where applicable) and associated constraints,

Mixer and Splitter blocks for handling multiple inlets/outlets.

4. Unit Model - any unit performance constraints and associated variables, such as:

constraints relating balance terms to physical phenomena or properties (e.g. relating extent of reaction to
reaction rate and volume),

constraints describing flow of material into or out of unit (e.g. pressure driven flow constraints),

unit level efficiency constraints (e.g. relating mechanical work to fluid work).

5. Flowsheet Model - any constraints related to interaction of unit models and associated variables. Examples
include:

control constraints relating behavior between different units (e.g. a constraint on valve opening based on
the level in another unit).

IDAES Modeling Classes

As a Python based modeling environment, Pyomo and IDAES make use of Classes to construct the various components
that make up a model for a system. This section will discuss the different Classes available within the IDAES Modeling
Framework and how they are intended to be used. Users need to be aware of object-oriented programming and Classes,
and those who are not are encouraged to read {add some reference}.

3.2. Core Library 51



IDAES Documentation, Release 0.60

Flowsheet Models

Contents

» Flowsheet Models
— Introduction
— Default Property Packages

— Flowsheet Configuration Arguments

— Flowsheet Classes

Introduction

Flowsheet models make up the top level of the IDAES modeling framework, and represent the flow of material and
energy through a process. Flowsheets will generally contain a number of UnitModels to represent unit operations
within the process, and will contain one or more Property Packages which represent the thermophysical and transport
properties of material within the process.

Flowsheet models are responsible for establishing and maintaining the time domain of the model, including declaring
whether the process model will be dynamic or steady-state. This time domain is passed on to all models attached to
the flowsheet (such as Unit Models and sub-Flowsheets). The Flowsheet model also serves as a centralized location
for organizing property packages, and can set one property package to use as a default throughout the flowsheet.

Flowsheet Blocks may contain other Flowsheet Blocks in order to create nested flowsheets and to better organize
large, complex process configurations. In these cases, the top-level Flowsheet Block creates the time domain, and
each sub-flowsheet inherits this time domain from its parent. Sub-flowsheets may make use of any property package
declared at a higher level, or declare new property package for use within itself - any of these may be set as the default
property package for a sub-Flowsheet.

Default Property Packages

Flowsheet Blocks may assign a property package to use as a default for all UnitModels within the Flowsheet. If a
specific property package is not provided as an argument when constructing a UnitModel, the UnitModel will search
up the model tree until it finds a default property package declared. The UnitModel will use the first default property
package it finds during the search, and will return an error if no default is found.

Flowsheet Configuration Arguments

Flowsheet blocks have three configuration arguments which are stored within a Config block (flowsheet.config). These
arguments can be set by passing arguments when instantiating the class, and are described below:

* dynamic - indicates whether the flowsheet should be dynamic or steady-state. If dynamic = True, the flowsheet
is declared to be a dynamic flowsheet, and the time domain will be a Pyomo ContunuousSet. If dynamic = False,
the flowsheet is declared to be steady-state, and the time domain will be an ordered Pyomo Set. For top level
Flowsheets, dynamic defaults to False if not provided. For lower level Flowsheets, the dynamic will take the
same value as that of the parent model if not provided. It is possible to declare steady-state sub-Flowsheets as
part of dynamic Flowsheets if desired, however the reverse is not true (cannot have dynamic Flowsheets within
steady-state Flowsheets).

52 Chapter 3. Contents



IDAES Documentation, Release 0.60

e time_set - use to initialize the time domain in top-level Flowsheets. When constructing the time domain in
top-level Flowsheets, time_set is used to initialize the ContinuousSet or Set created. This can be used to set start
and end times, and to establish points of interest in time (e.g. times when disturbances will occur). If dynamic
= True, time_set defaults to [0.0, 1.0] if not provided, if dynamic = False time_set defaults to [0.0]. time_set is
not used in sub-Flowsheets and will be ignored.

default_property_package - can be used to assign the default property package for a Flowsheet. Defaults to
None if not provided.

Flowsheet Classes

class idaes.core.flowsheet_model.FlowsheetBlock (*args, **kwargs)

FlowsheetBlock is a specialized Pyomo block for IDAES flowsheet models, and contains instances
of FlowsheetBlockData.
Parameters

* rule — (Optional) A rule function or None. Default rule calls build().

* concrete — If True, make this a toplevel model. Default - False.

* ctype — (Optional) Pyomo ctype of the Block.

* dynamic — Indicates whether this model will be dynamic, default - ‘use_parent_value’.
Valid values: { ‘use_parent_value’ - get flag from parent, True - set as a dynamic model,
False - set as a steady-state model }

* time_set - Set of points for initializing time domain. This should be a list of floating
point numbers, default - [0].

* default_property_package — Indicates the default property package to be used by
models within this flowsheet if not otherwise specified, default - None. Valid values:
{None - no default property package, a ParameterBlock object.}

Returns New FlowsheetBlock instance

class idaes.core.flowsheet_model.FlowsheetBlockData (component)

The FlowsheetBlockData Class forms the base class for all IDAES process flowsheet models. The main purpose
of this class is to automate the tasks common to all flowsheet models and ensure that the necessary attributes of
a flowsheet model are present.

The most signfiicant role of the FlowsheetBlockData class is to automatically create the time domain for the
flowsheet.

build()
General build method for FlowsheetBlockData. This method calls a number of sub-methods which auto-
mate the construction of expected attributes of flowsheets.

Inheriting models should call super().build.
Parameters None —
Returns None

model_ check ()
This method runs model checks on all unit models in a flowsheet.

This method searches for objects which inherit from UnitBlockData and executes the model_check method
if it exists.

3.2. Core Library 53



IDAES Documentation, Release 0.60

Parameters None —
Returns None

post_transform build()
Due to current limitations with pyomo.dae, certain tasks must be performed after the DAE transformation
is applied. This method is used to automate these tasks in all components of a flowsheet.

This method searches all child objects for a post_transform_build method, and runs it if present.
Parameters None —
Returns None

print_active_units ()
Print a list of the active units in the flowsheet.

print_all units ()
Print a list of all flowsheet units with a binary indicator.

0/1 indicator of whether it is active

Unit Models

Contents

e Unit Models

Introduction

UnitBlock Construction Arguments

Collecting Time Domain

Modeling Support Methods

UnitBlock Classes

Introduction

The UnitBlock is class is designed to form the basis of all IDAES UnitModels, and contains a number of methods
which are common to all Unit Models.

UnitBlock Construction Arguments

The UnitBlock class by default has only one construction argument, which is listed below. However, most models
inheriting from UnitBlock should declare their own set of configuration arguments which contain more information
on how the model should be constructed.

¢ dynamic - indicates whether the Unit model should be dynamic or steady-state, and if dynamic = True, the unit is
declared to be a dynamic model. dynamic defaults to ‘use_parent_value’ if not provided when instantiating the
Unit model (see below for more details). It is possible to declare steady-state Unit models as part of dynamic
Flowsheets if desired, however the reverse is not true (cannot have dynamic Unit models within steady-state
Flowsheets).

54 Chapter 3. Contents



IDAES Documentation, Release 0.60

Collecting Time Domain

The next task of the UnitBlock class is to establish the time domain for the unit by collecting the necessary information
from the parent Flowsheet model. If the dynamic construction argument is set to ‘use_parent_value’ then the Unit
model looks to its parent model for the dynamic argument, otherwise the value provided at construction is used. Next,
the UnitBlock collects the time domain from its parent model and sets this as the time domain for the Unit model.

Finally, if the Unit model has the ‘include_holdup’ construction argument, then this is checked to ensure that if
dynamic = True then include_holdup is also True. If this check fails then a warning is raised and the include_holdup
argument automatically set to be True.

Modeling Support Methods

The UnitBlock class also contains a number of methods designed to facilitate the construction of common components
of a model, and these are described below.

Build Inlets Method

All (or almost all) Unit Mmodels will have inlets and outlets which allow material to flow in and out of the unit being
modeled. In order to save the model developer from having to write the code for each inlet themselves, UnitBlock con-
tains a method named build_inlets which can automatically create an inlet (or set of inlets) to a specified Holdup block.
The build_inlets method supports connecting multiple inlets to a single Holdup block, in which case an inlet Mixer
Block will be created to mix the inlets prior to entering the Holdup (see documentation for Ports). The build_inlets
method is described in more detail in the documentation below.

Build Outlets Method

Similar to build_inlets, UnitBlock also has a method named build_outlets for constructing outlets from Unit models.
build_outlets also supports multiple outlets from a single holdup, in which case an outlet Splitter Block is created
to split the outlet flow (see documentation for Ports). The build_outlets method is described in more detail in the
documentation below.

Model Check Method

In order to support the IDAES Model Check tools, UnitBlock contains a simple model_check method which assumes
a single Holdup block and calls the model_check method on this block. Model developers are encouraged to create
their own model_check methods for their particular applications.

Initialization Routine

All UnitModels need to have an initialization routine, which should be customized for each Unit model, In order
to ensure that all Unit models have at least a basic initialization routine, UnitBlock contains a generic initialization
procedure which may be sufficient for simple models with only one Holdup Block. Model developers are strongly
encouraged to write their own initialization routines rather than relying on the default method.

UnitBlock Classes

class idaes.core.unit_model.UnitBlock (*args, **kwargs)

3.2. Core Library 55



IDAES Documentation, Release 0.60

Parameters
* rule — (Optional) A rule function or None. Default rule calls build().
* concrete — If True, make this a toplevel model. Default - False.
* ctype — (Optional) Pyomo ctype of the Block.

* dynamic - Indicates whether this model will be dynamic or not (default =
‘use_parent_value’). ‘use_parent_value’ - get flag from parent (default = False) True - set
as a dynamic model False - set as a steady-state model

Returns New UnitBlock instance

class idaes.core.unit_model.UnitBlockData (component)
This is the class for process unit operations models. These are models that would generally appear in a process
flowsheet or superstructure.

build()
General build method for UnitBlockData. This method calls a number of sub-methods which automate the
construction of expected attributes of unit models.

Inheriting models should call super().build.
Parameters None —
Returns None

build_inlets (holdup=None, inlets=None, num_inlets=None)
This is a method to build inlet Port objects in a unit model and connect these to holdup blocks as needed.
This method supports an arbitary number of inlets and holdup blocks, and works for both simple (0D) and
1D IDAES holdup blocks.

Keyword Arguments

* = holdup block to which inlets are associated. If left
None, (holdup) — assumes a default holdup (default = None).

e = argument defining inlet names (default (inlets) — None). inlets
may be None or list. - None - assumes a single inlet. - list - use names provided in
list for inlets (can be

other iterables, but not a string or dict)

e = argument indication number (num_inlets) — construct (default = None).
Not used if inlets arg is provided. - None - use inlets arg instead - int - Inlets will be named
with sequential numbers from 1

to num_inlets.
Returns A Pyomo Port object and assoicated components.

build_outlets (holdup=None, outlets=None, num_outlets=None, material_split_type="flow’, en-

ergy_split_type="temperature’)
This is a method to build outlet Port objects in a unit model and connect these to holdup blocks as needed.

This method supports an arbitary number of outlets and holdup blocks, and works for both simple (0D)
and 1D IDAES holdup blocks.

Keyword Arguments

* = holdup block to which inlets are associated. If left
None, (holdup) — assumes a default holdup (default = None).

56 Chapter 3. Contents



IDAES Documentation, Release 0.60

* = argument defining outlet names (default (outlets)— None). out-
lets may be None or list. - None - assumes a single outlet. - list - use names provided in
list for outlets (can be

other iterables, but not a string or dict)

e = argument indication number (num_outlets)- construct (default = None).
Not used if outlets arg is provided. - None - use outlets arg instead - int - Outlets will be
named with sequential numbers from

1 to num_outlets.

* = argument defining method to use to split
(energy_split_type) — outlet material flow in case of multiple outlets (default =
‘flow’).

— ’flow’ - outlets are split by total flow

— ’phase’ - outlets are split by phase

— ’component’ - outlets are split by component

— ’total’ - outlets are split by both phase and component

— ’duplicate’ - all outlets are duplicates of the total outlet stream.

e = argument defining method to use to split - outlet energy flow in
case of multiple outlets (default = ‘temperature’).

— ’temperature’ - equate temperatures in outlets

“enth_mol’ - equate molar enthalpies in outlets

“enth_mass’ - equate mass enthalpies in outlets

’energy_balance’ - outlets energy split using split fractions
Returns A Pyomo Port object and assoicated components.

display P ()
Display pressure variables associated with the UnitBlockData.

display T()
Display temperature variables associated with the UnitBlockData.

display flows ()
Display component flow variables associated with the UnitBlockData.

display total_flows ()
Display total flow variables associated with the UnitBlockData.

display variables (simple=True, descend_into=True)
Display all variables associated with the UnitBlockData.

Parameters simple (bool, optional)— Printa simplified version showing only variable
values.

initialize (state_args=None, outlvi=0, solver="ipopt’, optarg={’tol’: 1e-06})
This is a general purpose initialization routine for simple unit models. This method assumes a single
Holdup block called holdup, and first initializes this and then attempts to solve the entire unit.

More complex models should overload this method with their own initialization routines,

Keyword Arguments

3.2. Core Library 57


https://docs.python.org/3/library/functions.html#bool

IDAES Documentation, Release 0.60

* state_args — adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

={D.

* outlvl - sets output level of initialisation routine

0 = no output (default)
— 1 =return solver state for each step in routine
— 2 =return solver state for each step in subroutines
— 3 = include solver output infomation (tee=True)
* optarg — solver options dictionary object (default={ ‘tol’: 1e-6})
* solver — str indicating whcih solver to use during initialization (default = ‘ipopt’)
Returns None

is_process_unit ()
Tag to indicate that this object is a process unit.

model_check ()
This is a general purpose initialization routine for simple unit models. This method assumes a single
Holdup block called holdup and tries to call the model_check method of the holdup block. If an Attribu-
teError is raised, the check is passed.

More complex models should overload this method with a model_check suited to the particular application,
especially if there are multiple Holdup blocks present.

Parameters None —

Returns None

Streams

Contents

o Streams

Introduction

Construction Arguments

Port Validation

Stream Constraints

Stream Variables

StreamData Class

VarDict Class

Introduction

Stream Blocks are used within the IDAES framework for connecting Unit Models at the Flowsheet level. Each Stream
connects an inlet and an outlet from a Unit model.

58 Chapter 3. Contents



IDAES Documentation, Release 0.60

Construction Arguments

Stream Blocks have four construction arguments, which describe the source and destination of the Stream. The
construction arguments are:

* source - the outlet Port object to use as the source of the Stream.

* source_idx - (optional) index to use when source Port represents multiple outlets (i.e. comes from an Outlet-
Splitter Block).

* destination - the inlet Port object to use as the destination of the Stream.

* destination_idx - (optional) index to use when destination Port represents multiple inlets (i.e. comes from an
InletMixer Block).

Port Validation

The first step in constructing a Stream is to check that both the source and destination Ports are compatible. This is
done with the following checks:

1. Ports must have the same length.
2. Ports must have the same set of named variables (keys).
3. Variables within Ports must have the same indexing sets.

If any of these tests fail, an Exception is raised stating that the Ports are not compatible and why.

Stream Constraints

The main purpose of a Stream is to connect the outlet of one unit to the inlet of another, which is done using equality
Constraints. Streams automatically write a set of equality Constraints which relate each member of the source Port to
the equivalent member of the destination Port.

Stream Variables

Streams also automatically generate local representations of the variables associated with the Stream, so that users can
evaluate the quantities present in the Stream. These values are stored in a VarDict, and support a number of methods
as shown below.

StreamData Class

Streams support a number of methods for solving models and evaluating results which are documented below.

class idaes.core.stream.StreambData (component)
This is the class for process streams. These are blocks that connect two unit models together.

activate (var=None)
Method for activating Constraints in Stream. If not provided with any arguments, this activates the entire
Stream block. Alternatively, it may be provided with the name of a variable in the Stream, in which case
only the Constraint associated with that variable will be activated.

Parameters var — name of a variable in the Stream for which the corresponding Constraint
should be activated (default = None).

Returns None

3.2. Core Library 59



IDAES Documentation, Release 0.60

build()
General build method for StreamDatas. Inheriting models should call super().build.

Parameters None —
Returns None

converged (tolerance=1e-006)
Check if the values on both sides of a Stream are converged.

Parameters tolerance - tolerance to use when checking if Stream is converged. (default =
le-6).

Returns A Bool indicating whether the Stream is converged

deactivate (var=None)
Method for deactivating Constraints in Stream. If not provided with any arguments, this deactivates the
entire Stream block. Alternatively, it may be provided with the name of a variable in the Stream, in which
case only the Constraint associated with that variable will be deactivated.

Parameters var — name of a variable in the Stream for which the corresponding Constraint
should be deactivated (default = None).

Returns None

display (side=’source’, display_constraints=False, tolerance=1e-006, ostream=None, prefix="")
Display the contents of Stream Block.

Parameters

* side - side of Stream to display values from (default = ‘soruce’). Valid values are
‘source’ and ‘destination’.

* display_constraints — indicates whether to display Constraint information (de-
fault = False).

* tolerance - tolerance to use when checking if Stream is converged. (default = 1e-6).
* ostream - output stream (default = None)

* prefix — str to append to each line of output (default = **)

VarDict Class

class idaes.core.stream.VarDict
This class creates an object which behaves like a Pyomo IndexedVar. It is used to contain the separate Vars
contained within IndexedPorts, and make them look like a single IndexedVar. This class supports the fix, unfix

and display attributes.

display (side=’source’, ostream=None, prefix="")
Print component information

Parameters

* side — which side of port to display (default = ‘source’). Valid values are ‘source’ or
‘destination’.

* ostream - output stream (default = None)
» prefix — str to append to each line of output (default = **)

Returns None

60 Chapter 3. Contents



IDAES Documentation, Release 0.60

£ix (value=None, side="destination’)
Method to fix Vars.

Parameters
* value - value to use when fixing Var (default = None).
* side -side of port to fix (default = ‘destination’). Valid values are ‘source’, ‘destination’
or ‘all’.
Returns None

unfix (side="destination’)
Method to unfix Vars.

Parameters
* value - value to use when fixing Var (default = None)
* side - sside of port to fix (default = ‘destination’). Valid values are ‘source’, ‘destination’
or ‘all’.

Returns None

Holdup Classes

The IDAES process modeling framework is built around the concept of Holdup Blocks. A Holdup Block represents a
single volume of material over which a set of material, energy and pressure balances can be applied.

Whilst each unit model is different, the material, energy and momentum balances all have a similar form with the main
difference being the terms which appear in the balances. This allows the Holdup blocks to automatically generate the
balance equations based on a set of instructions provided by the user, saving the user from the need to write the
equations themselves. This section of the IDAES documentation goes through the different types of Holdup blocks
available in the IDAES core framework the equations they create.

The IDAES framework contains three types of Holdup blocks for different applications; HoldupOD, Holdup1D and
HoldupStatic.

* HoldupOD is the most common type of Holdup block, and represents a single well mixed volume of fluid with a
single inlet flow and a single outlet flow. This type of Holdup block is uesfull for representing most simple unit
operations.

* Holdup1D is useful for holdup volumes with variations in one spatial domain, such as plug flow reactors or flow
in pipes.

* HoldupStatic is useful for certain special cases where the material volume has either no through flow (dead
zones) or units with negligible volume (e.g. ideal mixers and splitters). More details on potential uses of
HoldupStatic are given below.

Holdup blocks are not intended to be used outside of an IDAES UnitModel. Most significantly, the Holdup block
expects certain components to be present in the parent model, and will raise Exceptions if these are not present.

Common Holdup Tasks

Contents

* Common Holdup Tasks

3.2. Core Library 61



IDAES Documentation, Release 0.60

Introduction

Construction Arguments

Setting up the time domain

Getting Property Package Information

Collecting Indexing Sets for Property Package

HoldupData Class

Introduction

All of the IDAES Holdup block classes are built on a common core Class which automates the tasks required for all
Holdup blocks. The common tasks performed by the base class are:

* Collecting construction arguments from the UnitModel,
* Determining if the Holdup should be steady-state or dynamic and getting the time domain,
* Collecting the information necessary for creating Property Blocks, and

* Collecting the component and phase lists from the Property package.

Construction Arguments

All Holdup blocks make use of a common set of construction arguments, which determine amongst other things which
terms to include in the balance equations. The list of common construction argument is provided below:

Construction Argument | Default Value
property_package None
property_package_args {}
include_holdup True
material_balance_type ‘component_phase’
energy_balance_type ‘enthalpy_total’
momentum_balance_type | ‘pressure’
has_rate_reactions False
has_equilibrium_reactions | False
has_phase_equilibrium False
has_mass_transfer False
has_heat_transfer False
has_work_transfer False
has_pressure_change False

The property_package and property_package_args arguments are used to inform the Holdup block of which property
package to use when constructing the associated Property Blocks, and any instructions to be provided when construct-
ing the blocks. The balance type arguments are used to control what type of balance equation is written (more details
are given in the documentation for the relevant Holdup class). The remaining arguments govern whether or not a
specific term should be included in the balances equations. If a term is not included, it is replaced with a O in the
relevant expression, and the associated variable is not constructed.

When an instance of a Holdup block is created, values for these may be provided as arguments otherwise they will be
assigned a value of ‘use_parent_value’. In these cases, the Holdup block looks to the UnitModel and checks to see if

62 Chapter 3. Contents



IDAES Documentation, Release 0.60

the UnitModel has assigned a default value for these arguments and uses this if available. If the UnitModel does not
have a default value for an argument, then the Holdup reverts to the default value provided in the table above.

CONFIG_Base

To assist Unit model developers with setting up the configuration blocks for their models, the IDAES framework
contains a prebuilt configuration block that can be inherited by UnitModels which contains most of the required con-
struction arguments already, along with preset defaults and methods to validate user inputs. This prebuilt configuration
block is named CONFIG_Base, and is available in holdup.py in the IDAES core.

CONFIG_Base contains the following arguments prebuilt for the developer:
* include_holdup
* material_balance_type
* energy_balance_type
* momentum_balance_type
* has_rate_reactions
* has_equilibrium_reactions
* has_phase_equilibrium
e has_mass_transfer
¢ has_heat_transfer
¢ has_work_transfer
* has_pressure_change

Information on property packages is not included in the default CONFIG_Base, as UnitModels may have multiple
property packages.

Setting up the time domain

The next common task the Holdup block performs is to determine if it should be dynamic or steady-state and to
collect the time domain from the UnitModel. Holdup blocks have an argument dynamic which can be provided during
construction which specifies if the Holdup should be dynamic (dynamic = True) or steady-state (dynamic = False). If
the argument is not provided, the Holdup block will inherit this argument from the UnitModel.

After setting the dynamic argument, the Holdup block then gets a reference to the time domain from the UnitModel.
If the block containing the Holdup block does not have an attribute named time, and error will be returned.

Getting Property Package Information

If a reference to a property package was not provided by the UnitModel as an argument, the Holdup block first checks
to see if the UnitModel has a property_package argument set, and uses this if present. Otherwise, the Holdup block
begins searching up the model tree looking for an argument named default_property_package and uses the first of
these that it finds. If not default_property_package is found, an Exception is returned.

3.2. Core Library 63



IDAES Documentation, Release 0.60

Collecting Indexing Sets for Property Package

The final common step for all property packages is to collect any required indexing sets from the property package
(for example component and phase lists). These are used by the Holdup block for determining what balance equations
need to be written, and what terms to create.

The indexing sets the Holdup block looks for are:

component_list - used to determine what components are present, and thus what material balances are required
phase_list - used to determine what phases are present, and thus what balance equations are required

rate_reaction_idx - a list of rate controlled reactions present in the system. Used if has_rate_reactions = True
to determine how many generation terms are required. If rate_reaction_idx is found, the Holdup also looks for
a list of stoichiometric coefficients (rate_reaction_stoichiometry). If either of these is not found, a warning is
raised and has_rate_reaction is set to False.

equilibrium_reaction_idx - a list of equilibrium reactions present in the system. Used if
has_equilibrium_reactions = True to determine how many generation terms are required. If equi-
librium_reaction_idx is found, the Holdup also looks for a list of stoichiometric coefficients (equilib-
rium_reaction_stoichiometry). If either of these is not found, a warning is raised and has_equilibrium_reaction
is set to False.

phase_equilibrium_idx - a list of phase equilibrium reactions present in the system. Used if
has_phase_equilibrium = True to determine how many generation terms are required. If phase_equilibrium_idx
is found, the Holdup also looks for a list of species which are in phase equilibrium (phase_equilibrium_list). If
either of these is not found, a warning is raised and has_phase_equilibrium is set to False.

If material_balance_type is set to use element balances, the Holdup block tries to find a component named
element_list (which contains a list of elements present in the species of the system). If this is not found, an
Exception is returned.

HoldupData Class

class idaes.core.holdup.HoldupData (component)

The HoldupData Class forms the base class for all IDAES holdup models. The purpose of this class is to
automate the tasks common to all holdup blockss and ensure that the necessary attributes of a holdup block are
present.

The most signfiicant role of the Holdup class is to set up the build arguments for the holdup block, automatically
link to the time domain of the parent block, and to get the information about the property package.

build()
General build method for Holdup blocks. This method calls a number of sub-methods which automate the
construction of expected attributes of all Holdup blocks.

Inheriting models should call super().build.
Parameters None —
Returns None

get_property_ package ()
This method gathers the necessary information about the property package to be used in the holdup block.

If a property package has not been provided by the user, the method searches up the model tree until it
finds an object with the ‘default_property_package’ attribute and uses this package for the holdup block.

64

Chapter 3. Contents



IDAES Documentation, Release 0.60

The method also gathers any default construction arguments specified for the property package and com-
bines these with any arguments specified by the user for the holdup block (user specified arguments take
priority over defaults).

Parameters None —

Returns None

Holdup0D

Contents

* HoldupOD

Introduction

HoldupOD Equations

HoldupOD Variables

Initialization

HoldupOdData Class

Introduction

The HoldupOD block is the most commonly used of all the Holdup block classes, and is used for systems where there
is a well-mixed volume of fluid, or where variations in spatial domains are considered to be negligible. HoldupOD
blocks contain two Property blocks - one for the incoming material and one for the material within and leaving the
volume - and write a set of material, energy and momentum balance equations with distinct inlet and outlet flows.

HoldupOD Equations

HoldupOD contains support for a number of different forms of the material, energy and momentum balances, as well as
options for controlling which terms will appear in these equations. The different options available are outlined below
along with the equations written with each choice. In all cases, the extensive flow terms are provided by the associated
Property Blocks.

Material Balance Types

HoldupOD provides support for three different types of material balance.

* component_phase - material balances are written for each component in each phase (e.g. separate balances
for liquid water and steam). Property packages may include information to indicate that certain species do not
appear in all phases, and material balances will not be written in these cases (if include_holdup is True holdup
terms will still appear for these species, however these will be set to 0). The equations written by the Holdup
block for phase-component balances have the form:

OMy . ;
ot

where M, ,, ; is the holdup of component j in phase p within the control volume and time ¢, Fy;, ¢ p 5 and Foyp ¢ p 5
are the flow of material into and out of the control volume respectively, Niinetic,t,p,j> Nequitibrium,t,p,j and Npe ¢ p.

= Fin,t,p,j - Fout,t,p,j + Nkinetic,t,p,j + Nequilibrium,t,p,j + Npe,t,p,j + Ntransfer,t,p,j

3.2. Core Library 65



IDAES Documentation, Release 0.60

are the generation of species j in phase p by kinetic, chemical equilibrium and phase equilibrium controlled reac-
tions respectively, and Niyans fer.t,p,j 15 @ term to allow for other forms of mass transfer within or across the system
boundary.

e component_total - material balances will be written for each component across all phases (e.g. one balance for
both liquid water and steam). Phase equilibrium terms are not included in this form of the material balance. This
form can be useful for steady-state systems with phase-equilibrium. However users should be careful using this
form of the material balance, especially for dynamic systems, as there are often additional degrees of freedom
that need to be specified. The equations written by the Holdup block for total component balances have the

form:
M, , ;
bJ _
# = § Fin,t7p7j - § Fout7t,p,j + § Nkinetiqt,p,j + E Nequilibrium,t,p,j + E :Ntransfent,p,j
P p p P P

* element_total - material balances are written for each element in the system (e.g. one material balance for
hydrogen and one for oxygen). Only flow and mass transfer terms are included in this form of the material
balance. This form of the material balance can be useful for certain reactive systems, and is necessary for
performing Gibbs energy minimization. The equations written by the Holdup block for total element balances

have the form:
oM, Z 2 : F + E
- ;t’p’e B p Fin,t,p,e B p out,t,p,e Ntransfer,t,p,e

p

where M; ;, . is the holdup of element e in phase p within the control volume at time ¢, Fy, ¢ p.c and Foyt ¢ p, e are the
flow of element e in phase p into and out of the control volume respectively, and Niyqns fer,t,p,e 15 a term to allow for
other forms of mass transfer within or across the system boundary.

¢ none - no material balances are written.

Energy Balance Types

HoldupOD currently supports only one form of energy balance.

* enthalpy_total - one enthalpy balance is written for the entire holdup, summing contributions from all phases.
The form of the total enthalpy balance written by the holdup block is:

OF
sx;#:sxXp:Hmt,p—sxZHoump—i-stt—stWt

p

where E), is the holdup of enthalpy in phase p at time ¢, H;,, 1, and H,, ¢, are the flow of enthalpy into and out of
the control volume, @) is the heat transferred into the system, W, is the work transfer into the system and s is a scaling
factor.

* none - no energy balances are written.

Momentum Balance Types

HoldupOD currently supports only one form of momentum balance.

e pressure - one pressure balance is written for the entire holdup. Currently this is a simple pressure balance across
the system with a potential pressure drop term. The form of the total pressure balance written by the holdup
block is:

OZSXPZ‘n’t—SXPOUt,t-FSXAPt

where P, ; and Py, ; are the pressure into and out of the control volume at time ¢, AP, is the pressure drop between
the inlet and outlet, and s is a scaling factor.

¢ none - no momentum balances are written.

66 Chapter 3. Contents



IDAES Documentation, Release 0.60

Supporting Equations

HoldupOD also creates a number of supporting Variables and Constraints as required by the balance equations, which
are summarized below.

Phase Fraction

For systems with more than one phase present (determined automatically from the phase list provided by the property
package), HoldupOD creates a phase fraction variable for each phase, and enforces the following constraint at all points

in time ¢:
D by =1
p

When only one phase is present, ¢ is automatically substituted with 1 in all equations.

Holdup Calculations

HoldupOD also calculates the holdup terms for the material and energy balances (unless include_holdup is False), and
automatically writes Constraints for these based on information provided by the property package. The form of the
holdup constraint for component balances is:

Mipj=Vi X dtp X prp,;j

where M; ;, ; is the holdup of species j in phase p at time ¢, V; is the volume of the control volume at time ¢ (this
supports control volumes of varying volume), ¢; , is the phase fraction of phase p at time ¢ and p; ; ; is the material
density of component j in phase p at time ¢ (provided by the outlet Property Block). For phase-component pairs which
do not exist (as indicated by the Property Block), the following Constraint is written instead (this is required to close
the degrees of freedom):

M;p; =0
For holdup blocks using element balances, an elemental holdup is required instead, which is calculated as follows:
Mipe=Vi X Qtp X prpj X €je
where ¢; . is the number of moles of element e per mole of component j.
For the holdup term in the energy balances, the following Constraints are written:
Eip =Vi X ¢rp X perp

where E, , is the energy holdup in phase p at time ¢ and pe; ;, is the volumetric energy density in phase p (provided by
the Property Block).

Stoichiometric Constraints

HoldupOD also automatically generates stoichiometric Constraints to ensure conservation of mass (and elements)
between products and reactants in all types of reactions (including phase equilibrium). For kinetic and chemical
equilibrium reactions, an extent of reaction terms is generated for each reaction, and Constraint is written to relate
these to the generation terms in the balance equations. The form of these equations is:

Nipj= E Vrp,j X Xir
T

3.2. Core Library 67



IDAES Documentation, Release 0.60

where N, ;, ; is the generation of species j in phase p at time ¢, v;. , ; is the stoichiometric coefficient for the generation
of species j in phase p by reaction 7 and X} ,. is the extent of reaction r at time ¢.

For phase equilibrium reactions, the stoichiometric constraints can be simplified as it is known that the equilibrium
is 1:1 between the same species in two different phases. In this case, rather than write separate generation terms for
each phase-component pair, a generation term is written for each phase equilibrium reaction that occurs, and the term
substituted directly into the material balance (with a &1 factor to determine which phase is ‘product’ phase and which
the ‘reactant’ phase).

Element Flow Terms

Element balances require an additional set of equations for relating component based flows to their element equiva-
lents. When element balances are chosen for a holdup block, the following additional Constraints are written:

Fipe=Fipj X eje

where ¢; . is the number of moles of element e per mole of component j.

Construction Options

Options available in HoldupOD for specifying which terms should appear within the balance equations. Most terms in
the balance equations have an associated construction argument, which are described below:

* dynamic - controls whether accumulation terms will be included in the balance equations, and the necessary
constraints for relating these to the holdup terms. If set to True, accumulation terms will be constructed and
included in the model. The number of accumulation terms created depends on the number of time points,
phases and components present in the model.

¢ include_holdup - controls whether terms and constraints for the holdup of material and energy should be con-
structed (momentum holdup is not yet supported). If set to True, material and energy holdup terms are created,
along with constraints linking these to the volume of the holdup and the material and energy densities. If dy-
namic = True, include_holdup must also be True (this is automatically checked by the framework, and a warning
raised if set incorrectly). If dynamic = False, then include_holdup may be set to True or False as desired by the
user, depending on whether the holdup terms are required in the flowsheet.

* has_rate_reactions - controls whether generation terms should be constructed for rate controlled reactions. If this
is True, generation terms are created for each phase and component pair and included in the material balance
equations. Additionally, an extent of reaction term is created for each reaction identified in the associated
property package, and linked to the generation term via stoichiometric constraints. The Unit model or user is
then expected to provide a set of Constraints relating the extent of reaction terms to the performance of the given
unit operation.

* has_equilibrium_reactions - controls whether generation terms should be constructed for equilibrium controlled
reactions (excluding phase equilibrium). If this is True, generation terms are created for each phase-component
pair, and included in the material balance equations. Additionally, stoichiometric constraints are written relating
the different generation term. The property package is expected to provide a set of equilibrium constraints which
enforce the equilibrium conditions.

* has_phase_equilibrium - controls whether generation terms should be constructed for phase equilibrium reac-
tions. If this is True, generation terms are created for each phase-component pair, and included in the material
balance equations. The property package is expected to provide a set of equilibrium constraints which enforce
the equilibrium conditions.

* has_mass_transfer - controls whether mass transfer terms should be constructed in the material balance equa-
tions. If True, the generic mass transfer terms will be included, and the UnitModel or user will need to provide
constraints for these terms.

68 Chapter 3. Contents



IDAES Documentation, Release 0.60

* has_heat_transfer - controls whether the heat transfer term should be included in the energy balance equation.
If True, the @ term is constructed and the UnitModel or user will need to provide a constraint for this term.

* has_work_transfer - controls whether the work transfer term should be included in the energy balance equation.
If True, the W term is constructed and the UnitModel or user will need to provide a constraint for this term.

* has_pressure_change - controls whether the pressure change term should be included in the momentum balance
equation. If True, the AP term is constructed and the UnitModel or user will need to provide a constraint for
this term.

HoldupOD Variables

The following is a table of all variables that may be constructed by a HoldupOD block (depending on options chosen),
along with the names used to identify these quantities within actual code (indices are shown in the same order they
appear in the code).

Variable Name

Vi volume

M p material_holdup
7551”" material_accumulation
M p.e element_holdup

6Matt’p < element_accumulation
Ey ), energy_holdup

8§;= L energy_accumulation
Dt.p phase_fraction

Nkinetic,t,p,j

rate_reaction_generation

Nequilibrium,t,p,j

equilibrium_reaction_generation

Npe,t,r

phase_equilibrium_generation

Ntransfer,t,p,j

mass_transfer_term

Ntransfer,t,p,e

elemental_mass_transfer

Q: heat
W, work
AP, deltaP

innetic,t,r

rate_reaction_extent

Xequilib'rium,t,r

equilibrium_reaction_extent

Additionally, two scaling factors are generated for the energy and momentum balances, named scaling_factor_energy
and scaling_factor_momentum respectively.

Initialization

HoldupOD has an initialization method which can be called as part of initializing an associated UnitModel. The
initialization method takes a set of state arguments which is passed on to the associated property package, mixers
and splitters. As initialization of UnitModels often require the inlet state of the unit to be held at a fixed state whilst
initializing the unit, the holdup initialization routine can be instructed to hold the inlet state at a fixed state until
instructed to unfix it (an associated release_state method exists for this purpose). The procedure followed by the
initialization routine is as follows:

1. If an inlet mixer is present, the initialization routine of the mixer is called.
2. The inlet Property Block is initialized (properties_in).

3. The outlet Property Block is initialized (properties_out).

3.2. Core Library 69



IDAES Documentation, Release 0.60

4. If an outlet splitter is present, the initialization routine of the splitter is called.

5. If not instructed to hold the inlet state fixed, the release_state method is called, otherwise a dictionary of infor-
mation on what state variables were fixed is returned to be used when calling release_state.

The associated release_state method takes the dictionary of flags returned above, and uses this to unfix any variables
fixed during initialization.

HoldupOdData Class

class idaes.core.holdup.HoldupOdData (component)
0-Dimensional (Non-Discretised) Holdup Class

This class forms the core of all non-discretized IDAES models. It builds property blocks and adds mass, energy
and momentum balances. The form of the terms used in these constraints is specified in the chosen property
package.

build()
Build method for HoldupOD blocks. This method calls submethods to setup the necessary property blocks,
distributed variables, material, energy and momentum balances based on the arguments provided by the
user.

Parameters None —
Returns None

initialize (state_args=None, outlvl=0, optarg=None, solver="ipopt’, hold_state=True)
Initialisation routine for holdup (default solver ipopt)

Keyword Arguments

* state_args — adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

={}.
* outlvl —sets output level of initialisation routine. Valid values: 0 - no output (default), 1
- return solver state for each step in routine, 2 - include solver output infomation (tee=True)
* optarg — solver options dictionary object (default=None)

* solver - str indicating whcih solver to use during initialization (default = ‘ipopt’)

* hold_state - flag indicating whether the initialization routine should unfix any state
variables fixed during initialization, default - True. Valid values: True - states varaibles
are not unfixed, and a dict of returned containing flags for which states were fixed dur-
ing initialization, False - state variables are unfixed after initialization by calling the re-
lase_state method.

Returns If hold_states is True, returns a dict containing flags for which states were fixed during
initialization.
model_check ()

This method exectues the model_check methods on the associated property blocks (if they exist). This
method is generally called by a unit model as part of the unit’s model_check method.

Parameters None —
Returns None

release_state (flags, outlvi=0)
Method to relase state variables fixed during initialisation.

70 Chapter 3. Contents



IDAES Documentation, Release 0.60

Keyword Arguments

» flags —dict containing information of which state variables were fixed during initializa-
tion, and should now be unfixed. This dict is returned by initialize if hold_state = True.

* outlvl - sets output level of of logging

Returns None

HoldupiD

Contents

* Holdup1D

Introduction

Construction Arguments

Holdup1D Equations

Holdup1D Variables

Initialization

HoldupldData Class

Introduction

The Holdup1D block is used to model systems with variations in one spatial dimension, such as plug flow reactors and
idea pipes. Holdup1D blocks contain a set of Indexed Property Blocks (with an instance of a Property Block at each
node in the spatial domain), and write a set of material, energy and momentum balance equations with differential
flow terms.

Construction Arguments

Holdup1D blocks support a number of different ways to write the material, energy and momentum balance equations
that are not present in other forms of Holdup blocks. In order to support these, Holdup1D blocks have a number of
additional construction arguments and some existing arguments have additional options available.

Balance Equation Options

Some additional types of balance equations are available in Holdup1D blocks to better represent 1-dimensional fluid
flows. These primarily apply to the energy and momentum balance equations, and the following options are shown
below. Some forms of the balance equations require the velocity of the material be calculated which can be done using
the velocity_type construction argument discussed later.

 energy_balance_type - indicates type of energy balance to write. Options are:
— ‘none’ - no energy balance is written
— ‘enthalpy_total’ - (default) a total enthalpy balance is written for the material

* momentum_balance_type - indicates type of energy balance to write. Options are:

3.2. Core Library 71



IDAES Documentation, Release 0.60

— ‘none’ - no energy balance is written

— ‘pressure’ - (default) a total pressure balance is written for the material

Velocity

In many cases it is important to calculate the velocity of the material as it moves through the spatial domain, and
many of the options available for the balance equations require the material velocity to be calculated. Calculation of
velocity requires that the associated property package support calculation of volumetric flow rate (either flow_vol or
flow_vol_phase).

* velocity_type - indicates what method to use for calculating velocity. Options are:
— ‘none’ - velocity is not calculated by the Holdup 1D block
— ‘mixture’ - a single average velocity is calculated for the material (required flow_vol)
— ‘phase’ - separate velocities are calculated for each phase present in the system (required flow_vol_phase)

The Holdup1D block automatically checks that the necessary velocity terms will be calculated as required by the
balance equations, and will change the velocity_type construction argument as necessary (with a warning to the user).

Spatial Domain

Holdup1D blocks have a normalized domain, name Idomain, which represents the spatial dimension of the unit. The
developer has the option of specifying a domain to inherit from a parent model, or to construct a new domain for each
holdup. This domain is normally defined as a Pyomo ContinuousSet with bounds of 0 and 1, and must be transformed
using Pyomo.dae before the model can be solved. This is done automatically during construction of Holdup1D, based
on the following arguments provided by the developer.

* inherited_length_domain - allows the developer to provide an existing length domain to use within the holdup.
This will be used wherever ldomain is called for, and no new domain will be created. Note: the balance equations
in Holdup1D are written in normalized form, and thus expect a normalized domain. Unexpected behavior may
occur if a non-normalized domain is provided.

* length_domain_set - allows the user to specify a set of points to use as part of the spatial domain (default =
[0.0, 1.0]). These points will be used to populate the initial domain, with additional points added later during
transformation as required. This allows the user to specify custom grid spacings as required. Note: the balance
equations in Holdup1D are written in normalized form, and thus expect a normalized domain. Unexpected
behavior may occur if a non-normalized domain is provided.

 flow_direction - indicates the direction of flow within the length domain. Options are:
— ‘forward’ - flow from O to 1 (default)
— ‘backward’ - flow from 1 to 0
* discretization_method - specifies the method to use when discretizing the spatial domain. Options are:
— BFD - backwards finite difference method (default)
— FFD - forwards finite difference method
— OCLR - orthogonal collocation on finite elements (Lagrange-Radau roots)
— OCLL - orthogonal collocation on finite elements (Lagrange-Legendre roots)
* finite_elements - number of finite elements to use when discretizing domain (default = 20)

¢ collocation_ponts - number of collocation points to use per finite element (default = 3, collocation methods
only)

72 Chapter 3. Contents



IDAES Documentation, Release 0.60

Holdup1D Equations

Holdup1D contains support for a number of different forms of the material, energy and momentum balances, as well
as options for controlling which terms will appear in these equations. The different options available are outlined
below along with the equations written with each choice. In all cases, the extensive flow terms are provided by the
associated Property Blocks, and the inlet boundary condition is provided by the inlet stream (inlet may be at z = 0 or
z = 1 depending on flow direction).

Material Balance Types

Holdup1D provides support for three different types of material balance.

e component_phase - material balances are written for each component in each phase (e.g. separate balances
for liquid water and steam). Property packages may include information to indicate that certain species do not
appear in all phases, and material balances will not be written in these cases (if include_holdup is True holdup
terms will still appear for these species, however these will be set to 0). The equations written by the Holdup
block for phase-component balances have the form:

) OM; oF;
Qz # aneta L x TM fd ta;,p] + L x Nkznefv(' ,t,x,p,7 + L x Nequilibrium,t,m,p,j

A
+L X Noe.t.a.pj + L X Neransferstarps + 7

where M, , ,, ; is the holdup of component j in phase p at point :math:’x” and time ¢, L and A are the (total) length and
area of the control volume respectively, I} ;. ,, ; is the flow of species j in phase p at point x and time ¢, Ninetic,t,2,p, ;>
Nequitibrium,t,z,p,j and Npe ¢ .., ; are the generation of species j in phase p by kinetic, chemical equilibrium and phase
equilibrium controlled reactions respectively, Nirans fer,t,a,p,j 15 @ term to allow for other forms of mass transfer within
or across the system boundary and Jg; f fusion,t,«,p,; 1 the diffusive material flux of component j in phase p at point x
and time ¢.

X Jdiffusion,t,a:,p,j

* component_total - material balances will be written for each component across all phases (e.g. one balance for
both liquid water and steam). Phase equilibrium terms are not included in this form of the material balance. This
form can be useful for steady-state systems with phase-equilibrium. However users should be careful using this
form of the material balance, especially for dynamic systems, as there are often additional degrees of freedom
that need to be specified. The equations written by the Holdup block for total component balances have the
form:

8M . 8F .
Qx # inlet, L X Z L, ’p’j = fd x Z SR VR N ZNkinetic,t,p,j
p

+L x ZNequilibrium,t,p,j + L x ZNtransfer,t,p,j + % X Jdiffusion,t,w,p,j
P P
* element_total - material balances are written for each element in the system (e.g. one material balance for
hydrogen and one for oxygen). Only flow and mass transfer terms are included in this form of the material
balance. This form of the material balance can be useful for certain reactive systems, and is necessary for
performing Gibbs energy minimization. The equations written by the Holdup block for total element balances
have the form:

Qg # inlet, L X Z 8Mt I’p’

OF; A
fd X Z g;p’e + L x Z Ntransfer,t,m,p,e + Z X Jdiffusion,t,m,p,e
p 14

where M, ; p.c 1s the holdup of element e in phase p at point x and time ¢, F} , ,, . is the flow of element e in phase p
at point z and time ¢, Nirans fer t,z,p,e 15 a term to allow for other forms of mass transfer, and Jy; f fusion,t,,p,e 15 the
diffusive material flux of element e in phase p at point x and time .

¢ none - no material balances are written.

3.2. Core Library 73



IDAES Documentation, Release 0.60

Energy Balance Types

Holdup1D currently supports only one form of energy balance.

* enthalpy_total - one enthalpy balance is written for the entire holdup, summing contributions from all phases.
The form of the total enthalpy balance written by the holdup block is:

OF, . O, ..
@x#inlet,stxZ%:sxfde%—i—stXQt,x—&-stme
x
P P

+s X Z X Jconduction,t,z,p

where F, is the holdup of enthalpy in phase p at point = and time ¢, Hy ;. ,, is the flow of enthalpy in phase p at point
2 and time ¢, Q¢ 5 is the heat transferred into the system, W , is the work transfer into the system, Jeonduction,t,z,p 15
the conductive heat transfer term in phase p at point x and time ¢, and s is a scaling factor.

* none - no energy balances are written.

Momentum Balance Types

Holdup1D currently supports only one form of momentum balance.

e pressure - one pressure balance is written for the entire holdup. Currently this is a simple pressure balance across
the system with a potential pressure drop term. The form of the total momentum balance written by the holdup
block is:

OP, ,
@x#inlet,OzsxfdxT;+SXLXAPM

where P, ; is the pressure at point z and time ¢, AP; , is the pressure drop at point = and time ¢, and s is a scaling
factor.

¢ none - no momentum balances are written.

Velocity Types

Holdup1D supports two methods for calculating velocity. In both cases, the superficial velocity is calculated using the
cross-sectional area of the control volume.

* mixture - a single velocity for the entire mixture is calculated.
Utz X A= Fool b,z
where v, ; is the mixture velocity, A is the cross-sectional area and F,; +  is the total volumetric flow rate of material.
* phase - separate velocities are calcualted for each phase.
Vtzp X A= Fuoltzp

where v ; , is the mixture velocity for phase p, A is the cross-sectional area and Fio; ¢ ,p iS the total volumetric flow
rate of material in phase p.

Supporting Equations

Holdup1D also creates a number of supporting Variables and Constraints as required by the balance equations, which
are summarized below.

74 Chapter 3. Contents



IDAES Documentation, Release 0.60

Geometry Constraints

Holdup1D writes one Constraint relating the volume and length of the control volume.
V=LxA

where V is the volume of the control volume, L is the (actual) length of the spatial domain and A is the cross-sectional
area of the control volume. Holdup1D does not currently support control volumes of changing volume.

Phase Fraction

For systems with more than one phase present (determined automatically from the phase list provided by the property
package), Holdup1D creates a phase fraction variable for each phase, and enforces the following constraint at all points

in space x and time ¢:
Z Prap =1

p

When only one phase is present, ¢ is automatically substituted with 1 in all equations.

Holdup Calculations

Holdup1D also calculates the holdup terms for the material and energy balances (unless include_holdup is False), and
automatically writes Constraints for these based on information provided by the property package. The form of the
holdup constraint for component balances is:

Miazpj=AXGtzp X prap,;

where M; ., ; is the holdup of species j in phase p at point x and time ¢, a is the cross-sectional area of the control
volume, ¢; ., is the phase fraction of phase p at point x and time ¢ and py ; p ; is the material density of component j
in phase p at point x and time ¢ (provided by the Property Block). For phase-component pairs which do not exist (as
indicated by the Property Block), the following Constraint is written instead (this is required to close the degrees of
freedom):

Mizp; =0
For holdup blocks using element balances, an elemental holdup is required instead, which is calculated as follows:
Mt’w,p,e =aXx (btmp X Ptap,j X €je

where ¢; . is the number of moles of element e per mole of component j.

For the holdup term in the energy balances, the following Constraints are written:
Biop=AXGtap X petap

where E, , , is the energy holdup in phase p at point x and time ¢ and pe, ,. ,, is the volumetric energy density in phase
p (provided by the Property Block).

Extensive Flow Terms

Due to the spatial domain, Holdup1D writes the extensive flow terms in the balances equations as partial derivatives
with respect to the spatial domain. Due to the way Pyomo.dae works, this also requires the related flow terms to be
indexed variables (indexed by the spatial domain). To handle this, Holdup1D creates equivalent variables for these,
and equates these to equivalent terms in the Property Blocks.

3.2. Core Library 75



IDAES Documentation, Release 0.60

Stoichiometric Constraints

Holdup1D also automatically generates stoichiometric Constraints to ensure conservation of mass (and elements)
between products and reactants in all types of reactions (including phase equilibrium). For kinetic and chemical
equilibrium reactions, an extent of reaction terms is generated for each reaction, and Constraint is written to relate
these to the generation terms in the balance equations. The form of these equations is:

Nt;I,p,j = E :VT,PJ X Xtz
T

where IV; ;. , ; is the generation of species j in phase p at point = and time ¢, v, ;, ; is the stoichiometric coefficient for
the generation of species j in phase p by reaction r and X, , ,- is the extent of reaction r at point x and time ¢.

For phase equilibrium reactions, the stoichiometric constraints can be simplified as it is known that the equilibrium
is 1:1 between the same species in two different phases. In this case, rather than write separate generation terms for
each phase-component pair, a generation term is written for each phase equilibrium reaction that occurs, and the term
substituted directly into the material balance (with a &1 factor to determine which phase is ‘product’ phase and which
the ‘reactant’ phase).

Diffusion and Conduction Constraints

For systems with diffusive mass transfer or conductive heat transfer, Holdup1D automatically writes constraints re-
lating the relevant flux terms to the associated properties from the Property Block. The diffusive mass transfer term
is:

2
0 Ct,x,p,j
02

T 7é inletv Jdiffusion,t,:r,p,j = _Dt,:r,p,j
where Dy , 5, ; is the diffusion coefficient and C} , ;, ; is the concentration of species j in phase p at point x and time
t (both provided by the Property Block).

The conductive heat transfer term is:
0Tz
P o2

where k; , , is the thermal conductivity of phase p at point x and time ¢ and T} , is the temperature of the material at
point x and time ¢ (the IDAES framework currently does not support different temperatures in different phases of the
same Property Block).

xz 7é anet7 Jconduction,t,z,p = _kt,x

Element Flow Terms

Element balances require an additional set of equations for relating component based flows to their element equiva-
lents. When element balances are chosen for a holdup block, the following additional Constraints are written:

Frope=FrapjXeje

where ¢; . is the number of moles of element e per mole of component j. If mass diffusion is also included, the
following Constraint is also written to calculate the elemental diffusive flux term:

Jielemental, t, x,e] == Z (Jdif fusion,t.zpi X €je
J

76 Chapter 3. Contents



IDAES Documentation, Release 0.60

Construction Options

Options available in Holdup1D for specifying which terms should appear within the balance equations. Most terms in
the balance equations have an associated construction argument, which are described below:

dynamic - controls whether accumulation terms will be included in the balance equations, and the necessary
constraints for relating these to the holdup terms. If set to True, accumulation terms will be constructed and
included in the model. The number of accumulation terms created depends on the number of time points,
phases and components present in the model.

include_holdup - controls whether terms and constraints for the holdup of material and energy should be con-
structed (momentum holdup is not yet supported). If set to True, material and energy holdup terms are created,
along with constraints linking these to the volume of the holdup and the material and energy densities. If dy-
namic = True, include_holdup must also be True (this is automatically checked by the framework, and a warning
raised if set incorrectly). If dynamic = False, then include_holdup may be set to True or False as desired by the
user, depending on whether the holdup terms are required in the flowsheet.

has_rate_reactions - controls whether generation terms should be constructed for rate controlled reactions. If this
is True, generation terms are created for each phase and component pair and included in the material balance
equations. Additionally, an extent of reaction term is created for each reaction identified in the associated
property package, and linked to the generation term via stoichiometric constraints. The Unit model or user is
then expected to provide a set of Constraints relating the extent of reaction terms to the performance of the given
unit operation.

has_equilibrium_reactions - controls whether generation terms should be constructed for equilibrium controlled
reactions (excluding phase equilibrium). If this is True, generation terms are created for each phase-component
pair, and included in the material balance equations. Additionally, stoichiometric constraints are written relating
the different generation term. The property package is expected to provide a set of equilibrium constraints which
enforce the equilibrium conditions.

has_phase_equilibrium - controls whether generation terms should be constructed for phase equilibrium reac-
tions. If this is True, generation terms are created for each phase-component pair, and included in the material
balance equations. The property package is expected to provide a set of equilibrium constraints which enforce
the equilibrium conditions.

has_mass_transfer - controls whether mass transfer terms should be constructed in the material balance equa-
tions. If True, the generic mass transfer terms will be included, and the UnitModel or user will need to provide
constraints for these terms.

has_heat_transfer - controls whether the heat transfer term should be included in the energy balance equation.
If True, the @ term is constructed and the UnitModel or user will need to provide a constraint for this term.

has_work_transfer - controls whether the work transfer term should be included in the energy balance equation.
If True, the W term is constructed and the UnitModel or user will need to provide a constraint for this term.

has_pressure_change - controls whether the pressure change term should be included in the momentum balance
equation. If True, the AP term is constructed and the UnitModel or user will need to provide a constraint for
this term.

has_mass_diffusion - controls whether the mass diffusion terms should be included in the material balance
equations. If True, the diffusion terms and associated Constraints are constructed.

has_energy_diffusion - controls whether the energy conduction terms should be included in the energy balance
equations. If True, the conduction terms and associated Constraints are constructed.

3.2.

Core Library 77



IDAES Documentation, Release 0.60

Holdup1D Variables

The following is a table of all variables that may be constructed by a Holdup1D block (depending on options chosen),
along with the names used to identify these quantities within actual code (indices are shown in the same order they
appear in the code).

Variable Name

\% volume

L length

A area

Fyopj material_flow

It material_flow_dx

Fivpe element_flow

% element_flow_dx

Hiqp energy_flow

dhg’; - energy_flow_dx

Py o pressure

Do pressure_dx

My e pj material_holdup

% material_accumulation

My zpe element_holdup

% element_accumulation
Eisp energy_holdup

% energy_accumulation

Dt,x.p phase_fraction
Niinetic,t,z,p,j rate_reaction_generation
Neguitivrium,t,z,p,; | €quilibrium_reaction_generation
Npe,t,zr phase_equilibrium_generation
Niransfert,z,p.j mass_transfer_term
Niransfert,zp,e elemental_mass_transfer
Q. heat

Wi work

AP, deltaP

Xiinetic,t,o,r rate_reaction_extent
Xequilibrium,t,z,r equilibrium_reaction_extent
Jaif fusion,t,zp.j material_diffusive_flux

Jit, x, €] elemental_diffusive_flux
Jeonduction,t,z,p energy_conduction_term
% material_concentration_dx2
6;)?2' - temperature_dx2

Additionally, to scaling factors are generated for the energy and momentum balances, named scaling_factor_energy
and scaling_factor_momentum respectively.

Initialization

Holdup1D has an initialization method which can be called as part of initializing an associated UnitModel. The
initialization method takes a set of state arguments which is passed on to the associated property package, mixers
and splitters. As initialization of UnitModels often require the inlet state of the unit to be held at a fixed state whilst

78 Chapter 3. Contents



IDAES Documentation, Release 0.60

initializing the unit, the holdup initialization routine can be instructed to hold the inlet state at a fixed state until
instructed to unfix it (an associated release_state method exists for this purpose). The procedure followed by the
initialization routine is as follows:

1.

If an inlet mixer is present, the initialization routine of the mixer is called.

2. The Property Block is initialized (properties).
3.
4

. If not instructed to hold the inlet state fixed, the release_state method is called, otherwise a dictionary of infor-

If an outlet splitter is present, the initialization routine of the splitter is called.

mation on what state variables were fixed is returned to be used when calling release_state.

The assoiciated release_state method takes the dictionary of flags returned above, and uses this to unfix any variables
fixed during initialization.

HoldupidData Class

class idaes.core.holdup.HoldupldData (component)

1-Dimensional Holdup Class

This class is designed to be the core of all 1D discretized IDAES models. It builds property blocks, inlet/outlet
ports and adds mass, energy and momentum balances. The form of the terms used in these constraints is
specified in the chosen property package.

Assumes constant reactor dimensions

build ()
Build method for Holdup1D blocks. This method calls submethods to setup the necessary property blocks,
distributed variables, material, energy and momentum balances based on the arguments provided by the
user.

Parameters None —
Returns None

initialize (state_args=None, outlvl=0, hold_state=True, solver="ipopt’, optarg=None)
Initialisation routine for holdup (default solver ipopt)

Keyword Arguments

* state_args —adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

= (.
* outlvl - sets output level of initialisation routine

— 0 =no output

— 1 = return solver state for each step in routine

— 2 =include solver output infomation (tee=True)
* optarg — solver options dictionary object (default=None)
* solver - str indicating whcih solver to use during initialization (default = ‘ipopt’)
* hold state -

flag indicating whether the initialization routine should unfix any state variables fixed
during initialization (default=True). - True - states varaibles are not unfixed, and

a dict of returned containing flags for which states were fixed during initialization.

3.2.

Core Library 79



IDAES Documentation, Release 0.60

— False - state variables are unfixed after initialization by calling the relase_state
method

Returns If hold_states is True, returns a dict containing flags for which states were fixed during
initialization.
model_check ()

This method exectues the model_check methods on the associated property blocks (if they exist). This
method is generally called by a unit model as part of the unit’s model_check method.

Parameters None —
Returns None

release_state (flags, outlvi=0)
Method to relase state variables fixed during initialisation.

Keyword Arguments

» flags — dict containing information of which state variables were fixed during initializa-
tion, and should now be unfixed. This dict is returned by initialize if hold_state = True.

* outlvl - sets output level of of logging

Returns None

HoldupStatic

Contents

* HoldupStatic

Introduction

HoldupStatic Equations

HoldupStatic Variables

Initialization

HoldupStaticData Class

Introduction

The HoldupStatic block is used for specific cases of holdups where only a single Property Block is required for the
control volume. This is primarily intended for dead zones with no through-flow of material or energy (only heat and
mass transfer terms). HoldupStatic blocks are distinguished by only having a single Property Block associated with
them (HoldupOD on the other hand has separate inlet and outlet property blocks), and the balance equations written by
HoldupStatic do not include flow terms.

Using HoldupStatic for Ideal Mixers and Splitters

HoldupStatic can be used in special cases for units with through-flow where there are multiple inlets and/or outlets
- such as in the core IDAES Mixer and Splitter models. In these cases, an mixer and/or splitter unit is also part
of the Holdup Block (due to the multiple inlets or outlets) which already contain Property Blocks for the separate

80 Chapter 3. Contents



IDAES Documentation, Release 0.60

inlet/outlet streams as well as material, energy and momentum balances for mixing/splitting the material. Rather than
create unnecessary duplicates of these, HoldupStatic is used with no balance equations to create a container for the
mixer/splitter and a Property Block for the mixed material which is sufficient for modeling an ideal mixer or splitter
unit.

HoldupStatic Equations

HoldupStatic contains support for a number of different forms of the material, energy and momentum balances, as
well as options for controlling which terms will appear in these equations. The different options available are outlined
below along with the equations written with each choice. In all cases, the extensive flow terms are provided by the
associated Property Block.

Material Balance Types

HoldupStatic provides support for three different types of material balance.

* component_phase - material balances are written for each component in each phase (e.g. separate balances
for liquid water and steam). Property packages may include information to indicate that certain species do not
appear in all phases, and material balances will not be written in these cases (if include_holdup is True holdup
terms will still appear for these species, however these will be set to 0). The equations written by the Holdup
block for phase-component balances have the form:

OM, , ;
D] __
81; = = Nkinetic,t7p7j + Nequilibriumi,p,j + Npe,t7p7j + Ntrunsfer,t,p,j

where M, ,, ; is the holdup of component j in phase p within the control volume and time ¢, Nyinetic,t,p,j>
Nequitibrium,t,p,j and Npe ¢ p, 5 are the generation of species j in phase p by kinetic, chemical equilibrium and phase
equilibrium controlled reactions respectively, and Nyyansfer.t,p,; 1S a term to allow for other forms of mass transfer
within or across the system boundary.

* component_total - material balances will be written for each component across all phases (e.g. one balance for
both liquid water and steam). Phase equilibrium terms are not included in this form of the material balance. This
form can be useful for steady-state systems with phase-equilibrium. However users should be careful using this
form of the material balance, especially for dynamic systems, as there are often additional degrees of freedom
that need to be specified. The equations written by the Holdup block for total component balances have the
form:

OM;
P E E E
ot - Nkinetic,t,p,j + Nequilibm’um,t,p,j + Ntransfer,t,p,j
p p p

* element_total - material balances are written for each element in the system (e.g. one material balance for
hydrogen and one for oxygen). Only flow and mass transfer terms are included in this form of the material
balance. This form of the material balance can be useful for certain reactive systems, and is necessary for
performing Gibbs energy minimization. The equations written by the Holdup block for total element balances
have the form:

OMy,
Tt’p’e = zp: Ntransfe”“vtapae

where M, ,, . is the holdup of element e in phase p within the control volume at time ¢ and Nyyqns fer.t,p,e 18 @ term to
allow for other forms of mass transfer within or across the system boundary.

e none - no material balances are written.

3.2. Core Library 81



IDAES Documentation, Release 0.60

Energy Balance Types

HoldupStatic currently supports only one form of energy balance.

* enthalpy_total - one enthalpy balance is written for the entire holdup, summing contributions from all phases.
The form of the total enthalpy balance written by the holdup block is:

OFE
SXZ%:SXQt-FSXWt
p

where E), is the holdup of enthalpy in phase p at time ¢, (); is the heat transferred into the system, W; is the work
transfer into the system and s is a scaling factor.

* none - no energy balances are written.

Momentum Balance Types

As HoldupStatic consists of a single isolated, well-mixed control volume there is no momentum transfer into or out of
the volume. As such, there is no need to write a momentum balance for a HoldupStatic block. However, HoldupStatic
still maintains the momentum_balance_type construction argument, which can be passed on to associated mixer and
splitter blocks.

Supporting Equations

HoldupStatic also creates a number of supporting Variables and Constraints as required by the balance equations,
which are summarized below.

Phase Fraction

For systems with more than one phase present (determined automatically from the phase list provided by the property
package), HoldupStatic creates a phase fraction variable for each phase, and enforces the following constraint at all
points in time ¢:

Z¢t,p =1
p

When only one phase is present, ¢ is automatically substituted with 1 in all equations.

Holdup Calculations

HoldupStatic also calculates the holdup terms for the material and energy balances (unless include_holdup is False),
and automatically writes Constraints for these based on information provided by the property package. The form of
the holdup constraint for component balances is:

Mipj=Vi X dtp X prp,;

where M; ;, ; is the holdup of species j in phase p at time ¢, V; is the volume of the control volume at time ¢ (this
supports control volumes of varying volume), ¢ ,, is the phase fraction of phase p at time ¢ and p; ;, ; is the material
density of component j in phase p at time ¢ (provided by the Property Block). For phase-component pairs which do
not exist (as indicated by the Property Block), the following Constraint is written instead (this is required to close the
degrees of freedom):

Mip; =0

82 Chapter 3. Contents



IDAES Documentation, Release 0.60

For holdup blocks using element balances, an elemental holdup is required instead, which is calculated as follows:
Mipe=Vi X brp X prpj X €je

where ¢; . is the number of moles of element e per mole of component j.

For the holdup term in the energy balances, the following Constraints are written:
Eip=Vi X brp X perp

where E; , is the energy holdup in phase p at time ¢ and pe; ,, is the volumetric energy density in phase p (provided by
the Property Block).

Stoichiometric Constraints

HoldupStatic also automatically generates stoichiometric Constraints to ensure conservation of mass (and elements)
between products and reactants in all types of reactions (including phase equilibrium). For kinetic and chemical
equilibrium reactions, an extent of reaction terms is generated for each reaction, and Constraint is written to relate
these to the generation terms in the balance equations. The form of these equations is:

;= E Vppi X X
) )
Ny j2%) T,P,] t,r
I

where Ny ;, ; is the generation of species j in phase p at time ¢, v;. , ; is the stoichiometric coefficient for the generation
of species j in phase p by reaction 7 and X ,. is the extent of reaction r at time ¢.

For phase equilibrium reactions, the stoichiometric constraints can be simplified as it is known that the equilibrium
is 1:1 between the same species in two different phases. In this case, rather than write separate generation terms for
each phase-component pair, a generation term is written for each phase equilibrium reaction that occurs, and the term
substituted directly into the material balance (with a &1 factor to determine which phase is ‘product’ phase and which
the ‘reactant’ phase).

Element Flow Terms

Element balances require an additional set of equations for relating component based flows to their element equiva-
lents. When element balances are chosen for a holdup block, the following additional Constraints are written:

Fipe="FipjXeje

where ¢; . is the number of moles of element e per mole of component j.

Construction Options

Options available in HoldupStatic for specifying which terms should appear within the balance equations. Most terms
in the balance equations have an associated construction argument, which are described below:

* dynamic - controls whether accumulation terms will be included in the balance equations, and the necessary
constraints for relating these to the holdup terms. If set to True, accumulation terms will be constructed and
included in the model. The number of accumulation terms created depends on the number of time points,
phases and components present in the model.

¢ include_holdup - controls whether terms and constraints for the holdup of material and energy should be con-
structed (momentum holdup is not yet supported). If set to True, material and energy holdup terms are created,
along with constraints linking these to the volume of the holdup and the material and energy densities. If dy-
namic = True, include_holdup must also be True (this is automatically checked by the framework, and a warning

3.2. Core Library 83



IDAES Documentation, Release 0.60

raised if set incorrectly). If dynamic = False, then include_holdup may be set to True or False as desired by the
user, depending on whether the holdup terms are required in the flowsheet.

has_rate_reactions - controls whether generation terms should be constructed for rate controlled reactions. If this
is True, generation terms are created for each phase and component pair and included in the material balance
equations. Additionally, an extent of reaction term is created for each reaction identified in the associated
property package, and linked to the generation term via stoichiometric constraints. The Unit model or user is
then expected to provide a set of Constraints relating the extent of reaction terms to the performance of the given
unit operation.

has_equilibrium_reactions - controls whether generation terms should be constructed for equilibrium controlled
reactions (excluding phase equilibrium). If this is True, generation terms are created for each phase-component
pair, and included in the material balance equations. Additionally, stoichiometric constraints are written relating
the different generation term. The property package is expected to provide a set of equilibrium constraints which
enforce the equilibrium conditions.

has_phase_equilibrium - controls whether generation terms should be constructed for phase equilibrium reac-
tions. If this is True, generation terms are created for each phase-component pair, and included in the material
balance equations. The property package is expected to provide a set of equilibrium constraints which enforce
the equilibrium conditions.

has_mass_transfer - controls whether mass transfer terms should be constructed in the material balance equa-
tions. If True, the generic mass transfer terms will be included, and the UnitModel or user will need to provide
constraints for these terms.

has_heat_transfer - controls whether the heat transfer term should be included in the energy balance equation.
If True, the @ term is constructed and the UnitModel or user will need to provide a constraint for this term.

has_work_transfer - controls whether the work transfer term should be included in the energy balance equation.
If True, the W term is constructed and the UnitModel or user will need to provide a constraint for this term.

has_pressure_change - unused.

HoldupStatic Variables

The following is a table of all variables that may be constructed by a HoldupStatic block (depending on options
chosen), along with the names used to identify these quantities within actual code (indices are shown in the same order
they appear in the code).

84

Chapter 3. Contents



IDAES Documentation, Release 0.60

Variable Name

Vi volume

M p material_holdup

LM@';” material_accumulation
t,p,e element_holdup

aMgt,;p < element_accumulation

Ky, energy_holdup

0§;= L energy_accumulation

dtp phase_fraction

Nkinetic,t,p,j

rate_reaction_generation

Nequilibrium,t,p,j

equilibrium_reaction_generation

Npe,t,r

phase_equilibrium_generation

Ntransfer,t,p,j

mass_transfer_term

Ntransfer,t,p,e

elemental_mass_transfer

Q1

heat

Wi

work

rate_reaction_extent
equilibrium_reaction_extent

Xk'inetic,t,r

Xequilibrium,t,r

Additionally, one scaling factor is generated for the energy balances, named scaling_factor_energy.

Initialization

HoldupStatic has an initialization method which can be called as part of initializing an associated UnitModel. The
initialization method takes a set of state arguments which is passed on to the associated property package, mixers
and splitters. As initialization of UnitModels often require the inlet state of the unit to be held at a fixed state whilst
initializing the unit, the holdup initialization routine can be instructed to hold the inlet state at a fixed state until
instructed to unfix it (an associated release_state method exists for this purpose). The procedure followed by the
initialization routine is as follows:

1. If an inlet mixer is present, the initialization routine of the mixer is called.

2. The Property Block is initialized (properties). 4. If an outlet splitter is present, the initialization routine of the splitter
is called. 5. If not instructed to hold the inlet state fixed, the release_state method is called, otherwise a dictionary of
information on what state variables were fixed is returned to be used when calling release_state.

The associated release_state method takes the dictionary of flags returned above, and uses this to unfix any variables
fixed during initialization.

HoldupStaticData Class

class idaes.core.holdup.HoldupStaticData (component)
Static Holdup Class

This class is designed to be used for unit operations zero volume or holdups with no through flow (such as dead
zones). This type of holdup has only a single PropertyBlock index by time (HoldupOD has two).

build()
Build method for HoldupStatic blocks. This method calls submethods to setup the necessary property
blocks, distributed variables, material, energy and momentum balances based on the arguments provided
by the user.

Parameters None —

3.2. Core Library 85



IDAES Documentation, Release 0.60

Returns None

initialize (state_args=None, outlvl=0, optarg=None, solver="ipopt’, hold_state=True)
Initialisation routine for holdup (default solver ipopt)

Keyword Arguments

* state_args — adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

= {}.
* outlvl - sets output level of initialisation routine

— 0 =no output (default)

— 1 =return solver state for each step in routine

— 2 =include solver output infomation (tee=True)
* optarg — solver options dictionary object (default=None)
* solver - str indicating whcih solver to use during initialization (default = ‘ipopt’)
* hold_state -

flag indicating whether the initialization routine should unfix any state variables fixed
during initialization (default=True). - True - states varaibles are not unfixed, and

a dict of returned containing flags for which states were fixed during initialization.

— False - state variables are unfixed after initialization by calling the relase_state
method

Returns If hold_states is True, returns a dict containing flags for which states were fixed during
initialization.

model_check ()
This method exectues the model_check methods on the associated property blocks (if they exist). This
method is generally called by a unit model as part of the unit’s model_check method.

Parameters None —
Returns None

release_state (flags, outlvi=0)
Method to relase state variables fixed during initialisation.

Keyword Arguments

» flags — dict containing information of which state variables were fixed during initializa-
tion, and should now be unfixed. This dict is returned by initialize if hold_state = True.

* outlvl - sets output level of of logging

Returns None

Ports

Contents

e Ports

86 Chapter 3. Contents



IDAES Documentation, Release 0.60

Introduction

Port Class

Inlet Mixer Class

Outlet Splitter Class

Introduction

Port Blocks are used by the IDAES framework whenever multiple inlets or outlets are required by a single Holdup
Block, and are generally constructed automatically by the build_inlets and build_outlets methods at the Unit model
level. Port Blocks contain a set of Property Blocks for each of the multiple inlet or outlet streams along with the
necessary mixing or splitting constraints to relate these to the flow into or out of the Holdup Block.

Port Class

The Port class serves as a base class for all Port Blocks, and automates the task common to all of these. The main
tasks of the Port class are:

1. Make references to the time, component_list and phase_list indexing Sets to use when constructing Constraints.

2. Determine which mixing or splitting equations are required by checking the config block of the parent Holdup
Block.

Port Construction Arguments

The construction arguments for Port Blocks are determined automatically based on the construction arguments of the
assoicated Holdup Block. The available arguments and their values are:

* has_material_balance - indicates whether material mixing/splitting constraints should be constructed. False if
parent.config.material_balance_type is ‘none’, otherwise True.

 has_energy_balance - indicates whether energy mixing/splitting constraints should be constructed. False if
parent.config.energy_balance_type is ‘none’, otherwise True.

* has_momentum_balance - indicates whether momentum mixing/splitting constraints should be constructed.
False if parent.config.momentum_balance_type is ‘none’, otherwise True.

Port Class

class idaes.core.ports.Port (component)
Base Port Class

This class contains methods common to all Port classes.

build()
General build method for Ports. This method calls a number of methods common to all Port blocks.

Inheriting models should call super().build.
Parameters None —

Returns None

3.2. Core Library 87



IDAES Documentation, Release 0.60

Inlet Mixer Class

InletMixer Blocks are created as a sub-model of any Holdup Block which is declared to have multiple inlets. Based
on the configuration arguments of the Holdup Block, the following mixing Constraints are written as required.

InletMixer Construction Arguments

InletMixer have one additional construction argument beyond those inherited from Port.

* inlets - a list of names to use to index the inlets. Used as indices for the inlet Property Blocks constructed by the
InletMixer.

Material Mixing Constraints

E Fiipj=Fip,;
7

where I ; ,, ; is the flow of component j in phase p in inlet 4 at time ¢ and I} , ; is the combined flow of component j
in phase p at time ¢ across all inlets.

Energy Mixing Constraint

Se * § Ht,i,p = Se* Ht,p
7

where H, ; ;, is the flow of energy in phase p in inlet ¢ at time ¢ and Hy ,, ; is the combined flow of energy in phase p
at time ¢ across all inlets. The equation scaling factor s, is a mutable parameter named scaling_factor_energy in the
inlet mixer with a default value of 1 x 1076,

Pressure Mixing Constraint

For determining the pressure of the mixed stream, the minimum pressure of all the inlets is used. This is calculated as
follows:

for i in inlets:
ifi=1: Sp - Pmin,t,i = Sp- Pi,t
else: Sp - Pmimt,i = Sp- smm(R, Pmin,ifl)

Here, P, ; is the pressure in inlet ¢ at time ¢, P, ; is an intermediate variable used to calculate the minimum
pressure in all inlets tested so far and smsen is a smooth minimum function. The smoothing parameter for smin is
named eps_pressure and has a default value of 1 x 1073, The equation scaling factor s,, is a mutable parameter named
scaling_factor_pressure in the inlet mixer with a default value of 1 x 1072,

88 Chapter 3. Contents



IDAES Documentation, Release 0.60

InletMixerData Class

class idaes.core.ports.InletMixerData (component)
Inlet Mixer Class

This class builds a mixer to allow for multiple inlets to a single holdup block. The class constructs property
blocks for each inlet and creates mixing rules to connect them to the property block within the associated

holdup block.
build ()

Build method for Mixer blocks. This method calls a number of methods to construct the necessary balance

equations for the Mixer.
Parameters None —
Returns None

initialize (state_args=None, outlvl=0, optarg=None, solver="ipopt’, hold_state=True)
Initialisation routine for InletMixer (default solver ipopt)

Keyword Arguments

* state_args — adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

={D.
* outlvl - sets output level of initialisation routine
— 0 = no output (default)
— 1 =return solver state for each step in routine
— 2 =include solver output infomation (tee=True)
* optarg — solver options dictionary object (default=None)
* solver - str indicating whcih solver to use during initialization (default = ‘ipopt’)
* hold state -
flag indicating whether the initialization routine should unfix any state variables fixed
during initialization (default=True).
— True = state varaibles are not unfixed, and a dict of returned containing flags for
which states were fixed during initialization.
— False = state variables are unfixed after initialization by calling the relase_state
method
Returns If hold_states is True, returns a dict containing flags for which states were fixed during
initialization.
model_check ()
Calls model checks on all associated Property Blocks.
Parameters None —

Returns None

release_state (flags, outlvi=0)
Method to relase state variables fixed during initialisation.

Keyword Arguments

3.2. Core Library

89



IDAES Documentation, Release 0.60

» flags — dict containing information of which state variables were fixed during initializa-
tion, and should now be unfixed. This dict is returned by initialize if hold_state=True.

* outlvl - sets output level of of logging (default=0)

Returns None

Outlet Splitter Class

OutletSplitter Blocks are created as a sub-model of any Holdup Block which is declared to have multiple outlets.
Based on the configuration arguments of the Holdup Block, the following splitting Constraints are written as required.

OutletSplitter Construction Arguments

OutletSplitters have two additional construction argument beyond those inherited from Port.

* outlets - a list of names to use to index the outlets. Used as indices for the outlet Property Blocks constructed by
the OutletSplitter.

* split_type - determines the method to be used when splitting the outlet stream. Options are:
— ‘flow’ - outlet streams are split based on total flow. All resulting streams have the same intensive state.
— ‘phase’ - outlet streams are split by phase fractions. A specified portion of each phase is sent to each outlet.

— ‘component’ - outlet streams are split by component. A specified fraction of each component is sent to
each outlet.

— ‘total’ - outlet streams are split based on phase and component. A specified fraction of each phase-
component pair is sent to each outlet.

Split Fraction Constraints

OutletSplitter creates a split_fraction variable which is indexed as determined by the type of split being performed:
* flow - indexed by time and outlet only
¢ phase - indexed by time, outlet and phase
* component - indexed by time, outlet and component
* total - indexed by time, outlet, phase and component
In all cases, a Set of Constraints are written such the the sum of split fractions for a given outlet must be 1.

1= Z Sft,o,...

o

Material Splitting Constraints

Fiop,i = Sfto,... X Fipj

where F} , ,, ; is the flow of component j in phase p in outlet o at time ¢ after splitting and F ,, ; is the total flow of
component j in phase p at time ¢ leaving the holdup.

90 Chapter 3. Contents



IDAES Documentation, Release 0.60

Energy Splitting Constraints

Energy splitting is handled differently depending on the split type chosen. If split_type is ‘phase’ then the following
Constraint is written:

E Hiop = E $ftop X Hip
P P

where H; , , is the energy flow in phase p in outlet o at time ¢ and Hy j, is the total energy flow in phase p at time ¢
leaving the Holdup.

If split_type is not equal to ‘phase’, then the outlet temperature of all streams is set to be equal.
Tt,o =T

where T; , is the temperature of outlet o at time ¢ and 7} is the temperature of the total flow leaving the Holdup at time
t.

Momentum Splitting Constraints

The momentum splitting constraint equates the pressure in each outlet to the pressure of the material leaving the
Holdup.

Pt,o:Pt

where P; , is the pressure of outlet o at time ¢ and P; is the pressure of the total flow leaving the Holdup at time ¢.

OutletSplitterData Class

class idaes.core.ports.OutletSplitterData (component)
Outlet Mixer Class

This class builds a splitter to allow for multiple outlets to a single holdup block. The class constructs property
blocks for each outlet and creates splitting rules to connect them to the property block within the associated
holdup block.

build ()
Build method for Splitter blocks. This method calls a number of methods to construct the necessary
balance equations for the Splitter.

Parameters None —
Returns None

initialize (state_args=None, outlvi=0, optarg=None, solver="ipopt’, hold_state=False)
Initialisation routine for OutletSplitter (default solver ipopt)

Keyword Arguments

* state_args — adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

={}.
e outlvl - sets output level of initialisation routine

— 0 =no output (default)

— 1 =return solver state for each step in routine

3.2. Core Library 91



IDAES Documentation, Release 0.60

— 2 =include solver output infomation (tee=True)
* optarg — solver options dictionary object (default=None)
* solver - str indicating whcih solver to use during initialization (default = ‘ipopt’)

* hold state -

flag indicating whether the initialization routine should unfix any state variables fixed
during initialization (default=False).

— True = state varaibles are not unfixed, and a dict of returned containing flags for
which states were fixed during initialization.
— False = state variables are unfixed after initialization by calling the relase_state
method
Returns If hold_states is True, returns a dict containing flags for which states were fixed during
initialization.
model_ check ()
Calls model checks on all associated Property Blocks.
Parameters None —

Returns None

release_state (flags, outlvi=0)
Method to relase state variables fixed during initialisation.

Keyword Arguments

» flags — dict containing information of which state variables were fixed during initializa-
tion, and should now be unfixed. This dict is returned by initialize if hold_state=True.

* outlvl - sets output level of of logging (default=0)

Property Package Classes

Contents

* Property Package Classes
— Introduction

— Property Parameter Blocks

— Property Blocks

Introduction

Property packages represent a collection of calculations necessary to determine the state properties of a given material.
Property calculations form a critical part of any process model, and thus Property packages form the core of the IDAES

modeling framework.

92 Chapter 3. Contents



IDAES Documentation, Release 0.60

Property Parameter Blocks

Property Parameter blocks serve as a central location for linking to a property package, and contain all the parameters
and indexing sets used by a given proeprty package.

PropertyParameterBase Class

The role of the PropertyParameterBase class is to set up the references required by the rest of the IDAES framework
for constructing instances of PropertyBlocks and attaching these to the PropertyParameter block for ease of use. This
allows other models to be pointed to the PropertyParameter block in order to collect the necessary information and to
construct the necessary PropertyBlocks without the need for the user to do this manually.

class idaes.core.property_base.PropertyParameterBase (component)

This is the base class for property parameter blocks. These are blocks that contain a set of parameters associated
with a specific property package, and are linked to by all instances of that property package.

build ()
General build method for PropertyParameterBlocks. Inheriting models should call super().build.

Parameters None —
Returns None

classmethod get_metadata ()
Get property parameter metadata.

Instantiates a “dummy” instance of the containing class.
Returns The metadata
Return type PropertyClassMetadata
Raises
* Any exception raised by the constructor, if for some reason
* this class cannot be instantiated.

get_package_units ()
Method to return a dictionary of default units of measurement used in the property package. This is used
to populate doc strings for variables which derive from the property package (such as flows and volumes).
This method should return a dict with keys for the quantities used in the property package (as strs) and
values of their default units as strs.

The quantities used by the framewokr are (all optional):
o ‘time’
* ‘length’
* ‘mass’
* ‘amount’
* ‘temperature’
* ‘energy’
e ‘current’
* ‘luminous intensity’

This default method is a placeholder and should be overloaded by the package developer. This method
will return an Exception if not overloaded.

3.2.

Core Library 93



IDAES Documentation, Release 0.60

Parameters None —
Returns A dict with supported properties as keys and tuples of (method, units) as values.

get_supported_properties ()
Method to return a dictionary of properties supported by this package and their assoicated construction
methods and units of measurement. This method should return a dict with keys for each supported property.

For each property, the value should be another dict which may contain the following keys:

* ‘method’: (required) the name of a method to construct the property as a str, or None if the prop-
erty will be constructed by default.

* ‘units’: (optional) units of measurement for the property.

This default method is a placeholder and should be overloaded by the package developer. This method
will return an Exception if not overloaded.

Parameters None —

Returns A dict with supported properties as keys.

Property Blocks

Property Blocks are used within all IDAES Unit models (generally within Holdup Blocks) in order to calculate prop-
erties given the state of the material. Property Blocks are notably differnt to other types of Blocks within IDAES as
they are always indexed by time (and possibly space as well). There are two bases Classes associated with Property
Blocks:

 PropertyBlockDataBase forms the base class for all PropertyBlockData objects, which contain the instructions
on how to construct each instance of a Property Block.

* PropertyBlockBase is used for building classes which contain methods to be applied to sets of Indexed Property
Blocks (or to a subset of these). See the documentation on declare_process_block_class and the IDAES tutorials
and examples for more information.

Construction Arguments

Property Blocks have the following construction arguments:

 parameters - a reference to the associated Property Parameter block which will be used to make references to all
necessary parameters.

* has_sum_fractions - this argumnet indicates whether the Property Block should construct constraints which
eforce the sum of material fractions (e.g. mass or mole fractions) within the block. This is primarily set to False
for unit inlets where it is assumed that the material state is fully specified. This argument can also be used in
some conjunction with the following argumnets to indicate whether equilibrium should be enforced.

e calculate_equilibrium_reactions - indicates whether the assoicated Holdup Block or Unit model expects chemi-
cal equilibrium to be enforced (if applicable).

e calculate_phase_equilibrium - indicates whether the assoicated Holdup Block or Unit model expects phase
equilibrium to be enforced (if applicable).

PropertyBlockDataBase Class

PropertyBlockDataBase contains the code necessary for implementing the as needed construction of variables and
constraints.

94 Chapter 3. Contents



IDAES Documentation, Release 0.60

class idaes.core.property_base.PropertyBlockDataBase (component)
This is the base class for property block data objects. These are blocks that contain the Pyomo components
associated with calculating a set of thermophysical, transport and reacion properties for a given material.

build()
General build method for PropertyBlockDatas. Inheriting models should call super().build.

Parameters None —

Returns None

PropertyBlockBase Class

class idaes.core.property_base.PropertyBlockBase (*args, **kwargs)
This is the base class for property block objects. These are used when constructing the SimpleBlock or In-
dexedBlock which will contain the PropertyData objects, and contains methods that can be applied to multiple

PropertyBlockData objects simultaneously.

initialize (*args)
This is a default initialization routine for PropertyBlocks to ensure that a routine is present. All Property-
BlockData classes should overload this method with one suited to the particular property package

This method prints a warning and then ends.
Parameters None —

Returns None

IDAES Base Classes

Contents

e IDAES Base Classes

Introduction

ProcessBlockData Class

ProcessBlock Class

declare_process_block_class Decorator

Introduction

All of the modeling classes described above build of a set of base classes within the IDAES core. These base classes
handle the interaction between the IDAES framework and the underlying Pyomo framework.

ProcessBlockData Class

class idaes.core.process_base.ProcessBlockData (component)
Base class for most IDAES process models and classes.

The primary purpose of this class is to create the local config block to handle arguments provided by the user
when constructing an object and to ensure that these arguments are stored in the config block.

3.2. Core Library 95



IDAES Documentation, Release 0.60

Additionally, this class contains a number of methods common to all IDAES classes.

build()
Default build method for all Classes inheriting from ProcessBlockData. Currently empty, but left in place
to allow calls to super().build and for future compatability.

Parameters None —
Returns None

fix_initial_conditions (state=’steady-state’)
This method fixes the initial conditions for dynamic models.

Parameters state — initial state to use for simulation (default = ‘steady-state’)
Returns : None
unfix initial_ conditions ()

This method unfixed the initial conditions for dynamic models.

Parameters None —

Returns : None

ProcessBlock Class

class idaes.core.process_block.ProcessBlock (*args, **kwargs)
Process block.

Process block behaves like a Pyomo Block. The important differences are listed below.

* There is a default rule that calls the build() method for _BlockData subclass ojects, so subclass of _Block-
Data used in a ProcessBlock should have a build() method. A different rule or no rule (None) can be set
with the usual rule argument, if additional steps are required to build an element of a block. A example of
such a case is where different elements of an indexed block require addtional information to construct.

* Some of the arguments to __init__, which are not expected arguments of Block, are split off and stored in
self._block_data_config. If the _BlockData subclass inherits ProcessBlockData, self._block_data_config
is sent to the self.config ConfigBlock.

classmethod base_ class_module ()
Return module of the associated ProcessBase class.

Returns (str) Module of the class.

Raises AttributeError; if no base class module was set, e.g. this class — was not wrapped by the
declare_process_block_class decorator.

classmethod base_class_name ()
Name given by the user to the ProcessBase class.

Returns (str) Name of the class.

Raises AttributeError, if no base class name was set, e.g. this class — was not wrapped by the
declare_process_block_class decorator.

96 Chapter 3. Contents



IDAES Documentation, Release 0.60

declare_process_block_class Decorator

idaes.core.process_block.declare_process_block_class (name, block_class=<class
“idaes.core.process_block.ProcessBlock™>,
doc=")

Declare a new ProcessBlock subclass.

This is a decorator function for a class definition, where the class is derived from _BlockData. It creates a
ProcessBlock subclass to contain it. For example (where ProcessBlockData is a subclass of _BlockData):

@declare_process_block_class(name=MyUnitBlock) class MyUnitBlockData(ProcessBlockData):
# This class is a _BlockData subclass contained in a Block subclass # MyUnitBlock .. ..
The only requirment is that the subclass of _BlockData contain a build() method.
Parameters
* name — class name for the model.

* block_class — ProcessBlock or a subclass of ProcessBlock, this allows you to use a
subclass of ProcessBlock if needed.

* doc — Documentation for the class. This should play nice with sphinx.

IDAES Utility Functions

The IDAES library also includes a number of modules which contain utility functions of potential use to modellers.

Serialize Pyomo Model States

This describes the IDAES Pyomo model state JSON serializer module (idaes_models.core.util.model_serializer). All
objects inheriting from idaes_models.core.process_base.ProcessBlock (which inherits Pyomo Block) have a from_json
and to_json method that uses the functions in this module, passing self for o, and the rest of the arguments remaining
the same.

This module can load/save the model state from/to a JSON file or an in memory as a Python dictionary. The dictionary
is in a form that can be dumped to JSON.

The following describes the important functions and classes in this module.

Contents

* IDAES Utility Functions

— util.config

— util.misc

util.config

This module contains utility functions useful for validating arguments to IDAES modeling classes. These functions
are primarily designed to be used as the domain argument in ConfigBlocks.

idaes.core.util.config.is_parameter_block (val)
Domain validator for property package attributes

3.2. Core Library 97



IDAES Documentation, Release 0.60

Parameters val — value to be checked

Returns TypeError if val is not an instance of PropertyParameterBase, ‘use_parameter_block’ or
None

idaes.core.util.config.is_port (arg)
Domain validator for ports

Parameters arg — argument to be checked as a Port
Returns Port object or Exception

idaes.core.util.config.list_of_ floats (arg)
Domain validator for lists of floats

Parameters arg — argument to be cast to list of floats and validated
Returns List of strings

idaes.core.util.config.list_of_strings (arg)
Domain validator for lists of strings

Parameters arg — argument to be cast to list of strings and validated

Returns List of strings

util.misc

This module contains miscellaneous utility functions that of general use in IDAES models.

idaes.core.util.misc.add_object_ref (local_block, local_name, external_component)
Add a reference in a model to non-local Pyomo component. This is used when one Block needs to make use of
a component in another Block as if it were part of the local block.

Parameters
* local block — Block in which to add reference
* local_name - str name for referenced object to use in local_block
* external_component — external component being referenced
Returns None

idaes.core.util.misc.category (*args)
Decorate tests to enable tiered testing.

Suggested categories:
1. frequent

2. nightly

3. expensive

4. research

Parameters *args (tuple of strings)-— categories to which the test belongs

Returns Either the original test function or skip

Return type function

98 Chapter 3. Contents



IDAES Documentation, Release 0.60

idaes.core.util.misc.dict_set (v, d, pre_idx=None, post_idx=None, fix=False)
Set the values of array variables based on the values stored in a dictionary. There may already be a better way
to do this. Should look into it.

The value of Pyomo variable element with index key is set to d[key]
Arguments: v: Indexed Pyomo variable d: dictonary to set the variable values from, keys should match a subset
of Pyomo variable indexes.

pre_idx: fixed indexes before elements to be set or None post_idx: fixed indexes after elements to be set or None
fix: bool, fix the variables (otional)

idaes.core.util.misc.doNothing (*args, **kwargs)
Do nothing.

This function is useful for instances when you want to call a function, if it exists. For example: getattr(unit,
‘possibly_defined_function’, getNothing)()

Parameters

* xargs (anything) — accepts any argument

* xxkwargs (anything) — accepts any keyword arguments
Returns None

idaes.core.util.misc.fix_port (port, var, comp=None, value=None, port_idx=None)
Method for fixing Vars in Ports.

Parameters

* port — Port object in which to fix Vars

e var - variable name to be fixed (as str)

* comp — index of var to be fixed (if applicable, default = None)

* value - value to use when fixing var (default = None)

e port_idx - list of Port elements at which to fix var. Must be list of valid indices,
Returns None

idaes.core.util.misc.get_pyomo_tmp files ()
Make Pyomo write it’s temporary files to the current working directory, useful for checking nl, sol, and log files
for ASL solvers without needing to track down the temporary file location.

idaes.core.util.misc.get_time (results)
Retrieve the solver-reported elapsed time, if available.

idaes.core.util.misc.hhmmss (sec_in)
Convert elapsed time in seconds to “d days hh:mm:ss.ss” format. This is nice for things that take a long time.

idaes.core.util.misc.requires_solver (solver)
Decorate test to skip if a solver isn’t available.

idaes.core.util.misc.round_ (n, *args, **kwargs)
Round the number.

This function duplicates the functionality of round, but when passed positive or negative infinity, simply returns
the argument.

idaes.core.util.misc.smooth_abs (a, eps=0.0001)
General function for creating an expression for a smooth minimum or maximum.

Parameters

3.2. Core Library 99



IDAES Documentation, Release 0.60

* a —term to get absolute value from (Pyomo component, float or int)
* eps — smoothing parameter (Param, float or int) (default=1e-4)
Returns An expression for the smoothed absolute value operation.

idaes.core.util.misc.smooth_max (a, b, eps=0.0001)
Smooth maximum operator.

Parameters

* a — first term in max function

* b —second term in max function

* eps — smoothing parameter (Param or float, default = le-4)
Returns An expression for the smoothed maximum operation.

idaes.core.util.misc.smooth_min (a, b, eps=0.0001)
Smooth minimum operator.

Parameters

* a — first term in min function

* b —second term in min function

* eps — smoothing parameter (Param or float, default = 1e-4)
Returns An expression for the smoothed minimum operation.

idaes.core.util.misc.smooth_minmax (a, b, eps=0.0001, sense="max’)
General function for creating an expression for a smooth minimum or maximum.

Parameters
* a — first term in mix or max function (Pyomo component, float or int)
* b —second term in min or max function (Pyomo component, float or int)
* eps — smoothing parameter (Param, float or int) (default=1e-4)
* sense — ‘mim’ or ‘max’ (default = ‘max’)
Returns An expression for the smoothed minimum or maximum operation.

idaes.core.util.misc.solve_indexed blocks (solver, blocks, **kwds)
This method allows for solving of Indexed Block components as if they were a single Block. A temporary Block
object is created which is populated with the contents of the objects in the blocks argument and then solved.

Parameters
* solve - a Pyomo solver object to use when solving the Indexed Block
* blocks — an object which inherits from Block, or a list of Blocks
* kwds — a dict of argumnets to be passed to the solver

Returns A Pyomo solver results object

idaes.core.util.misc.unfix_port (port, var, comp=None, port_idx=None)
Method for unfixing Vars in Ports.

Parameters
* port — Port object in which to unfix Vars

e var - variable name to be unfixed (as str)

100 Chapter 3. Contents



IDAES Documentation, Release 0.60

* comp — index of var to be unfixed (if applicable, default = None)
* port_idx - list of Port elements at which to unfix var. Must be list of valid indices,

Returns None

3.2.5 Models

This section documents the models available in the IDAES Unit Model Library which are available for use. All models
in the library are built using the IDAES modeling framework, and are built of the UnitModelData class make use of
Holdup Blocks to construct the material, energy and momentum balances. For documentation of the equations written
by these, refer to the relevant documentation for Unit Models and Holdup Blocks.

Contents

Feed and Product Blocks

The IDAES model library contains special “units” for representing feeds (sources) and products (sinks) in Flowsheets.
These can be used to define feed conditions, especially when the known conditons do not match with the state variables
defined in the Property Package (e.g. property package used enthalpy as a state varaible, but temeprature is the known
quantity).

Feed Block

Feed Blocks are used to represent sources of material in Flowsheets. These can be used to determine the full state
of a material (including equilibrium) based on a sufficient set of state variables prior to being passed to the first unit
operation.

Degrees of Freedom

The degrees of freedom of Feed blocks depends on the property package being used and the number of state variables
necessary to fully define the system. Users should refer to documentation on the property package they are using.

Model Structure

Feed Blocks consists of a single HoldupStatic Block (named holdup), each with one Outlet Port (named outlet).

Construction Arguments

The Feed model has the following construction arguments:

* property_package - property package to use when constructing Property Block for the Feed Block (default =
‘use_parent_value’). This is provided as a Property Parameter Block by the Flowsheet when creating the model.
If a value is not provided, the Holdup Block will try to use the default property package if one is defined.

* property_package_args - set of arguments to be passed to the Property Block when they are created.
* outlet_list - list of names to be passed to the build_outlets method (default = None).

* num_outlets - number of outlets argument to be passed to the build_outlets method (default = None).

3.2. Core Library 101



IDAES Documentation, Release 0.60

Additionally, Feed Blocks have the following construction arguments which are passed to the Holdup Block for deter-
mining which terms to construct in the balance equations. Feed Blocks do not support dynamic = True.

Additional Methods

Argument

Default Value

material_balance_type

‘component_phase’

energy_balance_type

‘enthalpy_total’

momentum_balance_type

‘pressure’

dynamic

False (cannot be True)

include_holdup

False

has_rate_reactions False
has_equilibrium_reactions | False
has_phase_equilibrium False
has_mass_transfer False
has_heat_transfer False
has_work_transfer False
has_pressure_change False

Feed Blocks define three additional methods useful for defining and interpreting the feed conditions. These methods
are documented below in the FeedData Class section;

1. display()
2. fix()
3. unfix()

Additional Constraints

Feed Blocks write no additional constraints to the model.

Variables

Feed blocks add no additional Variables.

FeedData Class

class idaes.models.feed.FeedData (component)

Standard Feed Block Class

build()

Begin building model (pre-DAE transformation).

Parameters None —

Returns None

display (display_block=False, ostream=None, prefix="")
Display the contents of Feed unit.

Parameters

* display_block - indicates whether to display the entire Block

102

Chapter 3. Contents



IDAES Documentation, Release 0.60

* object (default = False)—

* ostream - output stream (default = None)

» prefix — strto append to each line of output (default = **)
Returns None

f£ix (var, comp=None, value=None, time=None)
Method for fixing Vars in Feed Block.

Parameters

e var — variable name to be fixed (as str)

* comp — index of var to be fixed (if applicable, default = None)

* value - value to use when fixing var (default = None)

* time - list of time points at which to fix var (can be float, int

e list) (or)—
Returns None

post_transform build()
Continue model construction after DAE transformation.

Parameters None —
Returns None

unfix (var, comp=None, time=None)
Method for unfixing Vars in Feed Block.

Parameters

e var — variable name to be unfixed (as str)

* comp — index of var to be unfixed (if applicable, default = None)

* time - list of time points at which to unfix var (can be float, int

e list) (or) -

Returns None

Product Block

Product Blocks are used to represent sinks of material in Flowsheets. These can be used as a conventient way to mark

the final destination of a matieral stream and to view the state of that material.

Degrees of Freedom

Product blocks generally have zero degrees of freedom.

Model Structure

Product Blocks consists of a single HoldupStatic Block (named holdup), each with one Inlet Port (named inlet).

3.2. Core Library

103



IDAES Documentation, Release 0.60

Construction Arguments

The Product model has the following construction arguments:

* property_package - property package to use when constructing Property Block for the Product Block (default =
‘use_parent_value’). This is provided as a Property Parameter Block by the Flowsheet when creating the model.
If a value is not provided, the Holdup Block will try to use the default property package if one is defined.

* property_package_args - set of arguments to be passed to the Property Block when they are created.
* inlet_list - list of names to be passed to the build_inlets method (default = None).
e num_inlets - number of inlets argument to be passed to the build_inlets method (default = None).

Additionally, Product Blocks have the following construction arguments which are passed to the Holdup Block for
determining which terms to construct in the balance equations. Product Blocks do not support dynamic = True.

Argument Default Value
material_balance_type ‘component_phase’
energy_balance_type ‘enthalpy_total’
momentum_balance_type | ‘pressure’

dynamic False (cannot be True)
include_holdup False
has_rate_reactions False
has_equilibrium_reactions | False
has_phase_equilibrium False
has_mass_transfer False
has_heat_transfer False
has_work_transfer False
has_pressure_change False

Additional Methods

Product Blocks define an additional display() method to output the state of the product material. This method is
documented below in the ProductData Class section.

Additional Constraints

Product Blocks write no additional constraints to the model.

Variables

Product blocks add no additional Variables.

ProductData Class

class idaes.models.product.ProductData (component)
Standard Product Block Class

build ()
Begin building model (pre-DAE transformation).

104 Chapter 3. Contents



IDAES Documentation, Release 0.60

Parameters None —
Returns None

display (display_block=False, ostream=None, prefix="")
Display the contents of Product unit.

Parameters
e display_block - indicates whether to display the entire Block
* object (default = False)-—
* ostream - output stream (default = None)
* prefix — strto append to each line of output (default = **)
Returns None

post_transform build()
Continue model construction after DAE transformation.

Parameters None —

Returns None

Mixers, Splitters and Separators
Mixer Unit

The IDAES Mixer unit model can be used to represent different types of equipment for mixing streams of material.
Mixer Blocks can be used to represent a number of different types of behavior by choosing the appropriate construction
arguments.

Degrees of Freedom

Mixers generally have zero degrees of freedom.

Model Structure

The structure of a Mixer unit depends on the construction options chosen. A Mixer unit contains a single Holdup
Block (named holdup), the type of which depends on the options as follows;

1. If include_holdup, has_equilibrium_reactions or has_mass_transfer is True, a HoldupOD Block is used,
2. Otherwise, a HoldupStatic Block is used.

Additionally, a Mixer has one Inlet Port object (named inlet and indexed by a list of names) and one Outlet Port object
(named outlet).

Construction Arguments

The Mixer model has the following construction arguments:

* property_package - property package to use when constructing Property Blocks (default = ‘use_parent_value’).
This is provided as a Property Parameter Block by the Flowsheet when creating the model. If a value is not
provided, the Holdup Block will try to use the default property package if one is defined.

3.2. Core Library 105



IDAES Documentation, Release 0.60

inlet_list - list of names to be passed to the build_inlets method (default = None).

outlet_list - list of names to be passed to the build_outlets method (default = None).

property_package_args - set of arguments to be passed to the Property Blocks when they are created.

num_inlets - number of inlets argument to be passed to the build_inlets method (default = 2).

num_outlets - number of outlets argument to be passed to the build_outlets method (default = None).

Additionally, Mixer Blocks have the following construction arguments which are passed to the Holdup Block for

determining which terms to construct in the balance equations.

Additional Constraints

Argument

Default Value

material_balance_type

‘component_phase’

energy_balance_type

‘enthalpy_total’

momentum_balance_type | ‘pressure’
dynamic False
include_holdup False
has_rate_reactions False
has_equilibrium_reactions | False
has_phase_equilibrium False
has_mass_transfer False
has_heat_transfer False
has_work_transfer False
has_pressure_change False

Mixer Blocks write no additional constraints to the model.

Variables

Mixer Blocks add no additional Variables.

MixerData Class

class idaes.models.mixer .MixerData (component)

Standard Mixer Unit Class

Returns None

Returns None

Begin building model (pre-DAE transformation).

Parameters None —

post_transform build()
Continue model construction after DAE transformation.

Parameters None —

106

Chapter 3. Contents



IDAES Documentation, Release 0.60

Splitter Unit

The IDAES Splitter unit model can be used to represent different types of equipment for splitting streams of material
based on total flow. For other types of separation behavior, see the Separator unit model.

Degrees of Freedom

Splitter units generally have degrees of freedom equal to the number of outlets - 1.
Typical fixed variables are:

* split fractions for outlets-1 streams.

Model Structure

The structure of a Splitter unit depends on the construction options chosen. A Splitter unit contains a single Holdup
Block (named holdup), the type of which depends on the options as follows;

1. If include_holdup, has_equilibrium_reactions or has_mass_transfer is True, a HoldupOD Block is used,
2. Otherwise, a HoldupStatic Block is used.

Additionally, a Splitter has one Inlet Port object (named inlet) and one Outlet Port object (named outlet and indexed
by a list of names).

Construction Arguments

The Splitter model has the following construction arguments:

* property_package - property package to use when constructing Property Blocks (default = ‘use_parent_value’).
This is provided as a Property Parameter Block by the Flowsheet when creating the model. If a value is not
provided, the Holdup Block will try to use the default property package if one is defined.

* property_package_args - set of arguments to be passed to the Property Blocks when they are created.
* inlet_list - list of names to be passed to the build_inlets method (default = None).

e num_inlets - number of inlets argument to be passed to the build_inlets method (default = None).

* outlet_list - list of names to be passed to the build_outlets method (default = None).

¢ num_outlets - number of outlets argument to be passed to the build_outlets method (default = 2).

Additionally, Splitter Blocks have the following construction arguments which are passed to the Holdup Block for
determining which terms to construct in the balance equations.

3.2. Core Library 107



IDAES Documentation, Release 0.60

Argument Default Value
material_balance_type ‘component_phase’
energy_balance_type ‘enthalpy_total’
momentum_balance_type | ‘pressure’
dynamic False
include_holdup False
has_rate_reactions False
has_equilibrium_reactions | False
has_phase_equilibrium False
has_mass_transfer False
has_heat_transfer False
has_work_transfer False
has_pressure_change False

Additional Constraints

Splitter Blocks write no additional constraints to the model.

Variables

Splitter Blocks add one additional Variable beyond those created by the Holdup Block.

Name Notes
split_fraction | Reference to holdup.outlet_splitter.split_fraction

SplitterData Class

class idaes.models.splitter.SplitterData (component)
Standard Splitter Unit Class

build()
Begin building model (pre-DAE transformation).

Parameters None —
Returns None

post_transform build()
Continue model construction after DAE transformation.

Parameters None —

Returns None

Separator Unit

The IDAES Separator unit model is a general purpose model for different types of equipment for separating or splitting
material flows. The Separator unit model supports different methods for separating the material flow to represent
different types of equipment. For separations based on total flow, see Splitter.

108 Chapter 3. Contents



IDAES Documentation, Release 0.60

Degrees of Freedom

Separator units generally have degrees of freedom related to the number of outlet streams and the split type chosen.
* If split_type = ‘phase’, degrees of freedom are generally (no.outlets — 1) x no.phases
* If split_type = ‘component’, degrees of freedom are generally (no.outlets — 1) X no.components
« If split_type = ‘total’, degrees of freedom are generally (no.outlets — 1) X no.phases X no.components
Typical fixed variables are:

* split fractions.

Model Structure

The structure of a Separator unit depends on the construction options chosen. A Separator unit contains a single
Holdup Block (named holdup), the type of which depends on the options as follows;

1. If include_holdup, has_equilibrium_reactions or has_mass_transfer is True, a HoldupOD Block is used,
2. Otherwise, a HoldupStatic Block is used.

Additionally, a Separator has one Inlet Port object (named inlet) and one Outlet Port object (named outlet and indexed
by a list of names).

Construction Arguments

The Splitter model has the following construction arguments:
* separation_type - indicates which method to use when separating the outlet material flow. Options are:
— ‘phase’ - outlet streams are split by phase fractions. A specified portion of each phase is sent to each outlet.

— ‘component’ - outlet streams are split by component. A specified fraction of each component is sent to
each outlet.

— ‘total’ - outlet streams are split based on phase and component. A specified fraction of each phase-
component pair is sent to each outlet.

* property_package - property package to use when constructing Property Blocks (default = ‘use_parent_value’).
This is provided as a Property Parameter Block by the Flowsheet when creating the model. If a value is not
provided, the Holdup Block will try to use the default property package if one is defined.

* property_package_args - set of arguments to be passed to the Property Blocks when they are created.
* inlet_list - list of names to be passed to the build_inlets method (default = None).

* num_inlets - number of inlets argument to be passed to the build_inlets method (default = None).

* outlet_list - list of names to be passed to the build_outlets method (default = None).

* num_outlets - number of outlets argument to be passed to the build_outlets method (default = 2).

Additionally, Separator Blocks have the following construction arguments which are passed to the Holdup Block for
determining which terms to construct in the balance equations.

3.2. Core Library 109



IDAES Documentation, Release 0.60

Argument Default Value
material_balance_type ‘component_phase’
energy_balance_type ‘enthalpy_total’
momentum_balance_type | ‘pressure’
dynamic False
include_holdup False
has_rate_reactions False
has_equilibrium_reactions | False
has_phase_equilibrium False
has_mass_transfer False
has_heat_transfer False
has_work_transfer False
has_pressure_change False

Additional Constraints

Separator Blocks write no additional constraints to the model.

Variables

Separator Blocks add one additional Variable beyond those created by the Holdup Block.

Name Notes
split_fraction | Reference to holdup.outlet_splitter.split_fraction

SeparatorData Class

class idaes.models.separator.SeparatorData (component)
Standard Splitter Unit Class

build()
Begin building model (pre-DAE transformation).

Parameters None —
Returns None

post_transform build()
Continue model construction after DAE transformation.

Parameters None —

Returns None

Pressure and Temperature Changers
Pressure Changer

The IDAES Pressure Changer model represents a unit operation with a single stream of material which undergoes a
change in pressure due to the application of a work. The Pressure Changer model contains support for a number of
different thermodynamic assumptions regarding the working fluid.

110 Chapter 3. Contents



IDAES Documentation, Release 0.60

Degrees of Freedom

Pressure Changer units generally have one or more degrees of freedom, depending on the thermodynamic assumption
used.

Typical fixed variables are:
* outlet pressure, P44, 0r AP,

* unit efficiency (isentropic or pump assumption).

Model Structure

The core Pressure Changer unit model consists of a single HoldupOD (named holdup) with one Inlet Port (named inlet)
and one Outlet Port (named outlet).

Construction Arguments

Pressure Changers have the following construction arguments:

e compressor - argument indicates whether the unit should be considered a compressor (True, default) or an
expander/turbine (False). This determines how unit efficiency is calculated.

¢ thermodynamic_assumption - indicates which thermodynamic assumption should be used when constructing
the model. Options are:

— ‘isothermal’ - (default) assumes no temperature change occurs between the inlet and outlet of the unit.

— ‘isentropic’ - assumes isentropic behavior. This requires an additional set of property calculations for the
isentropic outlet conditions.

— ‘pump’ - assumes that the fluid work is proportional to the pressure difference and flow rate of fluid. This
is suitable for incompressible fluids.

* property_package - property package to use when constructing Property Blocks (default = ‘use_parent_value’).
This is provided as a Property Parameter Block by the Flowsheet when creating the model. If a value is not
provided, the Holdup Block will try to use the default property package if one is defined.

* property_package_args - set of arguments to be passed to the Property Blocks when they are created.
* inlet_list - list of names to be passed to the build_inlets method (default = None).

* num_inlets - number of inlets argument to be passed to the build_inlets method (default = None).

* outlet_list - list of names to be passed to the build_outlets method (default = None).

e num_outlets - number of outlets argument to be passed to the build_outlets method (default = None).

Additionally, Pressure Changers have the following construction arguments which are passed to the Holdup Block for
determining which terms to construct in the balance equations.

3.2. Core Library 111



IDAES Documentation, Release 0.60

Argument Default Value
material_balance_type ‘component_phase’
energy_balance_type ‘enthalpy_total’
momentum_balance_type | ‘pressure’
dynamic False
include_holdup False
has_rate_reactions False
has_equilibrium_reactions | False
has_phase_equilibrium True
has_mass_transfer False
has_heat_transfer False
has_work_transfer True
has_pressure_change True

Additional Constraints

In addition to the Constraints written by the Holdup Block, Pressure Changer writes additional Constraints which
depend on the thermodynamic assumption chosen. All Pressure Changers add the following Constraint to calculate
the pressure ratio:

Pratio,t X Bn,t = Pout,t

Isothermal Assumption

The isothermal assumption writes one additional Constraint:

Tout = Tz

Isentropic Assumption

The isentropic assumption creates an additional set of Property Blocks (indexed by time) for the isentropic fluid
calculations (named properties_isentropic). This requires a set of balance equations relating the inlet state to the
isentropic conditions, which are shown below:

Fint.pj = Foutt,p,j

Sin,t = Sisentropic,t
Pin,t X Prutio,t = Pisentropic,t
where I} , ; is the flow of component j in phase p at time ¢ and s is the specific entropy of the fluid at time ¢.

Next, the isentropic work is calculated as follows:

VVisentropic,t = § Hisentropic,t,p_ § Hi,n,t,p
P p

where Hy , is the total energy flow of phase p at time ¢. Finally, a constraint which relates the fluid work to the actual
mechanical work via an efficiency term 7.

If compressor is True7 Wisentropic,t = Wmechanicalj X Mt

If compressor is False, Wisentropic,t X Ny = Wmechanical,t

112 Chapter 3. Contents



IDAES Documentation, Release 0.60

Pump (Incompressible Fluid) Assumption

The incompressible fluid assumption writes two additional constraints. Firstly, a Constraint is written which relates
fluid work to the pressure change of the fluid.

Wfluid,t = (Pout,t - Pin,t) X Fvol,t

where F, + is the total volumetric flowrate of material at time ¢ (from the outlet Property Block). Secondly, a
constraint which relates the fluid work to the actual mechanical work via an efficiency term 7.

If compressor is True, Wyiyid,t = Winechanical,t X Mt

If compressor is False, Wyyiq.t X 7t = Winechanical,t

Variables

Pressure Changers contain the following Variables (not including those contained within the Holdup Block):

Variable Name Notes
Pratio ratioP
Vi volume Only if has_rate_reactions = True, reference to
holdup.rate_reaction_extent
Winechanical,t | Work_mechanical Reference to holdup.work
W ttwid,¢ work_fluid Pump assumption only
Npump,t efficiency_pump Pump assumption only
Wisentropic,t work_isentropic Isentropic assumption only
Nisentropic,t effi- Isentropic assumption only
ciency_isentropic

Isentropic Pressure Changers also have an additional Property Block named properties_isentropic (attached to the Unit
Model, not the Holdup Block).

PressureChangerData Class

class idaes.models.pressure_changer.PressureChangerData (component)
Compressor/Expander Unit Class

build ()
Begin building model (pre-DAE transformation)

Parameters None —
Returns None

init_isentropic (state_args, outlvl, solver, optarg)
Initialisation routine for unit (default solver ipopt)

Keyword Arguments

* state_args — adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

={}.

* outlvl - sets output level of initialisation routine

— 0 =no output (default)

3.2. Core Library 113



IDAES Documentation, Release 0.60

— 1 =return solver state for each step in routine
— 2 =return solver state for each step in subroutines
— 3 =include solver output infomation (tee=True)
* optarg — solver options dictionary object (default={ ‘tol’: 1e-6})
* solver — str indicating whcih solver to use during initialization (default = ‘ipopt’)
Returns None

initialize (state_args={}, routine=None, outlvl=0, solver="ipopt’, optarg={’tol’: 1e-06})
General wrapper for pressure changer initialisation routines

Keyword Arguments

* routine - str stating which initialization routine to execute * None - use routine match-
ing thermodynamic_assumption * ‘isentropic’ - use isentropic initialization routine *
‘isothermal’ - use isothermal initialization routine

* state_args —adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

={D.

¢ outlvl - sets output level of initialisation routine

0 = no output (default)
— 1 =return solver state for each step in routine
— 2 =return solver state for each step in subroutines
— 3 = include solver output infomation (tee=True)
* optarg — solver options dictionary object (default={‘tol’: 1e-6})
* solver — str indicating whcih solver to use during initialization (default = ‘ipopt’)
Returns None

model_check ()
Check that pressure change matches with compressor argument (i.e. if compressor = True, pressure should
increase or work should be positive)

Parameters None —
Returns None

post_transform build()
Continue model construction after DAE transformation

Parameters None —

Returns None

Temperature Changer

The IDAES Temperature Changer model represents a unit operation with a single stream of material which undergoes
a change in temperature due to the application of a heat duty.

114 Chapter 3. Contents



IDAES Documentation, Release 0.60

Degrees of Freedom

Temperature Changers generally have 1 degree of freedom .
Typical fixed variables are:

* heat duty, AT or outlet temperature.

Model Structure

The core Temperature Changer unit model consists of a single HoldupOD (named holdup) with one Inlet Port (named
inlet) and one Outlet Port (named outlet).

Construction Arguments

Temperature Changers have the following construction arguments:
* heater - argument indicates whether the unit should be considered a heater (True, default) or a cooler (False).

* property_package - property package to use when constructing Property Blocks (default = ‘use_parent_value’).
This is provided as a Property Parameter Block by the Flowsheet when creating the model. If a value is not
provided, the Holdup Block will try to use the default property package if one is defined.

* property_package_args - set of arguments to be passed to the Property Blocks when they are created.
* inlet_list - list of names to be passed to the build_inlets method (default = None).

e num_inlets - number of inlets argument to be passed to the build_inlets method (default = None).

* outlet_list - list of names to be passed to the build_outlets method (default = None).

e num_outlets - number of outlets argument to be passed to the build_outlets method (default = None).

Additionally, Temperature Changers have the following construction arguments which are passed to the Holdup Block
for determining which terms to construct in the balance equations.

Argument Default Value
material_balance_type ‘component_phase’
energy_balance_type ‘enthalpy_total’
momentum_balance_type | ‘pressure’
dynamic False
include_holdup False
has_rate_reactions False
has_equilibrium_reactions | False
has_phase_equilibrium True
has_mass_transfer False
has_heat_transfer True
has_work_transfer False
has_pressure_change False

Additional Constraints

In addition to the Constraints written by the Holdup Block, Temperature Changer writes one additional Constraint:

AT = Tout - Tzn

3.2. Core Library 115



IDAES Documentation, Release 0.60

Variables

Temperature Changers contain the following Variables (not including those contained within the Holdup Block):

Variable | Name | Notes

AT deltaT

Vi volume | Only if include_holdup = True, reference to holdup.volume
Q: heat Only if has_heat_transfer = True, reference to holdup.heat

TemperatureChangerData Class

class idaes.models.temperature_changer.TemperatureChangerData (component)

Standard Temperature Changer Unit Model Class

build()

Begin building model (pre-DAE transformation)

Parameters None —

Returns None

model_check ()

Check that temperature change matches with heater argument (i.e. if heater = True, temperature should

increase).

Parameters None —

Returns None

post_transform build()

Continue model construction after DAE transformation

Parameters None —

Returns None

0-D Heat Exchanger (HeatExchanger)

Heat Exchanger models represents a unit operation with two material streams which exchange heat. HeatExchanger
(0-D) is used for modeling heat exchangers using an average heat transfer coefficient and driving force. For more

complex models involving spatial domains, see HeatExchanger1D.

Degrees of Freedom

0-D Heat Exchangers generally have 2 degrees of freedom.

Typical fixed variables are:

¢ heat transfer area,

¢ heat transfer coefficient.

Alternatives include:

* outlet temeprature of one stream,

* heat duty.

116

Chapter 3. Contents




IDAES Documentation, Release 0.60

Model Structure

The 0-D Heat Exchanger unit model consists of two HoldupOD Blocks (named side_1 and side_2), each with one Inlet
Port (named side_1_inlet and side_2_inlet) and one Outlet Port (named side_1_outlet and side_2_outlet).

Construction Arguments

The 0-D Heat Exchanger model has the following construction arguments:

flow_type - argument indicating the flow arrangement within the Heat Exchanger. Currently only supports one
option:

— ‘counter-current’ - (default) counter current flow arrangement.

side_1_property_package - property package to use when constructing Property Blocks for side_1 of the Heat
Exchanger (default = ‘use_parent_value’). This is provided as a Property Parameter Block by the Flowsheet
when creating the model. If a value is not provided, the Holdup Block will try to use the default property
package if one is defined.

side_1_property_package_args - set of arguments to be passed to the Property Blocks for side_1 when they are
created.

side_1_inlet_list - list of names to be passed to the build_inlets method for side_1 (default = None).

side_1_num_inlets - number of inlets argument to be passed to the build_inlets method for side_1 (default =
None).

side_1_outlet_list - list of names to be passed to the build_outlets method for side_1 (default = None).

side_1_num_outlets - number of outlets argument to be passed to the build_outlets method for side_1 (default
= None).

side_2_property_package - property package to use when constructing Property Blocks for side_2 of the Heat
Exchanger (default = ‘use_parent_value’). This is provided as a Property Parameter Block by the Flowsheet
when creating the model. If a value is not provided, the Holdup Block will try to use the default property
package if one is defined.

side_2_property_package_args - set of arguments to be passed to the Property Blocks for side_2 when they are
created.

side_2_inlet_list - list of names to be passed to the build_inlets method for side_2 (default = None).

side_2_num_inlets - number of inlets argument to be passed to the build_inlets method for side_2 (default =
None).

side_2_outlet_list - list of names to be passed to the build_outlets method for side_2 (default = None).

side_2_num_outlets - number of outlets argument to be passed to the build_outlets method for side_2 (default
= None).

Additionally, 0-D Heat Exchangers have the following construction arguments which are passed to the Holdup Blocks
for determining which terms to construct in the balance equations.

3.2. Core Library 117



IDAES Documentation, Release 0.60

Argument Default Value
material_balance_type ‘component_phase’
energy_balance_type ‘enthalpy_total’
momentum_balance_type | ‘pressure’
dynamic False
include_holdup False
has_rate_reactions False
has_equilibrium_reactions | False
has_phase_equilibrium True
has_mass_transfer False
has_heat_transfer True
has_work_transfer False
has_pressure_change False

Additional Constraints

In addition to the Constraints written by the Holdup Blocks, 0-D Heat Exchanger models write the following Con-
straints:

Qi = —Qaz
where ()1 ; and ()2 ¢ are the heat transfer in the side_1 and side_2 Holdup Blocks respectively.
Qii=UxAxAT,,,

where U is the average heat transfer coefficient (assumed constant for now), A is the heat transfer area (also assumed
constant) and AT}, ; is the mean temperature driving force at time ¢. The mean temperature driving force is represented
using the log-mean temperature difference:

AT

AT — ATy ,) = AT, l
( 1,t Q,t) RS OQ(ATM

)

where AT ; and AT, are the temperature difference at the side_1 inlet and outlet respectively. The Constraints
defining these depend on the flow configuration of the unit.

Counter-Current Flow

If flow_type is set to ‘counter-current’, the following Constraints are used to define AT} ; and AT5 4:
AT‘l,t = Tsidelin,t - Tsidegout,t
ATQ,t = Tsidelout7t - Tsideﬂn,t

Variables

0-D Heat Exchangers contain the following Variables (not including those contained within the Holdup Blocks):

118 Chapter 3. Contents



IDAES Documentation, Release 0.60

Variable | Name Notes

Vi side_1_volume Only if include_holdup = True, reference to side_1.volume
Vot side_2_volume Only if include_holdup = True, reference to side_2.volume
Q: heat Reference to side_1.heat

A heat_transfer_area

U heat_transfer_coefficient

AT+ temperature_driving_force

ATy side_1_inlet_dT

ATy side_1_outlet_dT

HeatExchangerData Class

class idaes.models.heat_exchanger.HeatExchangerData (component)
Standard Heat Exchanger Unit Model Class

build()

Begin building model (pre-DAE transformation)

Parameters None —

Returns None

initialize (state_args_I={}, state_args_2={}, outlvl=0, solver="ipopt’, optarg={"tol’: le-06})
General Heat Exchanger initialisation routine.

Keyword Arguments

state_args_1 - adict of arguments to be passed to the property package(s) for side 1
of the heat exchanger to provide an initial state for initialization (see documentation of the
specific property package) (default = {}).

state_args_2 - adict of arguments to be passed to the property package(s) for side 2
of the heat exchanger to provide an initial state for initialization (see documentation of the
specific property package) (default = {}).

outlvl — sets output level of initialisation routine

— 0 =no output (default)

1 = return solver state for each step in routine

2 = return solver state for each step in subroutines
— 3 =include solver output infomation (tee=True)
optarg — solver options dictionary object (default={‘tol’: le-6})

solver - str indicating whcih solver to use during initialization (default = ‘ipopt’)

Returns None

model_check ()
Model checks for unit - calls model checks for both Holdup Blocks.

Parameters None —

Returns None

post_transform build()
Continue model construction after DAE transformation

Parameters None —

3.2. Core Library

119



IDAES Documentation, Release 0.60

Returns None

1-D Heat Exchanger (HeatExchanger1D)

Heat Exchanger models represents a unit operation with two material streams which exchange heat. The IDAES 1-D
Heat Exchanger model is used for detailed modeling of heat exchanger units with variations in one spatial dimension.
For a simpler representation of a heat exchanger unit see Heat Exchanger (0-D).

Degrees of Freedom

1-D Heat Exchangers generally have 7 degrees of freedom.
Typical fixed variables are:

* shell length and diameter,

* tube length and diameter,

¢ number of tube,

* heat transfer coefficients (at all spatial points) for both shell and tube sides.

Model Structure

The core 1-D Heat Exchanger Model unit model consists of two Holdup1D Blocks (named shell and tube), each with
one Inlet Port (named shell_inlet and tube_inlet) and one Outlet Port (named shell_outlet and tube_outlet).

Construction Arguments

1-D Heat Exchanger units have the following construction arguments:
* flow_type - indicates the flow arrangement within the unit to be modeled. Options are:
— ‘co-current’ - (default) shell and tube both flow in the same direction (from x=0 to x=1)

— ‘counter-current’ - shell and tube flow in opposite directions (shell from x=0 to x=1 and tube from x=1 to
x=0).

* shell_property_package - property package to use when constructing shell side Property Blocks (default =
‘use_parent_value’). This is provided as a Property Parameter Block by the Flowsheet when creating the model.
If a value is not provided, the Holdup Block will try to use the default property package if one is defined.

* shell_property_package_args - set of arguments to be passed to the shell side Property Blocks when they are
created.

¢ shell_inlet_list - list of names to be passed to the shell side build_inlets method (default = None).
* shell_num_inlets - number of inlets argument to be passed to the shell side build_inlets method (default = None).
* shell_outlet_list - list of names to be passed to the shell side build_outlets method (default = None).

¢ shell_num_outlets - number of outlets argument to be shell side passed to the build_outlets method (default =
None).

* tube_property_package - property package to use when constructing tube side Property Blocks (default =
‘use_parent_value’). This is provided as a Property Parameter Block by the Flowsheet when creating the model.
If a value is not provided, the Holdup Block will try to use the default property package if one is defined.

120 Chapter 3. Contents



IDAES Documentation, Release 0.60

* tube_property_package_args - set of arguments to be passed to the tube side Property Blocks when they are
created.

* tube_inlet_list - list of names to be passed to the tube side build_inlets method (default = None).
* tube_num_inlets - number of inlets argument to be passed to the tube side build_inlets method (default = None).
* tube_outlet_list - list of names to be passed to the tube side build_outlets method (default = None).

* tube_num_outlets - number of outlets argument to be passed to the tube side build_outlets method (default =
None).

¢ discretization_method_shell - indicates which method to use when discretizing shell side length domain. Note
that this should be compatible with the tube side method. Options are:

— ‘OCLR’ - orthogonal collocation on finite elements (Radau roots)

‘OCLL’ - orthogonal collocation on finite elements (Legendre roots)

‘BFD’ - backwards finite difference (1st order)

— ‘FFD’ - forwards finite difference (1st order)

* discretization_method_tube - indicates which method to use when discretizing tube side length domain. Note
that this should be compatible with the shell side method. Options are:

— ‘OCLR’ - orthogonal collocation on finite elements (Radau roots)

‘OCLL’ - orthogonal collocation on finite elements (Legendre roots)

‘BFD’ - backwards finite difference (1st order)
— ‘FFD’ - forwards finite difference (1st order)

* finite_elements - sets the number of finite elements to use when discretizing the spatial domains (default = 20).
This is used for both shell and tube side domains.

* collocation_points - sets the number of collocation points to use when discretizing the spatial domains (default
= 3, collocation methods only). This is used for both shell and tube side domains.

* has_mass_diffusion - indicates whether mass diffusion terms should be included in the material balance equa-
tions (default = False)

* has_energy_diffusion - indicates whether energy conduction terms should be included in the energy balance
equations (default = False)

Additionally, 1-D Heat Exchanger units have the following construction arguments which are passed to the Holdup
Block for determining which terms to construct in the balance equations.

Argument Default Value
material_balance_type ‘component_phase’
energy_balance_type ‘enthalpy_total’
momentum_balance_type | ‘pressure’
dynamic False
include_holdup False
has_rate_reactions False
has_equilibrium_reactions | False
has_phase_equilibrium True
has_mass_transfer False
has_heat_transfer True
has_work_transfer False
has_pressure_change False

3.2. Core Library 121



IDAES Documentation, Release 0.60

Additional Constraints

1-D Heat Exchanger models write the following additional Constraints to describe the heat transfer between the two
sides of the heat exchanger. Firstly, the shell- and tube-side heat transfer is calculated as:

Qshell,t,x = —Niubes X Lghenn X (7T X Ushell,t,x x Dyube x (Tshell,t,x - wall,t,x))

where Qsneii i, is the shell-side heat duty at point 2 and time ¢, Nyypes Diupe are the number of and diameter of
the tubes in the heat exchanger, Ugpeii,t.o 15 the shell-side heat transfer coefficient, and Tpe11 ¢, and Tyq11,1,,c are the
shell-side and tube wall temperatures respectively.

Qtube,t,m = *Ntubcs X Lshell X (7T X Utube,t,r X DtUbe X (Twall,t,m - Ttube,t,m))

where Qtype,t,o is the tube-side heat duty at point z and time ¢, Upype ¢, is the tube-side heat transfer coefficient and
Tube,t,o 15 the tube-side temperature.

Finally, the following Constraints are written to describe the unit geometry:

2
4 % Arype =T X Dippe

4 X Agpert = T X (Dshell? = Niyypes X D23.)

where Agpey and Ayype are the shell and tube areas respectively and Dgpj; and Dy pe are the shell and tube diameters.

Variables

1-D Heat Exchanger units add the following additional Variables beyond those created by the Holdup Block.

Variable | Name Notes

Lpen length_shell Reference to shell.length
Aghenl area_shell Reference to shell.area
Dshell d_shell

Liube length_tube Reference to tube.length
Atube area_tube Reference to tube.area

Diupe d_tube

Ntubes N_tubes

Twali,t,z | temperature_wall

Ushetir,o | heat_transfer_coefficient_shell
Utube,t, | heat_transfer_coefficient_tube

HeatExchangeridData Class

class idaes.models.heat_exchanger_1D.HeatExchangerldData (component)
Standard Heat Exchanger 1D Unit Model Class.

build ()
Begin building model (pre-DAE transformation).

Parameters None —
Returns None

initialize (shell_state_args={}, tube_state_args={}, outlvl=0, solver="ipopt’, optarg={’tol’: Ie-

06})
Initialisation routine for isothermal unit (default solver ipopt).

122 Chapter 3. Contents



IDAES Documentation, Release 0.60

Keyword Arguments

* state_args —adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

={}.

e outlvl - sets output level of initialisation routine

0 = no output (default)

— 1 =return solver state for each step in routine

2 = return solver state for each step in subroutines
— 3 =include solver output infomation (tee=True)
* optarg — solver options dictionary object (default={‘tol’: 1e-6})
* solver - str indicating whcih solver to use during initialization (default = ‘ipopt’)
Returns None

model_ check ()
Model checks for unit (call model check on holdups)

Parameters None —
Returns None

post_transform build()
Continue model construction after DAE transformation.

Parameters None —

Returns None

Distillation and Flash Separation
Flash Unit

The IDAES Flash model represents a unit operation where a single stream undergoes a flash separation into two phases.
The Flash model supports mutile types of flash operations, including pressure changes and addition or removal of heat.

Degrees of Freedom

Flash units generally have 2 degrees of freedom.
Typical fixed variables are:
* heat duty or outlet temperature (see note),
* pressure change or outlet pressure.

Note: When setting the outlet temeprature of a Flash unit, it is best to set holdup.properties_out[t].temperature. Setting
the temperature in one of the outlet streams directly results in a much harder problme ot solve, and may be degenerate
in some cases.

3.2. Core Library 123



IDAES Documentation, Release 0.60

Model Structure

The core Flash unit model consists of a single HoldupOD (named holdup) with one Inlet Port (named inlet) and one
Outlet Port (named outlet, default with two indexes (‘Vap’ and ‘Liq’)). The Flash model supports two methods for
splitting the material stream between the two outlets; either by utilizing an IDAES OutletSplitter Block with fixed split
fractions, or by directly linking the vapor flow to the “Vap” outlet and the liquid flow to the “Liq” outlet.

Using an OutletSplitter block allows for a generic formulation that can handle more than just vapor-liquid equilibrium
and allows for non-ideal splitting (with some entrainment of phases), but results in a larger problem with additonal
variables and constraints. The direct splitting option results in a smaller problem size, but is limited to a small set of
problem formulations.

Direct outlet splitting requires that the state variables used by the assoicated property package meet specific require-
ments in order that the Flash model can find the necessary information for splitting the outlet flows. To support direct
outlet splitting, the property package must use one of a specified set of state variables and support a certain set of
property calacuations, as outlined in the table below.

State Variables \ Required Properties

Material flow and composition

flow_mol & mole_frac flow_mol_phase & mole_frac_phase
flow_mol_phase & mole_frac_phase flow_mol_phase & mole_frac_phase
flow_mol_comp flow_mol_phase_comp
flow_mol_phase_comp flow_mol_phase_comp

flow_mass & mass_frac flow_mass_phase & mass_frac_phase
flow_mass_phase & mass_frac_phase | flow_mass_phase & mass_frac_phase
flow_mass_comp flow_mass_phase_comp
flow_mass_phase_comp flow_mass_phase_comp

Energy state

temperature temperature

enth_mol enth_mol_phase

enth_mol_phase enth_mol_phase

enth_mass enth_mass_phase

enth_mass_phase enth_mass_phase

Pressure state

pressure pressure

Construction Arguments

Flash units have the following construction arguments:

* property_package - property package to use when constructing Property Blocks (default = ‘use_parent_value’).
This is provided as a Property Parameter Block by the Flowsheet when creating the model. If a value is not
provided, the Holdup Block will try to use the default property package if one is defined.

* property_package_args - set of arguments to be passed to the Property Blocks when they are created.
* inlet_list - list of names to be passed to the build_inlets method (default = None).

* num_inlets - number of inlets argument to be passed to the build_inlets method (default = None).

* outlet_list - list of names to be passed to the build_outlets method (default = [“Vap’, ‘Liq’]).

e num_outlets - number of outlets argument to be passed to the build_outlets method (default = None).

* outlet_type - whether to use a genetic OutletSplitter (‘generic’, default) or to use direct outlet splitting (‘direct’).

124 Chapter 3. Contents



IDAES Documentation, Release 0.60

Additionally, Flash units have the following construction arguments which are passed to the Holdup Block for deter-
mining which terms to construct in the balance equations.

Argument Default Value
material_balance_type ‘component_phase’
energy_balance_type ‘enthalpy_total’
momentum_balance_type | ‘pressure’
dynamic False
include_holdup False
has_rate_reactions False
has_equilibrium_reactions | False
has_phase_equilibrium True
has_mass_transfer False
has_heat_transfer True
has_work_transfer False
has_pressure_change True

Additional Constraints

Flash units write no additional Constraints beyond those written by the Holdup Block.

However, if an OutletSplitter is used, the Flash unit automatically fixes the split fractions of the outlets such that all
the liquid phase goes to the outlet named “Liq” and all the vapor phase goes to the outlet named “Vap”. This is done
as follows for all t in the time domain:

* split_fraction(t, “Liq”, “Liq”).fix(1.0)
* split_fraction(t, “Vap”, “Vap”).fix(1.0)

Variables

Flash units add one additional Variable beyond those created by the Holdup Block.

Name Notes
split_fraction | Reference to holdup.outlet_splitter.split_fraction

FlashData Class

class idaes.models.flash.FlashData (component)
Standard Flash Unit Model Class

build()
Begin building model (pre-DAE transformation).

Parameters None —
Returns None

post_transform build()
Continue model construction after DAE transformation.

Parameters None —

Returns None

3.2. Core Library 125



IDAES Documentation, Release 0.60

Reactor Unit Models
Stoichiometric (Yield) Reactor

The IDAES Stoichiometric reactor model represents a unit operation where a single material stream undergoes some
chemical reaction(s) subject to a set of extent or yield specifications.

Degrees of Freedom

Stoichiometric reactors generally have degrees of freedom equal to the number of reactions + 1.
Typical fixed variables are:
* reaction extents or yields (1 per reaction),

* reactor heat duty (has_heat_transfer = True only).

Model Structure

The core Stoichiometric reactor unit model consists of a single HoldupOD (named holdup) with one Inlet Port (named
inlet) and one Outlet Port (named outlet).

Construction Arguments

Stoichiometric reactor units have the following construction arguments:

* property_package - property package to use when constructing Property Blocks (default = ‘use_parent_value’).
This is provided as a Property Parameter Block by the Flowsheet when creating the model. If a value is not
provided, the Holdup Block will try to use the default property package if one is defined.

* property_package_args - set of arguments to be passed to the Property Blocks when they are created.
* inlet_list - list of names to be passed to the build_inlets method (default = None).

* num_inlets - number of inlets argument to be passed to the build_inlets method (default = None).

* outlet_list - list of names to be passed to the build_outlets method (default = None).

* num_outlets - number of outlets argument to be passed to the build_outlets method (default = None).

Additionally, Stoichiometric reactor units have the following construction arguments which are passed to the Holdup
Block for determining which terms to construct in the balance equations.

126 Chapter 3. Contents



IDAES Documentation, Release 0.60

Argument Default Value
material_balance_type ‘component_phase’
energy_balance_type ‘enthalpy_total’
momentum_balance_type | ‘pressure’
dynamic False
include_holdup False
has_rate_reactions True
has_equilibrium_reactions | True
has_phase_equilibrium False
has_mass_transfer False
has_heat_transfer True
has_work_transfer False
has_pressure_change False

Additional Constraints

Stoichiometric reactor units write no additional Constraints beyond those written by the Holdup Block.

Variables

Stoichiometric reactors units add the following additional Variables beyond those created by the Holdup Block.

Variable | Name Notes

Vi volume Only if include_holdup = True, reference to holdup.volume

Xir rate_reaction_extent | Only if has_rate_reactions = True, reference to holdup.rate_reaction_extent
Q: heat Only if has_heat_transfer = True, reference to holdup.heat

StoichiometricReactorData Class

class idaes.models.stoichiometric_reactor.StoichiometricReactorData (component)
Standard Stoichiometric/Yield reactor Unit Model Class

build ()
Begin building model (pre-DAE transformation).

Parameters None —
Returns None

post_transform build()
Continue model construction after DAE transformation.

Parameters None —

Returns None

CSTR Reactor

The IDAES CSTR model represents a unit operation where a material stream undergoes some chemical reaction(s) in
a well-mixed vessel.

3.2. Core Library 127



IDAES Documentation, Release 0.60

Degrees of Freedom

CSTRs generally have 2 degrees of freedom.

Typical fixed variables are:

e reactor volume,

* reactor heat duty (has_heat_transfer = True only).

Model Structure

The core CSTR unit model consists of a single HoldupOD (named holdup) with one Inlet Port (named inlet) and one

Outlet Port (named outlet).

Construction Arguments

CSTR units have the following construction arguments:

* property_package - property package to use when constructing Property Blocks (default = ‘use_parent_value’).
This is provided as a Property Parameter Block by the Flowsheet when creating the model. If a value is not
provided, the Holdup Block will try to use the default property package if one is defined.

* property_package_args - set of arguments to be passed to the Property Blocks when they are created.

* inlet_list - list of names to be passed to the build_inlets method (default = None).

e num_inlets - number of inlets argument to be passed to the build_inlets method (default = None).

* outlet_list - list of names to be passed to the build_outlets method (default = None).

e num_outlets - number of outlets argument to be passed to the build_outlets method (default = None).

Additionally, CSTR units have the following construction arguments which are passed to the Holdup Block for deter-
mining which terms to construct in the balance equations.

Additional Constraints

Argument

Default Value

material_balance_type

‘component_phase’

energy_balance_type

‘enthalpy_total’

momentum_balance_type | ‘pressure’
dynamic False
include_holdup False
has_rate_reactions True
has_equilibrium_reactions | True
has_phase_equilibrium False
has_mass_transfer False
has_heat_transfer True
has_work_transfer False
has_pressure_change False

CSTR units write the following additional Constraints beyond those written by the Holdup Block.

Xt,?“ =V, x Ttr

128

Chapter 3. Contents



IDAES Documentation, Release 0.60

where X, ,. is the extent of reaction of reaction r at time ¢, V; is the volume of the reacting material at time ¢ (allows
for varying reactor volume with time) and r; ,. is the volumetric rate of reaction of reaction r at time ¢ (from the outlet
property package).

Variables

CSTR units add the following additional Variables beyond those created by the Holdup Block.

Vari- Name | Notes

able

Vi vol- If include_holdup = True this is a reference to holdup.volume, otherwise a Var attached to the
ume Unit Model

Q¢ heat Only if has_heat_transfer = True, reference to holdup.heat

CSTRData Class

class idaes.models.cstr.CSTRData (component)
Standard CSTR Unit Model Class

build()
Begin building model (pre-DAE transformation).

Parameters None —

Returns None

post_transform build()
Continue model construction after DAE transformation.

Plug Flow Reactor

Parameters None —

Returns None

The IDAES Plug Flow Reactor (PFR) model represents a unit operation where a material stream passes through a
linear reactor vessel whilst undergoing some chemical reaction(s). This model requires modeling the system in one
spatial dimension.

Degrees of Freedom

PFRs generally have 2 degrees of freedom.

Typical fixed variables are:

¢ 2 of reactor length, area and volume.

Model Structure

The core PFR unit model consists of a single Holdup1D (named holdup) with one Inlet Port (named inlet) and one
Outlet Port (named outlet).

3.2. Core Library

129



IDAES Documentation, Release 0.60

Construction Arguments

PFR units have the following construction arguments:

property_package - property package to use when constructing Property Blocks (default = ‘use_parent_value’).
This is provided as a Property Parameter Block by the Flowsheet when creating the model. If a value is not
provided, the Holdup Block will try to use the default property package if one is defined.

property_package_args - set of arguments to be passed to the Property Blocks when they are created.
inlet_list - list of names to be passed to the build_inlets method (default = None).

num_inlets - number of inlets argument to be passed to the build_inlets method (default = None).
outlet_list - list of names to be passed to the build_outlets method (default = None).

num_outlets - number of outlets argument to be passed to the build_outlets method (default = None).
discretization_method - indicates which method to use when discretizing length domain. Options are:

— ‘OCLR’ - orthogonal collocation on finite elements (Radau roots)

‘OCLL’ - orthogonal collocation on finite elements (Legendre roots)

‘BFD’ - backwards finite difference (1st order)

— ‘FFD’ - forwards finite difference (1st order)
finite_elements - sets the number of finite elements to use when discretizing the spatial domain (default = 20).

collocation_points - sets the number of collocation points to use when discretizing the spatial domain (default =
3, collocation methods only).

has_mass_diffusion - indicates whether mass diffusion terms should be included in the material balance equa-
tions (default = False)

has_energy_diffusion - indicates whether energy conduction terms should be included in the energy balance
equations (default = False)

Additionally, PFR units have the following construction arguments which are passed to the Holdup Block for deter-
mining which terms to construct in the balance equations.

Argument Default Value
material_balance_type ‘component_phase’
energy_balance_type ‘enthalpy_total’
momentum_balance_type | ‘pressure’
dynamic False
include_holdup False
has_rate_reactions True
has_equilibrium_reactions | True
has_phase_equilibrium False
has_mass_transfer False
has_heat_transfer False
has_work_transfer False
has_pressure_change False

130

Chapter 3. Contents



IDAES Documentation, Release 0.60

Additional Constraints

PFR units write the following additional Constraints beyond those written by the Holdup Block at all points in the
spatial domain.

Xt,a:,’r =Ax Tt,x,r

where X, . , is the extent of reaction of reaction r at point « and time ¢, A is the cross-sectional area of the reactor
and 1, is the volumetric rate of reaction of reaction 7 at point = and time ¢ (from the outlet property package).

Variables

PFR units add the following additional Variables beyond those created by the Holdup Block.

Variable | Name | Notes

L length | Reference to holdup.length

A area Reference to holdup.area

1% volume | Reference to holdup.volume

Qt,z heat Only if has_heat_transfer = True, reference to holdup.heat

AP, » deltaP | Only if has_pressure_change = True, reference to holdup.deltaP

PFRData Class
Equilibrium Reactor

The IDAES Equilibrium reactor model represents a unit operation where a material stream undergoes some chemical
reaction(s) to reach an equilibrium state. This model is for systems with reaction with equilibrium coefficients - for
Gibbs energy minimization see Gibbs reactor documentation.

Degrees of Freedom

Equilibrium reactors generally have 1 degree of freedom.
Typical fixed variables are:

* reactor heat duty (has_heat_transfer = True only).

Model Structure

The core Equilibrium reactor unit model consists of a single HoldupOD (named holdup) with one Inlet Port (named
inlet) and one Outlet Port (named outlet).

Construction Arguments

Equilibrium reactor units have the following construction arguments:

* property_package - property package to use when constructing Property Blocks (default = ‘use_parent_value’).
This is provided as a Property Parameter Block by the Flowsheet when creating the model. If a value is not
provided, the Holdup Block will try to use the default property package if one is defined.

3.2. Core Library 131



IDAES Documentation, Release 0.60

* property_package_args - set of arguments to be passed to the Property Blocks when they are created.
* inlet_list - list of names to be passed to the build_inlets method (default = None).

* num_inlets - number of inlets argument to be passed to the build_inlets method (default = None).

* outlet_list - list of names to be passed to the build_outlets method (default = None).

e num_outlets - number of outlets argument to be passed to the build_outlets method (default = None).

Additionally, Equilibrium reactor units have the following construction arguments which are passed to the Holdup
Block for determining which terms to construct in the balance equations. Note that Equilibrium reactors do not
support dynamic = True as holdups (and thus accumulations) are undefined by definition.

Argument Default Value
material_balance_type ‘component_phase’
energy_balance_type ‘enthalpy_total’
momentum_balance_type | ‘pressure’

dynamic False (cannot be True)
include_holdup False
has_rate_reactions True
has_equilibrium_reactions | True
has_phase_equilibrium False
has_mass_transfer False
has_heat_transfer True
has_work_transfer False
has_pressure_change False

Additional Constraints

Equilibrium reactors units write the following additional Constraints beyond those written by the Holdup Block if rate
controlled reactions are present.

Ttr = 0

where 7, ;. is the rate of reaction for reaction r at time ¢. This enforces equilibrium in any reversible rate controlled
reactions which are present. Any non-reversible reaction that may be present will proceed to completion.

Variables

Equilibrium reactor units add the following additional Variables beyond those created by the Holdup Block.

Variable | Name | Notes
Vi volume | Only if include_holdup = True, reference to holdup.volume
Q: heat Only if has_heat_transfer = True, reference to holdup.heat

EquilibriumReactorData Class

class idaes.models.equilibrium_reactor.EquilibriumReactorData (component)
Standard Equilibrium Reactor Unit Model Class

build()
Begin building model (pre-DAE transformation).

132 Chapter 3. Contents



IDAES Documentation, Release 0.60

Parameters None —
Returns None

post_transform build()
Continue model construction after DAE transformation.

Parameters None —

Returns None

Gibbs Reactor

The IDAES Gibbs reactor model represents a unit operation where a material stream undergoes some set of reactions
such that the Gibbs energy of the material is minimized. Gibbs reactors rely on conservation of individual elements
within the system, and thus require element balances, and make use of Lagrange multipliers to find the minimum
Gibbs energy state of the system.

Degrees of Freedom

Gibbs reactors generally have 1 degree of freedom.
Typical fixed variables are:

* reactor heat duty (has_heat_transfer = True only).

Model Structure

The core Gibbs reactor unit model consists of a single HoldupOD (named holdup) with one Inlet Port (named inlet)
and one Outlet Port (named outlet).

Construction Arguments

CSTR units have the following construction arguments:

* property_package - property package to use when constructing Property Blocks (default = ‘use_parent_value’).
This is provided as a Property Parameter Block by the Flowsheet when creating the model. If a value is not
provided, the Holdup Block will try to use the default property package if one is defined.

* property_package_args - set of arguments to be passed to the Property Blocks when they are created.
* inlet_list - list of names to be passed to the build_inlets method (default = None).

* num_inlets - number of inlets argument to be passed to the build_inlets method (default = None).

* outlet_list - list of names to be passed to the build_outlets method (default = None).

* num_outlets - number of outlets argument to be passed to the build_outlets method (default = None).

Additionally, Gibbs reactor units have the following construction arguments which are passed to the Holdup Block for
determining which terms to construct in the balance equations. Note that Gibbs reactors do not support dynamic =
True as holdups (and thus accumulations) are undefined by definition.

3.2. Core Library 133



IDAES Documentation,

Release 0.60

Additional Constraints

Argument Default Value
material_balance_type ‘element_total’
energy_balance_type ‘enthalpy_total’
momentum_balance_type | ‘pressure’
dynamic False (cannot be True)
include_holdup False
has_rate_reactions True
has_equilibrium_reactions | True
has_phase_equilibrium False
has_mass_transfer False
has_heat_transfer True
has_work_transfer False
has_pressure_change False

Gibbs reactor models write the following additional constraints to calculate the state that corresponds to the minimum
Gibbs energy of the system.

0= Ipe,t,j + R x Tt X ln(yt,j + Z Lt,e X aj,e)

€

where g ¢ ; is the pure component molar Gibbs energy of component j at time ¢, R is the gas constant, T} is the
final temperature of the material, y; ; is the mole fraction of component j at time :math‘t* in the final material stream,
Ly . is the Lagrange multiplier for element e at time ¢ and o . is the number of moles of element ¢ in one mole of
component j. gpc.t,j» I, yi,; and «; . all come from the outlet Property Block.

Variables

Gibbs reactor units add the following additional Variables beyond those created by the Holdup Block.

Vari- Name Notes
able
Lt,e la-
grange_mult
Vi volume If include_holdup = True this is a reference to holdup.volume, otherwise a Var attached
to the Unit Model
Q¢ heat Only if has_heat_transfer = True, reference to holdup.heat

GibbsReactorData Class

class idaes.models.gibbs_reactor.GibbsReactorData (component)
Standard Gibbs Reactor Unit Model Class

This model assume all possible reactions reach equilibrium such that the system partial molar Gibbs free energy
is minimized. Since some species mole flow rate might be very small, the natural log of the species molar flow
rate is used. Instead of specifying the system Gibbs free energy as an objective function, the equations for zero
partial derivatives of the grand function with Lagrangian multiple terms with repect to product species mole
flow rates and the multiples are specified as constraints.

134

Chapter 3. Contents



IDAES Documentation, Release 0.60

build()
Begin building model (pre-DAE transformation).

Parameters None —
Returns None

post_transform build()
Continue model construction after DAE transformation.

Parameters None —

Returns None

Translator Block

In complex process flowsheets, it may be necessary or desirable to used different property packages in different parts
of the flowsheet. In these cases, there will need to be a Block to link the two parts of the flowsheet together, which
will need to “translate” between the different property packages. The IDAES Translator block provides a framework
to the user for creating this link.

The Translator block allows the user to specify the two property packages to be linked, and constructs a Block contain-
ing two Property Blocks and Ports, one for the incoming property package (inlet) and one for the outgoing property
package (outlet). Users will then need to provide a set of Constraints linking the necessary states between the incoming
and outgoing property packages.

Degrees of Freedom

Degrees of freedom in Translator blocks will depend on the property packages being used. Users will need to read the
documentation on the associated property packages to decide on how to link the two.

Model Structure

The core Translator block consists of two Property Blocks (inlet_properties and outlet_properties) and two Port objects
(inlet and outlet).

Construction Arguments

Translator blocks have the following construction arguments:

* inlet_property_package - property package to use when constructing the Property Block for the incoming stream.
This is provided as a Property Parameter Block by the Flowsheet when creating the model. If a value is not
provided, the Translator Block will try to use the default property package if one is defined.

inlet_property_package_args - set of arguments to be passed to the inlet Property Block when it is created.

outlet_property_package - property package to use when constructing the Property Block for the outgoing
stream. This is provided as a Property Parameter Block by the Flowsheet when creating the model. If a value is
not provided, the Translator Block will try to use the default property package if one is defined.

outlet_property_package_args - set of arguments to be passed to the outlet Property Block when it is created.

has_equilibrium_reactions - argument to indicate whether the Property Blocks should enforce constraints for
chemical equilibrium (default = False).

3.2. Core Library 135



IDAES Documentation, Release 0.60

* has_phase_equilibrium - argument to indicate whether the Property Blocks should enforce constraints for phase

equilibrium (default = False).

Additional Constraints

Translator blocks write no additional Constraints. Users should provide the necessary Constraints to link states be-
tween the two Property Blocks.

Variables

Translator Blocks create no additional Variables.

TranslatorData Class

class idaes.models.translator.TranslatorData (component)

This class constructs the basic framework for an IDAES block to “translate” between differnt property packages.
This class constructs two property blocks using two different property packages - one for the incoming package
and one for the outgoing package - along with the assoicated inlet and outlet Connector objects. Users will then
need to provide a set of Constraints to connect the states in the incoming properties to those in the outgoing
properties.

build()
Begin building model (pre-DAE transformation).

Parameters None —
Returns None

initialize (outlvi=0, solver="ipopt’, optarg={"tol’: le-06})
This is a basic initialization routine for translator blocks. This method assumes both property blocks have
good initial values and calls the initialization method of each block.

Users will liekly need to overload this method with a customised routine suited to their particular transla-
tion.

Keyword Arguments

* outlvl - sets output level of initialisation routine

0 = no output (default)

— 1 =return solver state for each step in routine

2 = return solver state for each step in subroutines
— 3 =include solver output infomation (tee=True)
* optarg — solver options dictionary object (default={‘tol’: 1e-6})
* solver — str indicating whcih solver to use during initialization (default = ‘ipopt’)
Returns None

model_check ()
This is a general purpose model_check routine for translator blocks. This method tries to call the
model_check method of the inlet and outlet property blocks. If an AttributeError is raised, the check
is passed.

Parameters None —

136

Chapter 3. Contents



IDAES Documentation, Release 0.60

Returns None

post_transform build()
Continue model construction after DAE transformation.

Parameters None —

Returns None

3.2.6 Visualization

Warning: The visualization library is still in active development and we hope to improve on it in future releases.
Please use its functionality at your own discretion.

The IDAES visualization module is built on top of bokeh and is meant to support multiple plot types. The data for
these plots is input through dataframes defined via data-frame schemas.

Contents

* Visualization
e The Plot class
* Plot utilities
* Examples

— Drawing heat exchanger network diagrams

— Plotting profile plots from the MEA example

3.2.7 The Plot class

The plot class implements different IDAES plots. Each of its methods acts like a factory method returning an instance
of the Plot that can then be modified by calls to helper methods (e.g: saving a plot to disk). Currently only heat
exchanger network diagrams are supported.

class idaes.vis.plot.Plot (current_plot=None)

annotate (x, y, label)
Annotate a plot with a given point and a label.

Parameters
¢ x — Value of independent variable.
* y — Value of dependent variable.
* label - Text label.

Returns None

Raises None

classmethod goodness_of_fit (data_frame, x=", y=[], title=", xlab=", ylab=",
y_axis_type="auto’, legend=[])
Draw y against predicted value (y”) and display (calculate?) value of R*2.

3.2. Core Library 137



IDAES Documentation, Release 0.60

Parameters
* data_frame — a data frame with keys contained in x and y.
* x — Key in data-frame to use as x-axis.
* y — Keys in data-frame to plot on y-axis.
e title - Title for a plot.
* xlab - Label for x-axis.
* ylab - Label for y-axis.
* y_axis_type — Specify “log” to pass logarithmic scale.
* legend — List of strings matching y.
Returns Plot object on success.
Raises
* MissingVariablesException — Dependent variable or their data not passed.
* BadDataFrameException — No data-frame was generated for the model object.

classmethod heat_exchanger_network (exchangers, stream_list,
mark_temperatures_with_tooltips=False,
mark_modules_with_tooltips=False, stage_width=2,

y_stream_step=1)
Plot a heat exchanger network diagram.

Parameters

* exchangers — List of exchangers where each exchanger is a dict of the form:

{"hot': 'H2', 'cold': 'Cl', 'Q': 1400, 'A': 159, 'annual_cost':
28358,
'stg': 2}

where hot is the hot stream name, cold is the cold stream name, A is the area (in
m”2), annual_cost is the annual cost in $, Q is the amount of heat transferred from one
stream to another in a given exchanger and stg is the stage the exchanger belongs to.
The utility_type, if present, will specify if we plot the cold stream as water (idaes.
vis.plot_utils.HENStreamType.cold_utility) or the hot stream as steam
(idaes.vis.plot_utils.HENStreamType.hot_utility).

Additionally, the exchanger could have the key modules, like this:

{'"hot': 'H1', 'cold': 'Cl', 'Q': 667, 'A': 50, 'annual_cost':
-10979, 'stg': 3,
'modules': {10: 1, 20: 2}}

The value of this key is a dictionary where each key is a module area and each value is how
many modules of that area are in the exchanger. It’s indicated as a tooltip on the resulting
diagram.

If a stream is involved in multiple exchanges in teh same stage, the stream will split into
multiple sub-streams with each sub-stream carrying one of the exchanges.

e stream 1list — List of dicts representing streams where each item is a dict of the form:

{'name':'H1', 'temps': [443, 435, 355, 333], 'type':,
—HENStreamType.hot}

138 Chapter 3. Contents



IDAES Documentation, Release 0.60

* mark_temperatures_with_tooltips - if True, we plot the stream temperatures
and assign hover tooltips to them. Otherwise, we label them with text labels.

* mark modules_with_tooltips - if True, we plot markers for modules (if present)
and assign hover tooltips to them. Otherwise, we don’t add module info.

* stage_width — How many units to use for each stage in the diagram (defaults to 2).

* y_stream_step — How many units to use to separate each stream/sub-stream from the
next (defaults to 1).

classmethod isobar (data_frame, x=", y=[], title=", xlab="", ylab="", y_axis_type="auto’, leg-

end=[])
Need more information.

classmethod profile (data_frame, x=", y=[], title=", xlab="", ylab=", y_axis_type="auto’, leg-

end=[])
A profile plot includes 2 dependent variables and a single independent variable. Based on the Jupyter

notebook here.

Parameters
* data_frame — a data frame with keys contained in x and y.
* x — Key in data-frame to use as x-axis.
* y —Keys in data-frame to use as y-axis.
* title - Title for a plot.
* xlab — Label for x-axis.
¢ ylab - Label for y-axis.
* y_axis_type — Specify “log” to pass logarithmic scale.
* legend — List of strings matching y.

Returns Plot object on success.

Raises
* MissingVariablesException — Dependent variable or their data not passed.
* BadDataFrameException — No data-frame was generated for the model object.

”»

classmethod property model (data_frame, x=", y=[], title=", xlab=", ylab=",

y_axis_type="auto’, legend=[])
Draw pressure/enthalpy plots for different levels of temperature.

Parameters
* data_frame — a data frame with keys contained in x and y.
* x — Key in data-frame to plot on x-axis.
* y — Keys in data-frame to plot on y-axis.
* title - Title for a plot.
* xlab — Label for x-axis.
* ylab - Label for y-axis.
* y_axis_type — Specify “log” to pass logarithmic scale.
* legend - List of strings matching y.

Returns Plot object on success.

. Core Library 139


https://github.com/IDAES/model_contrib/blob/master/examples/mea_simple/mea_example_nb_01.ipynb

IDAES Documentation, Release 0.60

Raises
* MissingVariablesException — Dependent variable or their data not passed.
* BadDataFrameException — No data-frame was generated for the model object.

classmethod residual (data_frame, x=", y=[], title=", xlab=", ylab="", y_axis_type="auto’, leg-

end=[])
Plot x, some continuous value (e.g: T, P), against Y (% residual value). Is this %-value calculated from

variables in the idaes_model_object?

Parameters
* data_frame — a data frame with keys contained in x and y.
* x — Key in data-frame to use as x-axis.
* y — Keys in data-frame to plot on y-axis.
e title - Title for a plot.
* xlab — Label for x-axis.
* ylab - Label for y-axis.
* y_axis_type - Specify “log” to pass logarithmic scale.
* legend — List of strings matching y.

Returns Plot object on success.

Raises
* MissingVariablesException — Dependent variable or their data not passed.
* BadDataFrameException — No data-frame was generated for the model object.

resize (height=-1, width=-1)
Resize a plot’s height and width.

Parameters
* height — Height in screen units.
e width — Width in screen units.
Returns None
Raises None

save (destination)
Save the current plot object to HTML in filepath provided by destination.

Parameters destination — Valid file path to save HTML to.
Returns filename where HTML is saved.
Raises None

classmethod sensitivity (data_frame, x=", y=[], title=", xlab=", ylab=", y_axis_type="auto’,

legend=[])
Need more information.

show (in_notebook=True)
Display plot in a Jupyter notebook.

Parameters

* self — Plot object.

140

Chapter 3. Contents



IDAES Documentation, Release 0.60

* in_notebook — Display in Jupyter notebook or generate HTML file.
Returns None
Raises None

classmethod stream_table (data_frame, title="")
Display a table for all names in the idaes_model_object_names indexing rows according to row_start and
TOW_stop.

Parameters
* data_frame — a data frame with keys contained in x and y.
* title - Title for a plot.
Returns Plot object on success.
Raises
* MissingVariablesException — Dependent variable or their data not passed.
* BadDataFrameException — No data-frame was generated for the model object.

classmethod tradeoff (data_frame, x=", y=[], title=", xlab=", ylab="", y_axis_type="auto’, leg-

end=[])
Draw some parameter varying and the result on the objective value.

Parameters
* data_frame — a data frame with keys contained in x and y.
¢ x — Key in data-frame to use as x-axis.
» y — Keys in data-frame to plot on y-axis.
* title - Title for a plot.
* xlab — Label for x-axis.
¢ ylab — Label for y-axis.
* y_axis_type — Specify “log” to pass logarithmic scale.
* legend — List of strings matching y.
Returns Plot object on success.
Raises
* MissingVariablesException — Dependent variable or their data not passed.

* BadDataFrameException — No data-frame was generated for the model object.

3.2.8 Plot utilities

The plot utilities module implements helper/utility methods used for visualization.

class idaes.vis.plot_utils.HENStreamType
Enum type defining hot and cold streams

3.2. Core Library 141



IDAES Documentation, Release 0.60

idaes.vis.plot_utils.add_exchanger_ labels (plot, x, y_start, y_end, label_font_size,
exchanger, module_marker_line_color,
module_marker_fill_color,

mark_modules_with_tooltips)
Plot exchanger labels for an exchanger (for Q and A) on a heat exchanger network diagram and add module

markers (if needed).
Parameters
* plot - bokeh.plotting.plotting.figure instance.
* label font_ size — font-size for labels.
* x — x-axis coordinate of exchanger (exchangers are vertical lines so we just need 1 x-value)
* y_start - y-axis coordinate of exchanger start.
* y_end - y-axis coordinate of exchanger end.

* exchanger — exchanger dictionary of the form:

{'hot': 'H2', 'cold': 'Cl', 'Q': 1400, 'A': 159, 'annual_cost':
28358,
'stg': 2}

* module_marker line_color — color of border of the module marker.
* module marker fill color — color inside the module marker.

* mark_modules_with_tooltips — whether to add tooltips to plot or not (currently not
utilized).

Returns modified bokeh.plotting.plotting.figure instance with labels added.
Raises None

idaes.vis.plot_utils.add_module_markers_to_heat_exchanger_ plot (plot, x, y, mod-
ules, line_color,
fill_color,

mark_modules_with_tooltips)
Plot module markers as tooltips to a heat exchanger network diagram.

Parameters
* plot — bokeh.plotting.plotting.figure instance.
* x — x-axis coordinate of module marker tooltip.
* y — y-axis coordinate of module marker tooltip.
* modules — dict containing modules.
* line_color — color of border of the module marker.
e £ill color — color inside the module marker.

* mark_modules_with_tooltips — whether to add tooltips to plot or not (currently not
utilized).

Returns bokeh.plotting.plotting.figure instance with module markers added.
Raises None

idaes.vis.plot_utils.get_color_dictionary (set_to_color)
Given a set, return a dictionary of the form:

142 Chapter 3. Contents



IDAES Documentation, Release 0.60

{'set_member': valid_bokeh_color}

Args: set_to_color: set of unique elements, e.g: [1,2,3] or [“17, “27, “3”]

Returns: Dictionary of the form:

{'set_member': valid_bokeh_color}

Raises: None

idaes.vis.plot_utils.get_stream_y_values (exchangers, hot_streams, cold_streams,

y_stream_step=1)
Return a dict containing the layout of the heat exchanger diagram including any stage splits.

Parameters

* exchangers — List of exchangers where each exchanger is a dict of the form:

{'hot': 'H2', 'cold': 'Cl', 'Q': 1400, 'A': 159, 'annual_cost':,
28358,
'stg': 2}

where hot is the hot stream name, cold is the cold stream name, A is the area (in m”"2),
annual_cost is the annual cost in $, Q is the amount of heat transferred from one stream
to another in a given exchanger and stg is the stage the exchanger belongs to. Ad-
ditionally a ‘utility_type’ can specify if we draw the cold stream as water (idaes.
vis.plot_utils.HENStreamType.cold_utility) or the hot stream as steam
(idaes.vis.plot_utils.HENStreamType.hot_utility).

Additionally, the exchanger could have the key ‘modules’, like this:

{'hot': 'H1', 'cold': 'Cl', 'Q': 667, 'A': 50, 'annual_cost':
—10979, 'stg': 3,
'modules': {10: 1, 20: 2}}

* hot_streams — List of dicts representing hot streams where each item is a dict of the
form:

{'"name':'H1', 'temps': [443, 435, 355, 333], 'type': HENStreamType.
—hot }

* cold_streams — List of dicts representing cold streams where each item is a dict of the
form:

{'"name':'H1'"', 'temps': [443, 435, 355, 333], 'type': HENStreamType.
—hot}

* y_stream step — how many units on the HEN diagram to leave between each stream
(or sub-stream) and the one above it. Defaults to 1.

Returns
* stream_y_values_dict : a dict of each stream name as key and value being a dict of the form

This indicates what the default y value of this stream will be on the diagram and what values
we’ll use when it splits.

* hot_split_streams : list of tuples of the form (a,b) where a is a hot stream name and b is the
max. times it will split over all the stages.

3.2. Core Library 143



IDAES Documentation, Release 0.60

* cold_split_streams : list of tuples of the form (a,b) where a is a cold stream name and b is the
max. times it will split over all the stages.

Return type Tuple containing 3 dictionaries to be used when plotting the HEN
Raises None

idaes.vis.plot_utils.is_hot_or_cold_utility (exchanger)
Return if an exchanger is a hot or a cold utility by checking if it has the key utility_type.

Parameters exchanger — dict representing the exchanger.
Returns True if utility_type in the exchanger dict passed.
Raises None

idaes.vis.plot_utils.plot_line_segment (plot, x_start, x_end, y_start, y_end, color="white’,

legend=None)
Plot a line segment on a bokeh figure.

Parameters

* plot - bokeh.plotting.plotting.figure instance.

* x_start — x-axis coordinate of 1st point in line.

* x_end — x-axis coordinate of 2nd point in line.

* y_start - y-axis coordinate of 1st point in line.

* y_end - y-axis coordinate of 2nd point in line.

e color — color of line (defaults to white).

* legend — what legend to associate with (defaults to None).
Returns modified bokeh.plotting.plotting.figure instance with line added.
Raises None

idaes.vis.plot_utils.plot_stream_arrow (plot, line_color, stream_arrow_temp,
temp_label_font_size, x_start, x_end, y_start,

y_end, stream_name=None)
Plot a stream arrow for the heat exchanger network diagram.

Parameters

* plot — bokeh.plotting.plotting.figure instance.

e line_color — color of arrow (defaults to white).

* stream arrow_temp — Tempreature of the stream to be plotted.

* temp_label_ font_size - font-size of the temperature label to be added.

e x_start — x-axis coordinate of arrow base.

* x_end - x-axis coordinate of arrow head.

* y_start - y-axis coordinate of arrow base.

* y_end - y-axis coordinate of arrow head.

e stream_name — Name of the stream to add as a label to arrow (defaults to None).
Returns modified bokeh.plotting.plotting.figure instance with stream arrow added.

Raises None

144 Chapter 3. Contents



IDAES Documentation, Release 0.60

idaes.vis.plot_utils.turn_off grid_and_axes_ticks (plot)
Turn off axis ticks and grid lines on a bokeh figure object.

Parameters plot — bokeh.plotting.plotting.figure instance.
Returns modified bokeh.plotting.plotting.figure instance.
Raises None

idaes.vis.plot_utils.validate (data_frame, x, y, legend=None)
Validate that the plot parameters are valid.

Parameters
* data_frame — a pandas data frame of any type.
* x — Key in data-frame to use as x-axis.
* y — Keys in data-frame to use as y-axis.
* legend — List of labels to use as legend for a plot.

Returns True on valid data frames (if x and y are in the data frame keys) Raises exceptions other-
wise.

Raises
* MissingVariablesException - on bad legend labels (if passed)

» BadDataFrameException - on invalid data frame.

3.2.9 Examples

Drawing heat exchanger network diagrams

The following example demonstrates how to generate a heat exchanger network diagram.

In the code below, different streams are defined in the streams list. For each stream, we expect a name (name), a
list of temperatures (femps) and a type field specifying if this is a hot stream (HENStreamType.hot) or a cold one
(HENStreamType.cold).

The exchangers list defines the heat exchangers. Each exchanger is defined by its hot/cold stream (hot, cold) which
must match one of the streams in the streams list above. We also require for each exchanger the area (A),the amount
of heat transferred from one stream to another (Q), annual cost (annual_cost) and stage (stg). If the utility_type key
is passed and it’s set to HENStreamType.cold_utility then we draw the cold stream of the exchanger as water. If the
utility_type key is passed and it’s set to HENStreamType.hot_utility then we draw the hot stream of the exchanger as
steam.

The color-codes of each stage are picked randomly in the final diagram.

from bokeh.io import output_notebook

from bokeh.plotting import show

from idaes.vis.plot import Plot

from idaes.vis.plot_utils import HENStreamType

exchangers = [
{'"hot': 'H2', 'cold': 'Cl', 'Q': 1400, 'A': 159, 'annual_cost': 28358, 'stg': 2},
{"hot': 'H1', 'cold': 'Cl', 'Q': 667, 'A': 50, 'annual_cost': 10979, 'stg': 3},
{"hot': 'H1', 'cold': 'Cl', 'Q': 233, 'A': 10, 'annual_cost': 4180, 'stg': 1},
{'"hot': 'H1', 'cold': 'C2', 'Q': 2400, 'A': 355, 'annual_cost': 35727, 'stg': 2},
{"hot': 'H2', 'cold': 'wW', 'Q': 400, 'A': 50, 'annual_cost': 10979, 'stg': 3,

—'utility type': HENStreamType.cold utilitv},

(continues on next page)

3.2. Core Library 145




IDAES Documentation, Release 0.60

(continued from previous page)

{"hot': 'S', 'cold': 'C2', 'Q': 450, 'A': 50, 'annual_cost': 0, 'stg': 1,
—'utility type': HENStreamType.hot_utility}
1

streams = [
{'name':'H2'"', 'temps': [423, 423, 330, 303], 'type': HENStreamType.hot},
{'name':'H1'"', 'temps': [443, 435, 355, 333], 'type': HENStreamType.hot},
{'"name':'Cl", 'temps': [408, 396, 326, 293], 'type': HENStreamType.cold},
{'"name':'C2", 'temps': [413, 413, 353, 353], 'type': HENStreamType.cold}

1

plot_obj = Plot.heat_exchanger_network (exchangers, streams,

mark_temperatures_with_tooltips=True)
plot_obj.show ()

By default tooltips are used to mark stream temperatures. We can disable those and add labels instead as seen below.
They can be a bit crowded and for now you can just zoom in to decipher crowded labels (but we’re working on that!)

plot_obj = Plot.heat_exchanger_network (exchangers, streams,
mark_temperatures_with_tooltips=False)
plot_obj.show()

In case a stream exchanges with multiple streams in the same stage, this is handled through a stage split. We also
currently support describing modules for each exchanger that are added as tooltips to the area label on each exchanger.
The example below demonstrates this functionality:

exchangers = [
{"hot': 'H1', 'cold': 'C2', 'Q': 2400, 'A': 355, 'annual_cost': 35727, 'stg': 2},
{"hot': 'H2', 'cold': 'C2', 'Q': 1700, 'A': 159, 'annual_cost': 28358, 'stg': 2},
{"hot': 'H1', 'cold': 'C2', 'Q': 1700, 'A': 159, 'annual_cost': 28358, 'stg': 3},
{'"hot': 'H1', 'cold': 'Cl', 'Q': 667, 'A': 50, 'annual_cost': 10979, 'stg': 3,
— 'modules': {10: 1, 20: 2}},
{"hot': 'H2', 'cold': 'C3', 'Q': 1700, 'A': 159, 'annual_cost': 28358, 'stg': 3},
{'"hot': 'H2', 'cold': 'C2', 'Q': 1700, 'A': 159, 'annual_cost': 28358, 'stg': 3,
—'modules': {10: 1, 20: 2}},
{"hot': 'H3', 'cold': 'C2', 'Q': 1700, 'A': 159, 'annual_cost': 28358, 'stg': 3},
{"hot': 'H2', 'cold': 'wW', 'Q': 400, 'A': 50, 'annual_cost': 10979, 'stg': 3,
—'utility_type': HENStreamType.cold_utility},
{'"hot': 'S', 'cold': 'C2', 'Q': 450, 'A': 50, 'annual_cost': 0, 'stg': 1,

—'utility type': HENStreamType.hot_utility}
]

streams = [
{'name':'H3', 'temps': [423, 423, 330, 303], 'type': HENStreamType.hot},
{'name':'H2', 'temps': [423, 423, 330, 303], 'type': HENStreamType.hot},
{'name':'H1'"', 'temps': [443, 435, 355, 333], 'type': HENStreamType.hot},
{"name':'Cl'", 'temps': [408, 396, 326, 293], 'type': HENStreamType.cold},
{'"name':'C2", 'temps': [413, 413, 353, 353], 'type': HENStreamType.cold},
{'"name':'C3", 'temps': [413, 413, 353, 353], 'type': HENStreamType.cold}

1

plot_obj = Plot.heat_exchanger_network (exchangers, streams,

mark_temperatures_with_tooltips=True,
mark_modules_with_tooltips=True,
stage_width=2,

(continues on next page)

146 Chapter 3. Contents




IDAES Documentation, Release 0.60

(continued from previous page)

y_stream_step=1)
plot_obj.show ()

Plotting profile plots from the MEA example

Note: The following has not been tested recently and should be considered a work in progress.
The following examples demonstrate the resize, annotation and saving functionalities.

In the following example, we being by preparing a data frame from our flowsheet variables.

# Absorber CO2 Levels

from pandas import DataFrame
import os

tmp = fs.absorb.make_profile (t=0)
tmp = fs.regen.make_profile (t=0)

plot_dict = {'z':fs.absorb.profile_1['2z"'],
'yv1':fs.absorb.profile_l.y_vap_C02x101325.0,
'yv2':fs.absorb.profile_1.P_star_ CO2}

plot_data_frame = DataFrame (data=plot_dict)

We can then plot the data frame we just made, show it, resize it and save it.

absorber_co2_plot = Plot.profile(plot_data_frame,

x = 'z",

y = ['yl','yv2'],

title = 'Absorber CO2 Levels',

xlab = 'Axial distance from top (m)',
ylab = 'Partial Pressure CO2 (Pa)',
legend = ['Bulk vapor', 'Equilibrium'])

absorber_co2_plot.show ()
absorber_co2_plot.save ('/home/jovyan/model_contrib/absorber_co2_plot.html")
assert (os.path.isfile (' /home/jovyan/model_contrib/absorber_co2_plot.html'))

absorber_co2_plot.resize (height=400,width=600)

absorber_co2_plot.show ()

absorber_co2_plot.save ('/home/jovyan/model_contrib/absorber_co2_plot_resized.html')
assert (os.path.isfile (' /home/jovyan/model_contrib/absorber_co2_plot_resized.html'))

The following demonstrates the annotate functionality by plotting a second plot from the same flowsheet.

from IPython.core.display import display, HTML
stripper_co2_plot = Plot.profile(plot_data_frame,

[}

x = "'z",
y = ['yl','yv2'],

title = 'Stripper CO2 Levels',

xlab = 'Axial distance from top (m)',
ylab = 'Partial Pressure CO2 (Pa)',
legend = ['Bulk vapor', 'Equilibrium'])

stripper_co2_plot.show ()
stripper_co2_plot.save ('/home/jovyan/model_contrib/stripper_co2_plot.html")
assert (os.path.isfile (' /home/jovyan/model_contrib/stripper_co2_plot.html'))

We can then annotate the “Reboiler vapor” point as shown below:

3.2. Core Library 147




IDAES Documentation, Release 0.60

stripper_co2_plot.annotate(rloc,rco2p, 'Reboiler vapor')
stripper_co2_plot.show ()
stripper_co2_plot.save ('/home/jovyan/model_ contrib/stripper_co2_plot_annotated.html')

3.2.10 Examples

Contents

* Examples

— Hello, world!

The examples are stored in Jupyter notebooks.

Hello, world!

This example was generated by the command: jupyter  nbconvert —to  html  exam-
ples/notebooks/HelloWorldExample.ipynb

3.2.11 Core API Documentation

Information on specific functions, classes, and methods for the IDAES core framework.
idaes.core package

Subpackages

idaes.core.plugins package

Submodules

idaes.core.plugins.pyosyn module

class idaes.core.plugins.pyosyn.Pyosyn (**kwds)
Bases: pyomo.core.base.plugin.Transformation

Transformation to create a process synthesis model.

idaes.core.util package
Subpackages
idaes.core.util.convergence package

Subpackages

148 Chapter 3. Contents




IDAES Documentation, Release 0.60

Submodules
idaes.core.util.convergence.convergence module

This module is a command-line script for executing convergence evaluation testing on IDAES models.

Convergence evaluation testing is used to verify reliable convergence of a model over a range of conditions for in-
puts and parameters. The developer of the test must create a ConvergenceEvaluation class prior to executing any
convergence testing (see convergence_base.py for documentation).

Convergence evaluation testing is a two step process. In the first step, a json file is created that contains a set of points
sampled from the provided inputs. This step only needs to be done once - up front. The second step, which should
be executed any time there is a major code change that could impact the model, takes that set of sampled points and
solves the model at each of the points, collecting convergence statistics (success/failure, iterations, and solution time).

To find help on convergence.py: $ python convergence.py —help

You will see that there are some subcommands. To find help on a particular subcommand: $ python conver-
gence.py <subcommand> —help

To create a sample file, you can use a command-line like the following (this should be done once by the model
developer for a few different sample sizes):

$ python ../.../../core/util/convergence/convergence.py create-sample-file -s PressureChanger-10.json
-N 10 —seed=42 -e idaes.models.convergence.pressure_changer.pressure_changer_conv_eval.PressureChangerConvergenceE

More commonly, to run the convergence evaluation: $ python ../../../core/util/convergence/convergence.py run-
eval -s PressureChanger-10.json

Note that the convergence evaluation can also be run in parallel if you have installed MPI and mpi4py using a command
line like the following:

$ mpirun -np 4 python ../../../core/util/convergence/convergence.py run-eval -s PressureChanger-10.json

idaes.core.util.convergence.convergence.main ()

idaes.core.util.convergence.convergence_base module

This module provides the base classes and methods for running convergence evaluations on IDAES models. The con-
vergence evaluation runs a given model over a set of sample points to ensure reliable convergence over the parameter
space.

The module requires the user to provide:

* aset of inputs along with their lower bound, upper bound, mean,
and standard deviation.

* an initialized Pyomo model

* a Pyomo solver with appropriate options

The module executes convergence evaluation in two steps. In the first step, a json file is created that contains a set of
points sampled from the provided inputs. This step only needs to be done once - up front. The second step, which
should be executed any time there is a major code change that could impact the model, takes that set of sampled points
and solves the model at each of the points, collecting convergence statistics (success/failure, iterations, and solution
time).

This can be used as a tool to evaluate model convergence reliability over the defined input space, or to verify that
convergence performance is not decreasing with framework and/or model changes.

3.2. Core Library 149



IDAES Documentation, Release 0.60

In order to write a convergence evaluation for your model, you must inherit a class from ConvergenceEvaluation, and
implement three methods:

 get_specification: This method should create and return a ConvergenceEvaluationSpecification object. There
are methods on ConvergenceEvaluationSpecification to add inputs. These inputs contain a string that identifies
a Pyomo Param or Var object, the lower and upper bounds, and the mean and standard deviation to be used for
sampling. When samples are generated, they are drawn from a normal distribution, and then truncated by the
lower or upper bounds.

* get_initialized_model: This method should create and return a Pyomo model object that is already initialized
and ready to be solved. This model will be modified according to the sampled inputs, and then it will be solved.

* get_solver: This method should return an instance of the Pyomo solver that will be used for the analysis.

There are methods to create the sample points file (on ConvergenceEvaluationSpecification), to run a convergence
evaluation (run_convergence_evaluation), and print the results in table form (print_convergence_statistics).

However, this package can also be executed using the command-line interface. See the documentation in conver-
gence.py for more information.

class idaes.core.util.convergence.convergence_base.ConvergenceEvaluation
Bases: object

get_initialized model ()
User should override this method to return an initialized model that is ready to solve. The convergence
evaluation methods will change the values of parameters or variables according to the sampling specifica-
tions.

Returns Pyomo model — model object that will be used in the evaluation.
Return type return a Pyomo model object that is initialized and ready to solve. This is the

get_solver ()
User should create and return the solver that will be used for the convergence evaluation (including any
necessary options)

Returns
Return type Pyomo solver

get_specification ()
User should override this method to return an instance of the ConvergenceEvaluationSpecification for this
particular model and test set.

The basic flow for this method is:
* Create a ConvergenceEvaluationSpecification
* Call add_sampled_input for every input that should be varied.

* return the ConvergenceEvaluationSpecification

Returns
Return type ConvergenceEvaluationSpecification
class idaes.core.util.convergence.convergence_base.ConvergenceEvaluationSpecification
Bases: object

add_sampled_input (name, pyomo_path, lower, upper, mean, std)
Add an input that should be sampled when forming the set of specific points that need to be run for the
convergence evaluation

150 Chapter 3. Contents


https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

IDAES Documentation, Release 0.60

The input will be sampled assuming a normal distribution (with given mean and standard devation) trun-
cated to the values given by lower and upper bounds

Parameters
* name (st r)— The name of the input.

* pyomo_path (str)— A string representation of the path to the variable or parameter to
be sampled. This string will be executed to retrieve the Pyomo component.

* lower (float)— A lower bound on the input variable or parameter.
* upper (f1oat)— An upper bound on the input variable or parameter
* mean (float)— The mean value to use when generating samples
* std (float)— The standard deviation to use when generating samples
Returns
Return type N/A
inputs

class idaes.core.util.convergence.convergence_base.Stats (results)
Bases: object

idaes.core.util.convergence.convergence_base.print_convergence_statistics (inputs,
re-
sults,

s)
Print the statistics returned from run_convergence_evaluation in a set of tables

Parameters

* inputs (dict) — The inputs dictionary returned by run_convergence_evaluation

* results (dict) - The results dictionary returned by run_convergence_evaluation
Returns
Return type N/A

idaes.core.util.convergence.convergence_base.run_convergence_evaluation (sample_file_dict,

conv_eval)
Run convergence evaluation and generate the statistics based on information in the sample_file.

Parameters

* sample_file_dict (dict) — Dictionary created by ConvergenceEvaluationSpecifica-
tion that contains the input and sample point information

* conv_eval (ConvergenceEvaluation) — The ConvergenceEvaluation object that
should be used

Returns
Return type N/A
idaes.core.util.convergence.convergence_base.run_convergence_evaluation_from_ sample_ file (sa

idaes.core.util.convergence.convergence_base.save_convergence_statistics (inputs,
re-
sults,
dmf=None)

3.2. Core Library 151


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 0.60

idaes.core.util.convergence.convergence_base.save_results_to_dmf (dmf, in-
puts, results,
stats)

Save results of run, along with stats, to DMF.
Parameters
* dmf (DMF) — Data management framework object
* inputs (dict) - Run inputs
* results (dict)— Run results
e stats (Stats) — Calculated result statistics
Returns None

idaes.core.util.convergence.convergence_base.write_sample_file (eval_spec, (file-
name, conver-
gence_evaluation_class_str,
n_points,

seed=None)
Samples the space of the inputs defined in the eval_spec, and creates a json file with all the points to be used in

executing a convergence evaluation
Parameters

* filename (str) — The filename for the json file that will be created containing all the
points to be run

* eval_spec (ConvergenceEvaluationSpecification)-The convergence eval-
uation specification object that we would like to sample

* convergence_evaluation_class_str (str) — Python string that identifies the
convergence evaluation class for this specific evaluation. This is usually in the form of
module.class_name.

* n_points (int) — The total number of points that should be created

* seed (int or None)— The seed to be used when generating samples. If set to None,
then the seed is not set

Returns

Return type N/A

idaes.core.util.convergence.mpi_utils module

class idaes.core.util.convergence.mpi_utils.MPIInterface
Bases: object

comm
have mpi
rank
size

class idaes.core.util.convergence.mpi_utils.ParallelTaskManager (n_total_tasks,
mpi_interface=None)
Bases: object

allgather global_data (local_data)

152 Chapter 3. Contents


https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

IDAES Documentation, Release 0.60

gather_global_data (local_data)
global_to_local_data (global_data)

is_root ()

Submodules
idaes.core.util.compare module

Provides a utility function for comparing two models

idaes.core.util.compare.compare (ml, m2, **kwargs)
The idea here is to go block by block through these two models, printing out the differences in the variables.
Some recursion to be expected. If mlname and/or m2name is assigned, the corresponding model will be re-
named to the given string

idaes.core.util.compare.compare_block (bl, b2, **kwargs)

idaes.core.util.compare.compare_var (vl, v2, plnames, p2names, **kwargs)

idaes.core.util.concave module

Utility functions for implementing piecewise linear underestimators for concave univariate expressions.
Implementation of the delta formulation from: Bergamini, M. L., Grossmann, 1., Scenna, N., & Aguirre, P. (2008).

An improved piecewise outer-approximation algorithm for the global optimization of MINLP models
involving concave and bilinear terms. Computers and Chemical Engineering, 32, 477-493. http://doi.org/
10.1016/j.compchemeng.2007.03.011

idaes.core.util.concave.add_concave_linear_underest (b, name, nsegs, x, f, f_expr, *sets,
**kwargs)

idaes.core.util.concave.add_concave_relaxation (b, z, x, f_expr, df_expr, nsegs, indx,
exists, block_bounds=(None, None),
bound_contract=None)

idaes.core.util.concave.try_eval (f, x)

idaes.core.util.config module

This module contains utility functions useful for validating arguments to IDAES modeling classes. These functions
are primarily designed to be used as the domain argument in ConfigBlocks.

idaes.core.util.config.is_parameter_block (val)
Domain validator for property package attributes

Parameters val — value to be checked

Returns TypeError if val is not an instance of PropertyParameterBase, ‘use_parameter_block’ or
None

idaes.core.util.config.is_port (arg)
Domain validator for ports

Parameters arg — argument to be checked as a Port

Returns Port object or Exception

3.2. Core Library 153


http://doi.org/10.1016/j.compchemeng.2007.03.011
http://doi.org/10.1016/j.compchemeng.2007.03.011

IDAES Documentation, Release 0.60

idaes.core.util.config.list_of_floats (arg)
Domain validator for lists of floats

Parameters arg — argument to be cast to list of floats and validated

Returns List of strings

idaes.core.util.config.list_of_strings (arg)
Domain validator for lists of strings

idaes.core.util.convex module

Parameters arg — argument to be cast to list of strings and validated

Returns List of strings

Utility functions for generating envelopes for convex nonlinear functions

idaes.core.util.convex.add_convex_relaxation (b, z, x, f_ expr, df_expr, nsegs, indx,

exists, block_bounds=(None, None),
bound_contract=None)

Constructs a linear relaxation to bound a convex equality function

Parameters

* b (Block)-PyOMO block in which to generate variables and constraints

* z (Expression)—PyOMO expression for the convex function output

* x (Expression)—PyOMO expression for the convex function input

* £ expr (function) - convex function

* df expr (function) — function giving first derivative of convex function with respect
to x

* exists (_VarData) — Variable corresponding to existence of unit

* block_bounds (dict, optional)-dictionary describing disjunctive bounds present
for variables associated with current block

Returns None

idaes.core.util.convex.try_eval (f, x)

idaes.core.util.cut_gen module

This module provides utility functions for cut generation.

idaes.core.util.cut_gen.clone_block (old_block, new_block, var_set, Ibda)
This function acts similarly to the built-in Pyomo clone function, but excludes entries that are undesired for this

platform.

idaes.

idaes
idaes
idaes

idaes

core

.Core.

.Core.

.Core

.Core.

.util.
util.
util.
.util.

util.

cut_gen

cut_gen.

cut_gen.

cut_gen

cut_gen.

.clone_block constraints (old_block, new_block, var_set)

clone_block_params (old_block, new_block)

clone_block_sets (old_block, new_block)

.clone_block_vars (old_block, new_block, var_set, Ibda)

copy_var_data (new_var_data, old_var_data)

154

Chapter 3. Contents


https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 0.60

idaes.core.util.cut_gen.count_vars (old_block)
Count the number of non-fixed variables to clone

idaes.core.util.cut_gen.get_sum_sq diff (old_block, new_block)

idaes.core.util.cut_gen.self_proj_var_ rule (main_var, disagg_var, var_set, Ibda)

idaes.core.util.debug module

Debugging utility functions.

idaes.core.util.debug.display_infeasible_bounds (m, fol=1e-06)
Print the infeasible variable bounds in the model.

Parameters
* m (BIlock)— Pyomo block or model to check
* tol (float) - feasibility tolerance

idaes.core.util.debug.display_infeasible_constraints (m, tol=1e-06)
Print the infeasible constraints in the model.

Uses the current model state. Prints to standard out.
Parameters
* m (Block) - Pyomo block or model to check
* tol (float) - feasibility tolerance

idaes.core.util.debug.log_disjunct_values (m, integer_tolerance=0.001, logger=<Logger

idaes.debug (INFO)>, selected_only=False)
Display logical value of model disjuncts.

Parameters
* integer_tolerance (float) — tolerance on integrality test.
* logger — logger to use for output. Otherwise, default debug module logger is used.

* selected_only - only log the selected disjuncts

idaes.core.util.expr module

Utility functions for working with Pyomo expressions.

idaes.core.util.expr.is_linear (expr)
Check if the Pyomo expression is linear.

TODO: There is the possibility for false negatives (if there is a nonlinear expression of a mutable parameter).
Need to test this.

Parameters expr (Expression)—Pyomo expression
Returns True if expression is linear; False otherwise.
Return type bool

Raises ValueError —if polynomial degree is negative

idaes.core.util.expr.log_active_nonlinear_ constraints (model, logger=<RootLogger

root (WARNING)>)
Log names of the active nonlinear constraints.

3.2. Core Library 155


https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

IDAES Documentation, Release 0.60

idaes.core.util.initialization module

Library of utility functions for initialization

idaes.core.util.initialization.get_port_value (port, port_idx=None)

idaes.core.util. mccormick module

Utility functions for implementing piecewise (or standard) McCormick envelopes

Implementation of the McCormick envelope formulation given in: Misener, R., Thompson, J. P., & Floudas, C. A.
(2011). Apogee:

Global optimization of standard, generalized, and extended pooling problems via linear and logarithmic
partitioning schemes. Computers and Chemical Engineering, 35(5), 876-892. http://doi.org/10.1016/j.
compchemeng.2011.01.026

idaes.core.util.mccormick.add_mccormick_cut (b, name, indx, z, x, y, exists, **kwargs)

idaes.core.util.mccormick.add _mccormick_relaxation (b, z, x, y, nsegs, indx, exists,

block_bounds=(None, None))
Adds McCormick envelopes for a bilinear term z =x * y

Parameters
* b (Block)—-PyOMO block in which to put constraints and helper variables
* z (Expression)—PyOMO expression for the bilinear product

* x (Expression)—expression for the bilinear operand to be divided into segments for the
piecewise case

* y (Expression) — expression for the other bilinear operand

* nsegs (integer) — number of piecewise segments (normal is 1)

* indx (tuple or singleton)-index for an indexed bilinear term
* exists (Var) — variable corresponding to equipment existence

* block_bounds (dict, optional)-dictionary describing disjunctive bounds present
for variables associated with current block

Returns None
idaes.core.util.mccormick.setup_mccormick_cuts (b, name, nsegs, *sets)

idaes.core.util.mccormick.squish (fup)
Squishes a singleton tuple (‘A’,) to ‘A’

If tup is a singleton tuple, return the underlying singleton. Otherwise, return the original tuple.
Parameters tup (tuple)— Tuple to squish

idaes.core.util.mccormick.squish_concat (a, *b)

idaes.core.util.misc module

This module contains miscellaneous utility functions that of general use in IDAES models.

156 Chapter 3. Contents


http://doi.org/10.1016/j.compchemeng.2011.01.026
http://doi.org/10.1016/j.compchemeng.2011.01.026
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple

IDAES Documentation, Release 0.60

idaes.core.util.misc.add_object_ref (local_block, local_name, external_component)
Add a reference in a model to non-local Pyomo component. This is used when one Block needs to make use of
a component in another Block as if it were part of the local block.

Parameters
* local block — Block in which to add reference
* local_name - str name for referenced object to use in local_block
* external_ component — external component being referenced
Returns None

idaes.core.util.misc.category (*args)
Decorate tests to enable tiered testing.

Suggested categories:
1. frequent
2. nightly
3. expensive

4. research

Parameters xargs (tuple of strings)— categories to which the test belongs
Returns Either the original test function or skip
Return type function

idaes.core.util.misc.dict_set (v, d, pre_idx=None, post_idx=None, fix=False)

Set the values of array variables based on the values stored in a dictionary. There may already be a better way
to do this. Should look into it.

The value of Pyomo variable element with index key is set to d[key]
Arguments: v: Indexed Pyomo variable d: dictonary to set the variable values from, keys should match a subset
of Pyomo variable indexes.

pre_idx: fixed indexes before elements to be set or None post_idx: fixed indexes after elements to be set or None
fix: bool, fix the variables (otional)

idaes.core.util.misc.doNothing (*args, **kwargs)
Do nothing.

This function is useful for instances when you want to call a function, if it exists. For example: getattr(unit,
‘possibly_defined_function’, getNothing)()

Parameters

* xargs (anything)— accepts any argument

* xxkwargs (anything) — accepts any keyword arguments
Returns None

idaes.core.util.misc.fix_port (port, var, comp=None, value=None, port_idx=None)
Method for fixing Vars in Ports.

Parameters

* port — Port object in which to fix Vars

3.2. Core Library 157



IDAES Documentation, Release 0.60

e var — variable name to be fixed (as str)
* comp — index of var to be fixed (if applicable, default = None)

* value - value to use when fixing var (default = None)

e port_idx - list of Port elements at which to fix var. Must be list of valid indices,

Returns None

idaes.core.util.misc.get_pyomo_tmp files ()

Make Pyomo write it’s temporary files to the current working directory, useful for checking nl, sol, and log files

for ASL solvers without needing to track down the temporary file location.

idaes.core.util.misc.get_time (results)
Retrieve the solver-reported elapsed time, if available.

idaes.core.util.misc.hhmmss (sec_in)

Convert elapsed time in seconds to “d days hh:mm:ss.ss” format. This is nice for things that take a long time.

idaes.core.util.misc.requires_solver (solver)
Decorate test to skip if a solver isn’t available.

idaes.core.util.misc.round_ (n, *args, **kwargs)
Round the number.

This function duplicates the functionality of round, but when passed positive or negative infinity, simply returns

the argument.

idaes.core.util.misc.smooth_abs (a, eps=0.0001)
General function for creating an expression for a smooth minimum or maximum.

Parameters
* a —term to get absolute value from (Pyomo component, float or int)
* eps — smoothing parameter (Param, float or int) (default=1e-4)
Returns An expression for the smoothed absolute value operation.

idaes.core.util.misc.smooth_max (a, b, eps=0.0001)
Smooth maximum operator.

Parameters

e a — first term in max function

* b —second term in max function

* eps — smoothing parameter (Param or float, default = le-4)
Returns An expression for the smoothed maximum operation.

idaes.core.util.misc.smooth_min (a, b, eps=0.0001)
Smooth minimum operator.

Parameters

* a — first term in min function

* b —second term in min function

* eps — smoothing parameter (Param or float, default = le-4)
Returns An expression for the smoothed minimum operation.

idaes.core.util.misc.smooth_minmax (a, b, eps=0.0001, sense="max’)
General function for creating an expression for a smooth minimum or maximum.

158

Chapter 3. Contents



IDAES Documentation, Release 0.60

Parameters
* a — first term in mix or max function (Pyomo component, float or int)
* b —second term in min or max function (Pyomo component, float or int)
* eps - smoothing parameter (Param, float or int) (default=1e-4)
* sense — ‘mim’ or ‘max’ (default = ‘max’)
Returns An expression for the smoothed minimum or maximum operation.

idaes.core.util.misc.solve_indexed_blocks (solver, blocks, **kwds)
This method allows for solving of Indexed Block components as if they were a single Block. A temporary Block
object is created which is populated with the contents of the objects in the blocks argument and then solved.

Parameters
* solve —a Pyomo solver object to use when solving the Indexed Block
* blocks — an object which inherits from Block, or a list of Blocks
* kwds — a dict of argumnets to be passed to the solver

Returns A Pyomo solver results object

idaes.core.util.misc.unfix_port (port, var, comp=None, port_idx=None)
Method for unfixing Vars in Ports.

Parameters
* port — Port object in which to unfix Vars
e var - variable name to be unfixed (as str)
* comp — index of var to be unfixed (if applicable, default = None)
* port_idx - list of Port elements at which to unfix var. Must be list of valid indices,

Returns None

idaes.core.util.model_serializer module

Functions for saving and loading Pyomo objects to json

class idaes.core.util.model_serializer.Counter
Bases: object

3.2. Core Library 159


https://docs.python.org/3/library/functions.html#object

IDAES Documentation, Release 0.60

class idaes.core.util.model_serializer.StoreSpec (classes=((<class ‘py-

Bases: object

omo.core.base.param.Param’>, ()),
(<class ’pyomo.core.base.var.Var’>,

), (<class py-
omo.core.base.component. Component’>,
(Cactive’, ))), data_classes=((<class
"pyomo.core.base.var._VarData’>,

(fixed’, 'stale’, value’,
'Ib’, ‘ub’)), (<class ‘py-
omo.core.base.param._ParamData’>,
('value’, )), (<class ‘py-
omo.core.base.component.ComponentData’>,
(Cactive’, ),
skip_classes=(<class ‘py-

omo.core.base.external. ExternalFunction’>,
<class ’pyomo.core.base.sets.Set’>,
<class ’pyomo.network.port.Port’>,

<class ‘py-
omo.core.base.expression.Expression’>,
<class ‘py-

omo.core.base.rangeset.RangeSet’> ),
ignore_missing=True,  suffix=True,
suffix_filter=None)

A StoreSpec object tells the load/save JSON functions what to read or write. The default settings will produce
a StoreSpec configured to load/save the typical attributes required to load/save a model.

Initialize an object to specify what parts of a model are saved. Classes and data classes are checked in order. So
the more specific classes should go first and fallback cases should go last. Since classes like component catch
pretty muh everything, you can also specify classes to skip by adding classes to the skip class list. Classes and

data classes can also be skipped by setting there attribute list to None.

Parameters

classes — A list of classes to save. Each class is represented by a list (or tupple) containing
the following elements (1) class (compared using isinstance) (2) attribute list an empty list is
okay. If none skip this type. (3) optional load filter function. The load filter function returns
a list of attributes to read based on the state of an object and its saved state. The allows, for
example, loading values for unfixed variables, or only loading values whoes current value
is less than one. The filter function only applies to load not save. Filter functions take two
arguments (a) the object (current state) and (b) the dictionary containing the saved state of
an object.

data_classes — This takes the same form as the classes argument. This is for component
data classes.

skip_classes — This is a list of classes to skip. If a class appears in the skip list, but
also appears in the classes argument, the classes argument will override skip_classes.

ignore_missing — If True will ignore a componet or attribute that exists in the model,
but not in the stored state. If false an excpetion will be raised for things in the model that
should be loaded but aren’t in the saced state. Extra items in the saved state will not raise an
exception regaurdless of this arguments

suffix — If True store suffixes an component ids. If false, don’t stored suffixes, also don’t
store the compoent ids because they are only needed to read back suffixes.

160

Chapter 3. Contents


https://docs.python.org/3/library/functions.html#object

IDAES Documentation, Release 0.60

e suffix filter — None to store all siffixes if suffix=True, or a list of suffixes to store if
suffix=True

classmethod bound ()
Returns a StoreSpec object to store variable bounds only.

get_class_attr_list (o)
Look up what attributes to save/load for an Component object. :param o: Object to look up attribute list
for.

Returns A list of attributes and a filter function for object type

get_data_class_attr_list (o)
Look up what attributes to save/load for an ComponentData object. :param o: Object to look up attribute
list for.

Returns A list of attributes and a filter function for object type

classmethod isfixed()
Returns a StoreSpec object to store is variables are fixed.

set_read callback (attr, cb=None)
Set a callback to set an attribute, when reading from json or dict.

set_write_ callback (attr, cb=None)
Set a callback to get an attribute, when writing to json or dict.

classmethod suffix (suffix_filter=None)

classmethod value ()
Returns a StoreSpec object to store variable values only.

classmethod value_isfixed (only_fixed)
Retur a StoreSpec object to store variable values and if fixed. :param only_fixed: Only load fixed variable
values

classmethod value_isfixed_ isactive (only_fixed)
Retur a StoreSpec object to store variable values, if variables are fixed and if components are active. :param
only_fixed: Only load fixed variable values

idaes.core.util.model_serializer.component_data_from_dict (sd, o, wts)
Component data to a dict.

idaes.core.util.model_serializer.component_data_to_dict (o, wits)
Component data to a dict.

idaes.core.util.model_serializer.from_json (o, sd=None, fname=None, s=None,

wts=None, gz=False)
Load the state of a Pyomo component state from a dictionary, json file, or json string. Must only specify one

of sd, fname, or s as a non-None value. This works by going through the model and loading the state of each
sub-compoent of o. If the saved state contains extra information, it is ignored. If the save state doesn’t contain
an enetry for a model component that is to be loaded an error will be raised, unless ignore_missing = True.

Parameters
* o — Pyomo component to for which to load state
* sd — State dictionary to load, if None, check fname and s
e fname — JSON file to load, if None, check for s
* s — JSON string to load

» wts — StoreSpec object specifying what to load

3.2. Core Library 161



IDAES Documentation, Release 0.60

Returns
* etime_load_file: how long in seconds it took to load the json file
* etime_read_dict: how long in seconds it took to read models state
* etime_read_suffixes: how long in seconds it took to read suffixes
Return type Dictionary with some perfomance information. The keys are

idaes.core.util.model_serializer.load_json (*args, **kwargs)
Deprecated function will add warning soon. See from_json.

idaes.core.util.model_serializer.save_json (*args, **kwargs)
Deprecated function will add warning eventually. See to_json.

idaes.core.util.model_serializer.to_Jjson (o, fname=None, human_read=False, wts=None,
metadata={}, gz=False)
Save the state of a model to a Python dictionary, and optionally dump it to a json file. To load a model state, a

model with the same structure must exist. The model itself cannot be recreated from this.
Parameters
* fname - json file name to save model state, if None only create python dict

* human_read - if True, add indents and spacing to make the json file more readable, if
false cut out whitespace and make as compact as possilbe

* wts — is What To Save, this is a StoreSpec object that specifies what object types and
attributes to save. If None, the default is used which saves the state of the compelte model
state.

* metadata — addtional metadata to save beyond the standard format_version, date, and
time.

Returns A Python dictionary containing the state of the model. If fname is given this dictionary is
also dumped to a json file.

idaes.core.util. mpdisagg module

Utility functions for implementing multi-parametric disaggregation lower bounds

Implementation of lower-bounding formulation given in: Kolodziej, S., Castro, P. M., & Grossmann, 1. E. (2013).
Global

optimization of bilinear programs with a multiparametric disaggregation technique. Journal of Global
Optimization, 57(4), 1039-1063. http://doi.org/10.1007/s10898-012-0022-1

idaes.core.util.mpdisagg.add_mpDisagg_cut (b, name, indx, w, X, y, exists)

idaes.core.util.mpdisagg.setup_multiparametric_disagg (b, name, minPow, maxPow,
*sets)

idaes.core.util.oa module
idaes.core.util.partial_surrogate module
idaes.core.util.stream module

Stream Utilities

162 Chapter 3. Contents


http://doi.org/10.1007/s10898-012-0022-1

IDAES Documentation, Release 0.60

idaes.core.util.stream.make_stream table (model, attrs, t=0, idx={}, streams=None, ig-

nore_missing=False)
This function makes a stream table contained in a Pandas data frame.

Parameters
* model — Pyomo block to search for streams in.
* attrs — Pyomo port components to add to stream table
* t — Time index for the stream table data
* idx — Dictionary of index lists for indexed attributes

* streams — Explicit list of steam objects to include. If this is None all streams in model
will be included

* ignore_missing — If this is True and streams do not have all the attributes requested,
the steam will be included anyway with missing data. If this option is false, streams that do
not contain all required information will be excluded.

Returns A pandas data frame with port variables in columns and streams in rows. If a attribute is
requested that is not a port avriable, this will attempt to find the property package accociated
with the source and search there. This handles variables and expressions.

Examples

table = make_stream_table( model=model, attrs=[“flow_component”, “temperature”,  “pressure”],
idx={*“flow_component”:[“CO2”, “H20”, “N2”, “02”, “Ar”]}, t=0, ignore_missing=False)

idaes.core.util.var module

This module provides utility functions and classes related to Pyomo variables

class idaes.core.util.var.SliceVar (var, slices)
Bases: object

This class provides a way to pass sliced variables into other utility functions

class idaes.core.util.var.Wrapper (obj)
Bases: object

This class provides a wrapper around a Pyomo Component so that a Block does not try to attach and construct
it.

TODO: this might be a good place for a weakref implementation
idaes.core.util.var.is_fixed_ by bounds (expr, block_bounds=(None, None), tol=1e-14)

idaes.core.util.var.lb (expr, block_bounds=(None, None))
Returns the lower bound of the expression or variable

idaes.core.util.var.max_ub (exprl, expr2)
idaes.core.util.var.max_ubb (exprl, expr2, block_bounds)
idaes.core.util.var.min_1b (exprl, expr2)

idaes.core.util.var.min_1bb (exprl, expr2, block_bounds)

3.2. Core Library 163


https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

IDAES Documentation, Release 0.60

idaes.core.util.var.none_if_empty (fup)
Returns None if passed an empty tuple This is helpful since a SimpleVar is actually an Indexed Var with a single
index of None rather than the more intuitive empty tuple.

idaes.core.util.var.tighten_block_bound (var, newbound, block_bounds)
idaes.core.util.var.tighten_mc_var (vardata, x_expr, y_expr, block_bounds)

idaes.core.util.var.tighten_var_bound (var, newbound)
Tightens the variable bounds for one variable

This function does not blindly apply the bounds passed in. Rather, it evaluates whether the new proposed bounds
are better than the existing variable bounds.

Parameters
* var (_VarData) — single Pyomo variable object (not indexed like Var)
* newbound (tuple)—a tuple of (new lower bound, new upper bound)
Returns None

idaes.core.util.var.ub (expr, block_bounds=(None, None))
Returns the upper bound of the expression or variable

idaes.core.util.var.unwrap (obj)
Unwraps the wrapper, if one exists.

idaes.core.util.var.wrap_var (obj)
Provides a Wrapper around the obj if it is not a constant value; otherwise, returns the constant value.

idaes.core.util.var_test module

idaes.core.util.var_test.assert_var_equal (test_case, var, expected_val, tolerance)

idaes.core.util.var_test.value_correct (var, expected_val, tolerance)

Submodules
idaes.core.flowsheet_model module

This module contains the base class for constructing flowsheet models in the IDAES modeling framework.

idaes.core.holdup module

Core IDAES holdup models.

class idaes.core.holdup.Holdup (*args, **kwargs)
Bases: idaes.core.process_block.ProcessBlock

Holdup is a specialized Pyomo block for IDAES holdup blocks, and contains instances of Holdup-
Data. In most cases, users will want to use one of the derived holdup classes (HoldupOD, Holdup1D
or HoldupStatic for their models, however this class can be used to create the framework of a holdup
block to which the user can then add custom constraints.

Parameters

* rule — (Optional) A rule function or None. Default rule calls build().

164 Chapter 3. Contents


https://docs.python.org/3/library/stdtypes.html#tuple

IDAES Documentation, Release 0.60

concrete — If True, make this a toplevel model. Default - False.
ctype — (Optional) Pyomo ctype of the Block.

dynamic — Indicates whether this model will be dynamic, default - ‘use_parent_value’.
Valid values: { ‘use_parent_value’ - get flag from parent, True - set as a dynamic model,
False - set as a steady-state model }

include_holdup - Indicates whether holdup terms should be constructed or not.
Must be True if dynamic = True, default - ‘use_parent_value’. Valid values: {
‘use_parent_value* - get flag from parent (default = True), True - construct holdup terms,
False - do not construct holdup terms}

material_balance_type — Indicates what type of mass balance should be con-
structed, default - ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from
parent (default = ‘component’), ‘none’ - exclude material balances, **’component_phase’ -
use phase component balances, **’component_total’ - use total component balances, **’el-
ement_total’ - use total element balances. }

energy_balance_type — Indicates what type of energy balance should be constructed,
default - ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from parent
(default = ‘enthalpy_total’), ‘none’ - exclude energy balances, ‘enthalpy_total’ - single
ethalpy balance for material. }

momentum_balance_type — Indicates what type of momentum balance should be con-
structed, default - ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from
parent (default = ‘pressure’), ‘none’ - exclude momentum balances, ‘pressure’ - single
pressure balance for material. }

has_ rate reactions — Indicates whether terms for rate controlled reactions should be
constructed, default - ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag
from parent (default = False), True - include kinetic reaction terms, False - exclude kinetic
reaction terms. }

has_equilibrium_reactions - Indicates whether terms for equilibrium con-
trolled reactions should be constructed, default - ‘use_parent_value’. Valid values: {
‘use_parent_value’ - get flag from parent (default = False), True - include equilibrium
reaction terms, False - exclude equilibrium reaction terms. }

has_phase_equilibrium - Indicates whether terms for phase equilibrium should be

constructed (default = ‘use_parent_value’)

* ‘use_parent_value’ - get flag from parent (default = False)

* True - include phase equilibrium terms

* False - exclude phase equilibrium terms

has_mass_transfer: Indicates whether terms for mass transfer should be constructed, default
‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from parent (default = False),
True - include mass transfer terms, False - exclude mass transfer terms. }

has_heat_transfer: Indicates whether terms for heat transfer should be constructed, default
‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from parent (default = False),
True - include heat transfer terms, False - exclude heat transfer terms. }

has_work_transfer: Indicates whether terms for work transfer should be constructed, default
‘use_parent_value’. Valid values { ‘use_parent_value’ - get flag from parent (default = False), True
- include work transfer terms, False - exclude work transfer terms. }

3.2. Core Library

165



IDAES Documentation, Release 0.60

has_pressure_change: Indicates whether terms for pressure change should be constructed, default
- ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from parent (default = False),
True - include pressure change terms, False - exclude pressure change terms. }

property_package: Property parameter object used to define property calculations, default
‘use_parent_value’. Valid values: { ‘use_parent_value’ - get package from parent (default = None),
a ParameterBlock object.}

property_package_args: A dict of arguments to be passed to a property block and used when
constructing these, default - ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get package
from parent (default = None), dict - see property package for documentation. }

Returns New Holdup instance

class idaes.core.holdup.HoldupOD (*args, **kwargs)
Bases: idaes.core.process_block.ProcessBlock

HoldupOD is a specialized Pyomo block for IDAES non-discretized holdup blocks, and contains
instances of HoldupOdData.

HoldupOD should be used for any holdup with a defined volume and distinct inlets and outlets which
does not require spatial discretization. This encompases most basic unit models used in process
modeling.

Parameters

rule — (Optional) A rule function or None. Default rule calls build().
concrete — If True, make this a toplevel model. Default - False.
ctype — (Optional) Pyomo ctype of the Block.

dynamic — Indicates whether this model will be dynamic, default - ‘use_parent_value’.
Valid values: { ‘use_parent_value’ - get flag from parent, True - set as a dynamic model,
False - set as a steady-state model }

include_holdup - Indicates whether holdup terms should be constructed or not.
Must be True if dynamic = True, default - ‘use_parent_value’. Valid values: {
‘use_parent_value* - get flag from parent (default = True), True - construct holdup terms,
False - do not construct holdup terms}

material_balance_type — Indicates what type of mass balance should be con-
structed, default - ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from
parent (default = ‘component’), ‘none’ - exclude material balances, **’component_phase’ -
use phase component balances, **’component_total’ - use total component balances, **’el-
ement_total’ - use total element balances. }

energy_balance_type — Indicates what type of energy balance should be constructed,
default - ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from parent
(default = ‘enthalpy_total’), ‘none’ - exclude energy balances, ‘enthalpy_total’ - single
ethalpy balance for material. }

momentum_balance_type — Indicates what type of momentum balance should be con-
structed, default - ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from
parent (default = ‘pressure’), ‘none’ - exclude momentum balances, ‘pressure’ - single
pressure balance for material. }

has_rate_ reactions — Indicates whether terms for rate controlled reactions should be
constructed, default - ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag

166

Chapter 3. Contents



IDAES Documentation, Release 0.60

from parent (default = False), True - include kinetic reaction terms, False - exclude kinetic
reaction terms. }

* has_equilibrium_ reactions - Indicates whether terms for equilibrium con-
trolled reactions should be constructed, default - ‘use_parent_value’. Valid values: {
‘use_parent_value’ - get flag from parent (default = False), True - include equilibrium
reaction terms, False - exclude equilibrium reaction terms. }

* has_phase_equilibrium - Indicates whether terms for phase equilibrium should be

constructed (default = ‘use_parent_value’)
* ‘use_parent_value’ - get flag from parent (default = False)
* True - include phase equilibrium terms

* False - exclude phase equilibrium terms

has_mass_transfer: Indicates whether terms for mass transfer should be constructed, default -
‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from parent (default = False),
True - include mass transfer terms, False - exclude mass transfer terms. }

has_heat_transfer: Indicates whether terms for heat transfer should be constructed, default -
‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from parent (default = False),
True - include heat transfer terms, False - exclude heat transfer terms. }

has_work_transfer: Indicates whether terms for work transfer should be constructed, default -
‘use_parent_value’. Valid values { ‘use_parent_value’ - get flag from parent (default = False), True
- include work transfer terms, False - exclude work transfer terms. }

has_pressure_change: Indicates whether terms for pressure change should be constructed, default
- ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from parent (default = False),
True - include pressure change terms, False - exclude pressure change terms. }

property_package: Property parameter object used to define property calculations, default -
‘use_parent_value’. Valid values: { ‘use_parent_value’ - get package from parent (default = None),
a ParameterBlock object.}

property_package_args: A dict of arguments to be passed to a property block and used when
constructing these, default - ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get package
from parent (default = None), dict - see property package for documentation. }

Returns New HoldupOD instance
class idaes.core.holdup.HoldupOdData (component)
Bases: idaes.core.holdup.HoldupData
0-Dimensional (Non-Discretised) Holdup Class

This class forms the core of all non-discretized IDAES models. It builds property blocks and adds mass, energy
and momentum balances. The form of the terms used in these constraints is specified in the chosen property
package.

build()
Build method for HoldupOD blocks. This method calls submethods to setup the necessary property blocks,
distributed variables, material, energy and momentum balances based on the arguments provided by the
user.

Parameters None —

Returns None

3.2. Core Library 167



IDAES Documentation, Release 0.60

initialize (state_args=None, outlvl=0, optarg=None, solver="ipopt’, hold_state=True)
Initialisation routine for holdup (default solver ipopt)

Keyword Arguments

* state_args — adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

={D.

¢ outlvl - sets output level of initialisation routine. Valid values: 0 - no output (default), 1
- return solver state for each step in routine, 2 - include solver output infomation (tee=True)

* optarg — solver options dictionary object (default=None)
* solver — str indicating whcih solver to use during initialization (default = ‘ipopt’)

* hold state - flag indicating whether the initialization routine should unfix any state
variables fixed during initialization, default - True. Valid values: True - states varaibles
are not unfixed, and a dict of returned containing flags for which states were fixed dur-
ing initialization, False - state variables are unfixed after initialization by calling the re-
lase_state method.

Returns If hold_states is True, returns a dict containing flags for which states were fixed during
initialization.
model_check ()

This method exectues the model_check methods on the associated property blocks (if they exist). This
method is generally called by a unit model as part of the unit’s model_check method.

Parameters None —
Returns None

release_state (flags, outlvi=0)
Method to relase state variables fixed during initialisation.

Keyword Arguments

» flags — dict containing information of which state variables were fixed during initializa-
tion, and should now be unfixed. This dict is returned by initialize if hold_state = True.

* outlvl - sets output level of of logging
Returns None

class idaes.core.holdup.HolduplD (*args, **kwargs)
Bases: idaes.core.process_block.ProcessBlock

Parameters
* rule — (Optional) A rule function or None. Default rule calls build().
* concrete — If True, make this a toplevel model. Default - False.
* ctype - (Optional) Pyomo ctype of the Block.

* dynamic — Indicates whether this model will be dynamic, default - ‘use_parent_value’.
Valid values: { ‘use_parent_value’ - get flag from parent, True - set as a dynamic model,
False - set as a steady-state model }

* include_holdup - Indicates whether holdup terms should be constructed or not.
Must be True if dynamic = True, default - ‘use_parent_value’. Valid values: {
‘use_parent_value‘ - get flag from parent (default = True), True - construct holdup terms,
False - do not construct holdup terms}

168 Chapter 3. Contents



IDAES Documentation, Release 0.60

* material_balance_type — Indicates what type of mass balance should be con-
structed, default - ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from
parent (default = ‘component’), ‘none’ - exclude material balances, **’component_phase’ -
use phase component balances, **’component_total’ - use total component balances, **’el-
ement_total’ - use total element balances. }

* energy_balance_type — Indicates what type of energy balance should be constructed,
default - ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from parent
(default = ‘enthalpy_total’), ‘none’ - exclude energy balances, ‘enthalpy_total’ - single
ethalpy balance for material. }

* momentum_balance_type — Indicates what type of momentum balance should be con-
structed, default - ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from
parent (default = ‘pressure’), ‘none’ - exclude momentum balances, ‘pressure’ - single
pressure balance for material. }

* has_rate_reactions - Indicates whether terms for rate controlled reactions should be
constructed, default - ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag
from parent (default = False), True - include kinetic reaction terms, False - exclude kinetic
reaction terms. }

* has_equilibrium_ reactions - Indicates whether terms for equilibrium con-
trolled reactions should be constructed, default - ‘use_parent_value’. Valid values: {
‘use_parent_value’ - get flag from parent (default = False), True - include equilibrium
reaction terms, False - exclude equilibrium reaction terms.}

* has_phase_equilibrium - Indicates whether terms for phase equilibrium should be

constructed (default = ‘use_parent_value’)
* ‘use_parent_value’ - get flag from parent (default = False)
* True - include phase equilibrium terms

* False - exclude phase equilibrium terms

has_mass_transfer: Indicates whether terms for mass transfer should be constructed, default -
‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from parent (default = False),
True - include mass transfer terms, False - exclude mass transfer terms. }

has_heat_transfer: Indicates whether terms for heat transfer should be constructed, default -
‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from parent (default = False),
True - include heat transfer terms, False - exclude heat transfer terms. }

has_work_transfer: Indicates whether terms for work transfer should be constructed, default -
‘use_parent_value’. Valid values { ‘use_parent_value’ - get flag from parent (default = False), True
- include work transfer terms, False - exclude work transfer terms. }

has_pressure_change: Indicates whether terms for pressure change should be constructed, default
- ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from parent (default = False),
True - include pressure change terms, False - exclude pressure change terms. }

property_package: Property parameter object used to define property calculations, default -
‘use_parent_value’. Valid values: { ‘use_parent_value’ - get package from parent (default = None),
a ParameterBlock object.}

property_package_args: A dict of arguments to be passed to a property block and used when
constructing these, default - ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get package
from parent (default = None), dict - see property package for documentation. }

3.2. Core Library 169



IDAES Documentation, Release 0.60

inherited_length_domain: A Pyomo ContinuousSet to use as the length domain in the holdup.
length_domain_set: List of floats between 0 and 1 to used to initialize length domain, if

inherited_length_domain not set (default = [0.0, 1.0]
flow_direction: Flag indicating the direction of flow within the length
domain (default = forward).
* ‘forward’ - flow from O to 1
* ‘backward’ - flow from 1 to 0
discretization_method: Method to be used by DAE transformation when discretizing length
domain (default = OCLR).
* ‘OCLR’ - orthogonal collocation (Radau roots)
¢ ‘OCLL’ - orthogonal collocation (Legendre roots)
¢ ‘BFD’ - backwards finite difference (1st order)

e ‘FFD’ - forwards finite difference (1st order)

finite_elements: Number of finite elements to use when discretizing length domain (default=20)

collocation_points: Number of collocation points to use per finite element when discretizing length
domain (default=3)

has_mass_diffusion: Flag indicating whether mass diffusion/dispersion should be included in mate-
rial balance equations (default=False)

has_energy_diffusion: Flag indicating whether energy diffusion/dispersion should be included in
energy balance equations (default=False)

velocity_type: Flag indicating whether velocity should be include in the model default -
‘use_parent_value’. Valid values: { ‘none’ - do not calculate velocity, ‘mixture’ - calculate a
single velocity for all phases, ‘phase’ - calculate separate velocities for each phase}

Returns New Holdup1D instance
class idaes.core.holdup.HoldupldData (component)
Bases: idaes.core.holdup.HoldupData

1-Dimensional Holdup Class

This class is designed to be the core of all 1D discretized IDAES models. It builds property blocks, inlet/outlet
ports and adds mass, energy and momentum balances. The form of the terms used in these constraints is
specified in the chosen property package.

Assumes constant reactor dimensions
CONFIG = <pyutilib.misc.config.ConfigBlock object>

build ()
Build method for Holdup1D blocks. This method calls submethods to setup the necessary property blocks,
distributed variables, material, energy and momentum balances based on the arguments provided by the
user.

Parameters None —

Returns None

170 Chapter 3. Contents



IDAES Documentation, Release 0.60

initialize (state_args=None, outlvl=0, hold_state=True, solver="ipopt’, optarg=None)
Initialisation routine for holdup (default solver ipopt)

Keyword Arguments

* state_args — adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

={D.
* outlvl - sets output level of initialisation routine
— 0 =no output
— 1 =return solver state for each step in routine
— 2 =include solver output infomation (tee=True)
* optarg — solver options dictionary object (default=None)
* solver - str indicating whcih solver to use during initialization (default = ‘ipopt’)
* hold state -

flag indicating whether the initialization routine should unfix any state variables fixed
during initialization (default=True). - True - states varaibles are not unfixed, and

a dict of returned containing flags for which states were fixed during initialization.

— False - state variables are unfixed after initialization by calling the relase_state
method

Returns If hold_states is True, returns a dict containing flags for which states were fixed during
initialization.
model_check ()

This method exectues the model_check methods on the associated property blocks (if they exist). This
method is generally called by a unit model as part of the unit’s model_check method.

Parameters None —
Returns None

release_state (flags, outlvi=0)
Method to relase state variables fixed during initialisation.

Keyword Arguments

» flags — dict containing information of which state variables were fixed during initializa-
tion, and should now be unfixed. This dict is returned by initialize if hold_state = True.

* outlvl - sets output level of of logging
Returns None

class idaes.core.holdup.HoldupData (component)
Bases: idaes.core.process_base.ProcessBlockData

The HoldupData Class forms the base class for all IDAES holdup models. The purpose of this class is to
automate the tasks common to all holdup blockss and ensure that the necessary attributes of a holdup block are
present.

The most signfiicant role of the Holdup class is to set up the build arguments for the holdup block, automatically
link to the time domain of the parent block, and to get the information about the property package.

CONFIG = <pyutilib.misc.config.ConfigBlock object>

3.2. Core Library 171



IDAES Documentation, Release 0.60

build()

General build method for Holdup blocks. This method calls a number of sub-methods which automate the
construction of expected attributes of all Holdup blocks.

Inheriting models should call super().build.

Parameters None —

Returns None

get_property_ package ()
This method gathers the necessary information about the property package to be used in the holdup block.

If a property package has not been provided by the user, the method searches up the model tree until it
finds an object with the ‘default_property_package’ attribute and uses this package for the holdup block.

The method also gathers any default construction arguments specified for the property package and com-
bines these with any arguments specified by the user for the holdup block (user specified arguments take
priority over defaults).

Parameters None —

Returns None

class idaes.core.holdup.HoldupStatic (*args, **kwargs)
Bases: idaes.core.process_block.ProcessBlock

Parameters

rule — (Optional) A rule function or None. Default rule calls build().
concrete — If True, make this a toplevel model. Default - False.
ctype — (Optional) Pyomo ctype of the Block.

dynamic — Indicates whether this model will be dynamic, default - ‘use_parent_value’.
Valid values: { ‘use_parent_value’ - get flag from parent, True - set as a dynamic model,
False - set as a steady-state model }

include_holdup - Indicates whether holdup terms should be constructed or not.
Must be True if dynamic = True, default - ‘use_parent_value’. Valid values: {
‘use_parent_value® - get flag from parent (default = True), True - construct holdup terms,
False - do not construct holdup terms}

material_balance_type — Indicates what type of mass balance should be con-
structed, default - ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from
parent (default = ‘component’), ‘none’ - exclude material balances, **’component_phase’ -
use phase component balances, **’component_total’ - use total component balances, **’el-
ement_total’ - use total element balances. }

energy_balance_type — Indicates what type of energy balance should be constructed,
default - ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from parent
(default = ‘enthalpy_total’), ‘none’ - exclude energy balances, ‘enthalpy_total’ - single
ethalpy balance for material. }

momentum_balance_type — Indicates what type of momentum balance should be con-
structed, default - ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from
parent (default = ‘pressure’), ‘none’ - exclude momentum balances, ‘pressure’ - single
pressure balance for material. }

has_rate_ reactions — Indicates whether terms for rate controlled reactions should be
constructed, default - ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag

172

Chapter 3. Contents



IDAES Documentation, Release 0.60

from parent (default = False), True - include kinetic reaction terms, False - exclude kinetic
reaction terms. }

* has_equilibrium_ reactions - Indicates whether terms for equilibrium con-
trolled reactions should be constructed, default - ‘use_parent_value’. Valid values: {
‘use_parent_value’ - get flag from parent (default = False), True - include equilibrium
reaction terms, False - exclude equilibrium reaction terms. }

* has_phase_equilibrium - Indicates whether terms for phase equilibrium should be

constructed (default = ‘use_parent_value’)
* ‘use_parent_value’ - get flag from parent (default = False)
* True - include phase equilibrium terms

* False - exclude phase equilibrium terms

has_mass_transfer: Indicates whether terms for mass transfer should be constructed, default -
‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from parent (default = False),
True - include mass transfer terms, False - exclude mass transfer terms. }

has_heat_transfer: Indicates whether terms for heat transfer should be constructed, default -
‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from parent (default = False),
True - include heat transfer terms, False - exclude heat transfer terms. }

has_work_transfer: Indicates whether terms for work transfer should be constructed, default -
‘use_parent_value’. Valid values { ‘use_parent_value’ - get flag from parent (default = False), True
- include work transfer terms, False - exclude work transfer terms. }

has_pressure_change: Indicates whether terms for pressure change should be constructed, default
- ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get flag from parent (default = False),
True - include pressure change terms, False - exclude pressure change terms. }

property_package: Property parameter object used to define property calculations, default -
‘use_parent_value’. Valid values: { ‘use_parent_value’ - get package from parent (default = None),
a ParameterBlock object.}

property_package_args: A dict of arguments to be passed to a property block and used when
constructing these, default - ‘use_parent_value’. Valid values: { ‘use_parent_value’ - get package
from parent (default = None), dict - see property package for documentation. }

Returns New HoldupStatic instance
class idaes.core.holdup.HoldupStaticData (component)
Bases: idaes.core.holdup.HoldupData
Static Holdup Class

This class is designed to be used for unit operations zero volume or holdups with no through flow (such as dead
zones). This type of holdup has only a single PropertyBlock index by time (HoldupOD has two).

build()
Build method for HoldupStatic blocks. This method calls submethods to setup the necessary property
blocks, distributed variables, material, energy and momentum balances based on the arguments provided
by the user.

Parameters None —

Returns None

3.2. Core Library 173



IDAES Documentation, Release 0.60

initialize (state_args=None, outlvl=0, optarg=None, solver="ipopt’, hold_state=True)
Initialisation routine for holdup (default solver ipopt)

Keyword Arguments

* state_args — adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

={D.
* outlvl - sets output level of initialisation routine
— 0 =no output (default)
— 1 =return solver state for each step in routine
— 2 =include solver output infomation (tee=True)
* optarg — solver options dictionary object (default=None)
* solver - str indicating whcih solver to use during initialization (default = ‘ipopt’)
* hold state -

flag indicating whether the initialization routine should unfix any state variables fixed
during initialization (default=True). - True - states varaibles are not unfixed, and

a dict of returned containing flags for which states were fixed during initialization.

— False - state variables are unfixed after initialization by calling the relase_state
method

Returns If hold_states is True, returns a dict containing flags for which states were fixed during
initialization.
model_check ()

This method exectues the model_check methods on the associated property blocks (if they exist). This
method is generally called by a unit model as part of the unit’s model_check method.

Parameters None —
Returns None

release_state (flags, outlvi=0)
Method to relase state variables fixed during initialisation.

Keyword Arguments

» flags — dict containing information of which state variables were fixed during initializa-
tion, and should now be unfixed. This dict is returned by initialize if hold_state = True.

* outlvl - sets output level of of logging

Returns None

idaes.core.ports module

These classes handle the mixing and splitting of multiple inlets/outlets to a single holdup block.

class idaes.core.ports.InletMixer (*args, **kwargs)
Bases: idaes.core.process_block.ProcessBlock

Parameters

* rule — (Optional) A rule function or None. Default rule calls build().

174 Chapter 3. Contents



IDAES Documentation, Release 0.60

* concrete — If True, make this a toplevel model. Default - False.
* ctype — (Optional) Pyomo ctype of the Block.

* has_material_balance - Indicates whether material mixing constraints should be
constructed.

* has_energy_balance - Indicates whether energy mixing constraints should be con-
structed.

* has_momentum_balance - Indicates whether momentum mixing constraints should be
constructed.

* inlets — A list of strings to be used to name inlet streams.
Returns New InletMixer instance

class idaes.core.ports.InletMixerData (component)
Bases: idaes.core.ports.Port

Inlet Mixer Class

This class builds a mixer to allow for multiple inlets to a single holdup block. The class constructs property
blocks for each inlet and creates mixing rules to connect them to the property block within the associated
holdup block.

CONFIG = <pyutilib.misc.config.ConfigBlock object>

build()
Build method for Mixer blocks. This method calls a number of methods to construct the necessary balance
equations for the Mixer.

Parameters None —
Returns None

initialize (state_args=None, outlvl=0, optarg=None, solver="ipopt’, hold_state=True)
Initialisation routine for InletMixer (default solver ipopt)

Keyword Arguments

* state_args — adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

={}.
* outlvl - sets output level of initialisation routine
— 0 =no output (default)
— 1 =return solver state for each step in routine
— 2 = include solver output infomation (tee=True)
* optarg — solver options dictionary object (default=None)
* solver — str indicating whcih solver to use during initialization (default = ‘ipopt’)
* hold_state -
flag indicating whether the initialization routine should unfix any state variables fixed

during initialization (default=True).

— True = state varaibles are not unfixed, and a dict of returned containing flags for
which states were fixed during initialization.

3.2. Core Library 175



IDAES Documentation, Release 0.60

— False = state variables are unfixed after initialization by calling the relase_state
method

Returns If hold_states is True, returns a dict containing flags for which states were fixed during
initialization.
model_check ()
Calls model checks on all associated Property Blocks.
Parameters None —
Returns None

release_state (flags, outlvi=0)
Method to relase state variables fixed during initialisation.

Keyword Arguments

* flags — dict containing information of which state variables were fixed during initializa-
tion, and should now be unfixed. This dict is returned by initialize if hold_state=True.

* outlvl - sets output level of of logging (default=0)
Returns None

class idaes.core.ports.OutletSplitter (*args, **kwargs)
Bases: idaes.core.process_block.ProcessBlock

Parameters
* rule — (Optional) A rule function or None. Default rule calls build().
* concrete — If True, make this a toplevel model. Default - False.
* ctype — (Optional) Pyomo ctype of the Block.

* has_material_balance - Indicates whether material mixing constraints should be
constructed.

* has_energy_balance - Indicates whether energy mixing constraints should be con-
structed.

* has_momentum_balance - Indicates whether momentum mixing constraints should be
constructed.

* outlets — A list of strings to be used to name outlet streams.

* material_split_type — Argument indiciating method to use when splitting material
flows between outlets, default - ‘flow’. Valid values: { ‘flow’ - split based on total flow
rate in each outlet, ‘phase’ - split based on phase flow rates in each outlet, ‘component’ -
split based on component flow rates in each outlet, ‘total’ - split based on component and
phase flow rates. }

* energy_split_type — Argument indiciating method to use when splitting material
flows between outlets, default - ‘temperature’. Valid values: { ‘temperature’ - equate
temperatures in outlet streams, ‘enth_mol’ - equate specific molar enthalpies in each outlet,
‘enth_mass’ - equate specific mass enthalpies in each outlet, ‘energy_balance’ - split using
an energy balance with a split fraction. }

Returns New OutletSplitter instance

class idaes.core.ports.OutletSplitterData (component)
Bases: 1daes.core.ports.Port

Outlet Mixer Class

176 Chapter 3. Contents



IDAES Documentation, Release 0.60

This class builds a splitter to allow for multiple outlets to a single holdup block. The class constructs property
blocks for each outlet and creates splitting rules to connect them to the property block within the associated
holdup block.

CONFIG = <pyutilib.misc.config.ConfigBlock object>

build()
Build method for Splitter blocks. This method calls a number of methods to construct the necessary
balance equations for the Splitter.

Parameters None —
Returns None

initialize (state_args=None, outlvl=0, optarg=None, solver="ipopt’, hold_state=False)
Initialisation routine for OutletSplitter (default solver ipopt)

Keyword Arguments

* state_args — adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

={D.
* outlvl - sets output level of initialisation routine
— 0 =no output (default)
— 1 =return solver state for each step in routine
— 2 =include solver output infomation (tee=True)
* optarg — solver options dictionary object (default=None)
* solver - str indicating whcih solver to use during initialization (default = ‘ipopt’)
* hold state -
flag indicating whether the initialization routine should unfix any state variables fixed
during initialization (default=False).
— True = state varaibles are not unfixed, and a dict of returned containing flags for
which states were fixed during initialization.
— False = state variables are unfixed after initialization by calling the relase_state
method
Returns If hold_states is True, returns a dict containing flags for which states were fixed during
initialization.
model_check ()
Calls model checks on all associated Property Blocks.
Parameters None —
Returns None

release_state (flags, outlvi=0)
Method to relase state variables fixed during initialisation.

Keyword Arguments

» flags —dict containing information of which state variables were fixed during initializa-
tion, and should now be unfixed. This dict is returned by initialize if hold_state=True.

¢ outlvl - sets output level of of logging (default=0)

3.2.

Core Library 177



IDAES Documentation, Release 0.60

class idaes.core.ports.Port (component)
Bases: idaes.core.process_base.ProcessBlockData

Base Port Class
This class contains methods common to all Port classes.
CONFIG = <pyutilib.misc.config.ConfigBlock object>

build()
General build method for Ports. This method calls a number of methods common to all Port blocks.

Inheriting models should call super().build.
Parameters None —

Returns None

idaes.core.process_base module

Base for IDAES process model objects.

class idaes.core.process_base.ProcessBlockData (component)
Bases: pyomo.core.base.block._BlockData

Base class for most IDAES process models and classes.

The primary purpose of this class is to create the local config block to handle arguments provided by the user
when constructing an object and to ensure that these arguments are stored in the config block.

Additionally, this class contains a number of methods common to all IDAES classes.
CONFIG = <pyutilib.misc.config.ConfigBlock object>

build()
Default build method for all Classes inheriting from ProcessBlockData. Currently empty, but left in place
to allow calls to super().build and for future compatability.

Parameters None —
Returns None

fix initial_conditions (state=steady-state’)
This method fixes the initial conditions for dynamic models.

Parameters state — initial state to use for simulation (default = ‘steady-state’)
Returns : None

unfix initial conditions ()
This method unfixed the initial conditions for dynamic models.

Parameters None —

Returns : None

idaes.core.process_block module

The process_block module simplifies inheritance of Pyomo blocks. The main reason to subclass a Pyomo block is
to create a block that comes with pre-defined model equations. This is used in the IDAES modeling framework to to
create modular process model blocks.

178 Chapter 3. Contents



IDAES Documentation, Release 0.60

class idaes.core.process_block.ProcessBlock (*args, **kwargs)
Bases: pyomo.core.base.block.Block

Process block.
Process block behaves like a Pyomo Block. The important differences are listed below.

* There is a default rule that calls the build() method for _BlockData subclass ojects, so subclass of _Block-
Data used in a ProcessBlock should have a build() method. A different rule or no rule (None) can be set
with the usual rule argument, if additional steps are required to build an element of a block. A example of
such a case is where different elements of an indexed block require addtional information to construct.

* Some of the arguments to __init__, which are not expected arguments of Block, are split off and stored in
self._block_data_config. If the _BlockData subclass inherits ProcessBlockData, self._block_data_config
is sent to the self.config ConfigBlock.

classmethod base_class_module ()
Return module of the associated ProcessBase class.

Returns (str) Module of the class.

Raises AttributeError, if no base class module was set, e.g. this class — was not wrapped by the
declare_process_block_class decorator.

classmethod base class_name ()
Name given by the user to the ProcessBase class.

Returns (str) Name of the class.

Raises AttributeError, if no base class name was set, e.g. this class — was not wrapped by the
declare_process_block_class decorator.

idaes.core.process_block.declare_process_block_class (name, block_class=<class
‘idaes.core.process_block.ProcessBlock™>,
doc=")

Declare a new ProcessBlock subclass.

This is a decorator function for a class definition, where the class is derived from _BlockData. It creates a
ProcessBlock subclass to contain it. For example (where ProcessBlockData is a subclass of _BlockData):

@declare_process_block_class(name=MyUnitBlock) class MyUnitBlockData(ProcessBlockData):
# This class is a _BlockData subclass contained in a Block subclass # MyUnitBlock .. ..
The only requirment is that the subclass of _BlockData contain a build() method.
Parameters
* name — class name for the model.

* block_class — ProcessBlock or a subclass of ProcessBlock, this allows you to use a
subclass of ProcessBlock if needed.

* doc — Documentation for the class. This should play nice with sphinx.

idaes.core.property _base module

This module contains classes for property blocks and property parameter blocks.

class idaes.core.property_base.PropertyBlockDataBase (component)
Bases: idaes.core.process_base.ProcessBlockData

This is the base class for property block data objects. These are blocks that contain the Pyomo components
associated with calculating a set of thermophysical, transport and reacion properties for a given material.

3.2. Core Library 179



IDAES Documentation, Release 0.60

CONFIG = <pyutilib.misc.config.ConfigBlock object>

build()
General build method for PropertyBlockDatas. Inheriting models should call super().build.

Parameters None —
Returns None

class idaes.core.property_base.PropertyParameterBase (component)
Bases: idaes.core.process_base.ProcessBlockData, idaes.core.property base.
HasPropertyClassMetadata

This is the base class for property parameter blocks. These are blocks that contain a set of parameters associated
with a specific property package, and are linked to by all instances of that property package.

CONFIG = <pyutilib.misc.config.ConfigBlock object>

build()
General build method for PropertyParameterBlocks. Inheriting models should call super().build.

Parameters None —
Returns None

classmethod get_metadata()
Get property parameter metadata.

Instantiates a “dummy” instance of the containing class.
Returns The metadata
Return type PropertyClassMetadata
Raises
* Any exception raised by the constructor, if for some reason
« this class cannot be instantiated.

get_package_units ()
Method to return a dictionary of default units of measurement used in the property package. This is used
to populate doc strings for variables which derive from the property package (such as flows and volumes).
This method should return a dict with keys for the quantities used in the property package (as strs) and
values of their default units as strs.

The quantities used by the framewokr are (all optional):
* ‘time’
* ‘length’
* ‘mass’
* ‘amount’
* ‘temperature’
* ‘energy’
* ‘current’
* ‘luminous intensity’

This default method is a placeholder and should be overloaded by the package developer. This method
will return an Exception if not overloaded.

Parameters None —

180 Chapter 3. Contents



IDAES Documentation, Release 0.60

Returns A dict with supported properties as keys and tuples of (method, units) as values.

get_supported_properties ()
Method to return a dictionary of properties supported by this package and their assoicated construction
methods and units of measurement. This method should return a dict with keys for each supported property.

For each property, the value should be another dict which may contain the following keys:

* ‘method’: (required) the name of a method to construct the property as a str, or None if the prop-
erty will be constructed by default.

* ‘units’: (optional) units of measurement for the property.

This default method is a placeholder and should be overloaded by the package developer. This method
will return an Exception if not overloaded.

Parameters None —
Returns A dict with supported properties as keys.

class idaes.core.property_base.PropertyMetadata (name, method=None, units=None)
Bases: dict

Simple container for property parameter metadata.

class idaes.core.property_base.PropertyClassMetadata
Bases: object

Simple container for metadata about the property class, which contains properties that can each be associated
with PropertyMetadata.

add_property_metadata (pmeta)
Add property metadata.

Parameters pmeta (PropertyMetadata)— Add this

class idaes.core.property_base.HasPropertyClassMetadata
Bases: object

Interface for something with PropertyClassMetadata.

classmethod get_metadata ()
Get the metadata.

Returns The metadata

Return type PropertyClassMetadata

idaes.core.stream module

Base clase for IDAES streams

class idaes.core.stream.Stream (*args, **kwargs)
Bases: idaes.core.process_block.ProcessBlock

Parameters
* rule — (Optional) A rule function or None. Default rule calls build().
* concrete - If True, make this a toplevel model. Default - False.
* ctype — (Optional) Pyomo ctype of the Block.

* source — Pyomo Port object representing the source of the process stream.

3.2. Core Library 181


https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

IDAES Documentation, Release 0.60

* source_idx — Key of indexed Port to use for source (if applicable). default = None.
* destination — Pyomo Port object representing the destination of the process stream.

* destination_idx - Key of indexed Port to use for destination (if applicable). default =
None.

Returns New Stream instance

class idaes.core.stream.StreamData (component)
Bases: idaes.core.process_base.ProcessBlockData

This is the class for process streams. These are blocks that connect two unit models together.
CONFIG = <pyutilib.misc.config.ConfigBlock object>

activate (var=None)
Method for activating Constraints in Stream. If not provided with any arguments, this activates the entire
Stream block. Alternatively, it may be provided with the name of a variable in the Stream, in which case
only the Constraint associated with that variable will be activated.

Parameters var — name of a variable in the Stream for which the corresponding Constraint
should be activated (default = None).

Returns None

build()
General build method for StreamDatas. Inheriting models should call super().build.

Parameters None —
Returns None

converged (tolerance=1e-006)
Check if the values on both sides of a Stream are converged.

Parameters tolerance — tolerance to use when checking if Stream is converged. (default =
le-6).

Returns A Bool indicating whether the Stream is converged

deactivate (var=None)
Method for deactivating Constraints in Stream. If not provided with any arguments, this deactivates the
entire Stream block. Alternatively, it may be provided with the name of a variable in the Stream, in which
case only the Constraint associated with that variable will be deactivated.

Parameters var — name of a variable in the Stream for which the corresponding Constraint
should be deactivated (default = None).

Returns None

display (side=’source’, display_constraints=False, tolerance=1e-006, ostream=None, prefix="")
Display the contents of Stream Block.

Parameters

* side - side of Stream to display values from (default = ‘soruce’). Valid values are
‘source’ and ‘destination’.

* display_constraints - indicates whether to display Constraint information (de-
fault = False).

* tolerance — tolerance to use when checking if Stream is converged. (default = 1e-6).

* ostream - output stream (default = None)

182 Chapter 3. Contents



IDAES Documentation, Release 0.60

* prefix — str to append to each line of output (default = **)

class idaes.core.stream.VarDict
Bases: dict

This class creates an object which behaves like a Pyomo IndexedVar. It is used to contain the separate Vars
contained within IndexedPorts, and make them look like a single IndexedVar. This class supports the fix, unfix
and display attributes.

display (side=’source’, ostream=None, prefix="")
Print component information

Parameters

* side — which side of port to display (default = ‘source’). Valid values are ‘source’ or
‘destination’.

* ostream - output stream (default = None)
* prefix — str to append to each line of output (default = **)
Returns None

£ix (value=None, side="destination’)
Method to fix Vars.

Parameters
* value - value to use when fixing Var (default = None).
* side - side of port to fix (default = ‘destination’). Valid values are ‘source’, ‘destination’
or ‘all’.
Returns None

unfix (side=’destination’)
Method to unfix Vars.

Parameters
* value - value to use when fixing Var (default = None)
* side - side of port to fix (default = ‘destination’). Valid values are ‘source’, ‘destination’
or ‘all’.

Returns None

idaes.core.unit_model module

Base clase for unit models

class idaes.core.unit_model.UnitBlockData (component)
Bases: idaes.core.process_base.ProcessBlockData

This is the class for process unit operations models. These are models that would generally appear in a process
flowsheet or superstructure.

CONFIG = <pyutilib.misc.config.ConfigBlock object>

build()
General build method for UnitBlockData. This method calls a number of sub-methods which automate the
construction of expected attributes of unit models.

Inheriting models should call super().build.

3.2. Core Library 183


https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 0.60

Parameters None —
Returns None

build_inlets (holdup=None, inlets=None, num_inlets=None)
This is a method to build inlet Port objects in a unit model and connect these to holdup blocks as needed.
This method supports an arbitary number of inlets and holdup blocks, and works for both simple (0D) and
1D IDAES holdup blocks.

Keyword Arguments

* = holdup block to which inlets are associated. If left
None, (holdup) — assumes a default holdup (default = None).

e = argument defining inlet names (default (inlets) — None). inlets
may be None or list. - None - assumes a single inlet. - list - use names provided in
list for inlets (can be

other iterables, but not a string or dict)

e = argument indication number (num_inlets) — construct (default = None).
Not used if inlets arg is provided. - None - use inlets arg instead - int - Inlets will be named
with sequential numbers from 1

to num_inlets.
Returns A Pyomo Port object and assoicated components.

build_outlets (holdup=None, outlets=None, num_outlets=None, material_split_type="flow’, en-

ergy_split_type="temperature’)
This is a method to build outlet Port objects in a unit model and connect these to holdup blocks as needed.

This method supports an arbitary number of outlets and holdup blocks, and works for both simple (0D)
and 1D IDAES holdup blocks.

Keyword Arguments

* = holdup block to which inlets are associated. If left
None, (holdup) — assumes a default holdup (default = None).

e = argument defining outlet names (default (outlets)— None). out-
lets may be None or list. - None - assumes a single outlet. - list - use names provided in
list for outlets (can be

other iterables, but not a string or dict)

e = argument indication number (num_outlets)- construct (default = None).
Not used if outlets arg is provided. - None - use outlets arg instead - int - Outlets will be
named with sequential numbers from

1 to num_outlets.

* = argument defining method to use to split
(energy_split_type) — outlet material flow in case of multiple outlets (default =
‘flow’).

— ’flow’ - outlets are split by total flow

— ’phase’ - outlets are split by phase

— ’component’ - outlets are split by component

— ’total’ - outlets are split by both phase and component

— ’duplicate’ - all outlets are duplicates of the total outlet stream.

184 Chapter 3. Contents



IDAES Documentation, Release 0.60

* = argument defining method to use to split - outlet energy flow in
case of multiple outlets (default = ‘temperature’).

‘temperature’ - equate temperatures in outlets

“enth_mol’ - equate molar enthalpies in outlets

‘enth_mass’ - equate mass enthalpies in outlets

’energy_balance’ - outlets energy split using split fractions
Returns A Pyomo Port object and assoicated components.

display P ()
Display pressure variables associated with the UnitBlockData.

display T()
Display temperature variables associated with the UnitBlockData.

display flows ()
Display component flow variables associated with the UnitBlockData.

display total_flows ()
Display total flow variables associated with the UnitBlockData.

display_ variables (simple=True, descend_into=True)
Display all variables associated with the UnitBlockData.

Parameters simple (bool, optional)— Printa simplified version showing only variable
values.

initialize (state_args=None, outlvl=0, solver="ipopt’, optarg={"tol’: le-06})
This is a general purpose initialization routine for simple unit models. This method assumes a single
Holdup block called holdup, and first initializes this and then attempts to solve the entire unit.

More complex models should overload this method with their own initialization routines,
Keyword Arguments

* state_args — adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

={D.

* outlvl - sets output level of initialisation routine

0 = no output (default)
— 1 =return solver state for each step in routine
— 2 =return solver state for each step in subroutines
— 3 = include solver output infomation (tee=True)
* optarg — solver options dictionary object (default={ ‘tol’: 1e-6})
* solver — str indicating whcih solver to use during initialization (default = ‘ipopt’)
Returns None

is_process_unit ()
Tag to indicate that this object is a process unit.

model_check ()
This is a general purpose initialization routine for simple unit models. This method assumes a single
Holdup block called holdup and tries to call the model_check method of the holdup block. If an Attribu-
teError is raised, the check is passed.

3.2.

Core Library 185


https://docs.python.org/3/library/functions.html#bool

IDAES Documentation, Release 0.60

More complex models should overload this method with a model_check suited to the particular application,
especially if there are multiple Holdup blocks present.

Parameters None —
Returns None

class idaes.core.unit_model.UnitBlock (*args, **kwargs)
Bases: idaes.core.process_block.ProcessBlock

Parameters
* rule — (Optional) A rule function or None. Default rule calls build().
* concrete — If True, make this a toplevel model. Default - False.
* ctype - (Optional) Pyomo ctype of the Block.

* dynamic - Indicates whether this model will be dynamic or not (default =
‘use_parent_value’). ‘use_parent_value’ - get flag from parent (default = False) True - set
as a dynamic model False - set as a steady-state model

Returns New UnitBlock instance

3.2.12 Conceptual Design using the IDAES Pyosyn Framework

This guide to the IDAES conceptual design framework will illustrate how to develop and optimize models to solve
chemical engineering design problems. This draft of the guide was written based upon commit d4f6059, though much
of it will also be true for the stable commit 48cc07e.

To checkout a specific commit, you can simply use git checkout 48cc07e. This will put you in a detached
head mode. To make a new local branch at that commit, use git checkout -b new_branch_name.

Contents

* Conceptual Design using the IDAES Pyosyn Framework

— Base Classes

— Examples

Base Classes

A handful of base classes provide necessary and useful functionality when building your models. The most important
of these base classes are listed below:

FlowsheetModel

Each superstructure synthesis problem should declare a class inheriting from FlowsheetModel that provides informa-
tion on how to calculate the objective function.

UnitModel

Process units such as reactors, flash drums, compressors, etc. should inherit from UnitModel

# TODO Highlight some key attributes here equip_exists equip block lin_cuts oa_cuts units

186 Chapter 3. Contents



IDAES Documentation, Release 0.60

LOA

The LOA module provides code for automatically executing the logic-based outer approximation optimization algo-
rithm.

Examples

Water Treatment Model

The water treatment model uses three unit models: Feed, Reactor, and Sink. In this example, the objective is to
minimize the cost of treating fixed contaminant loads from incoming water streams. The decision is between one or
multiple treatment units in parallel or sequential order. Here, for convenience, the treatment units are modeled by a
unit named Reactor. However, in practice, various forms of filtration, digestion, etc. may be used. The modeler is free
to name their units as they please.

The steps for setting up and solving the water treatment model are thus:

1. Define problem

First, we create the class WaterModel, inheriting from FlowsheetModel. The objective functions for the problem are
defined here. All modeling objects for the problem are also stored in this class.

2. Create unit models

Next, we create and define the Feed, Reactor, and Sink unit models.

3. Build and connect the model

The next step is to build and connect the model. Most of the code for this can be found in the build_model function:

The code within this function consists of a section importing data from external sources followed by the creation of
the WaterModel, addition of units, and construnction of the units. After data import, the first commands are:

m = WaterModel ()
m.comps = comps
m.max_flow = 300

This creates a new WaterModel instance, specifies the chemical components that are relevant to the model, and intro-
duces a maximum flowrate for all streams in the flowsheet.

Next, the command m.add_unit () is used to add the appropriate unit models to the superstructure. Notice that
each unit takes arguments name and parent. The name should be unique for all units belonging to the same parent
component. The parent should be the object to which the unit is being added. It may seem redundant to have m.
add_unit (Unit (parent=m) ), but it is currently necessary.

class idaes_models.core.process_base.ProcessBase

Next, connections between units are defined using m.connect (from_unit, to_unit). By default, connect
looks for a port named outlet on the from_unit, and a port named inlet on the to_unit. If a unit has multiple possible
inlets or outlets, the correct port can be specified using the optional to_port or from_port arguments:

class idaes_models.core.process_base.ProcessBase

The next four commands invoke methods on the unit models to create the optimization model objects:

3.2. Core Library 187




IDAES Documentation, Release 0.60

m.build_units ()
m.build _links ()
m.expand_streams ()
propagate_var_fix (m)

The first command executes the build () command on each unit model. The next command creates Pyomo Port
objects to link together the unit models. These Port objects are then expanded to normal equality constraints by the
next command. Finally, the model is examined for a = b constraints in which one of the two variables is fixed. In
that case, the other variable linked by equality is also fixed to the same value.

4. Solve the model

Finally, we solve the conceptual design problem. The high-level code for doing this can be found in the main ()
function:

The first command m = build_model () calls the previously described code. Next, the code iterates through the
superstructure units and applies a linearization strategy:

for o in itervalues (m.units) :
o.apply_linear_relaxations()
o.apply_OA_strategy (oa_ports=True)

The first command tells each unit to generate rigorous linear relaxations of nonlinear functions. The second command
tells each unit that OA cuts should be generated for nonlinear equations, including for the interconnection units (ports).

Next, are invocations to the logic-based algorithms:

do_LOA (m, tol=100)
do_GLOA (m, tol=100, iterlim=32, contract_bounds=True, do_self_proj=False)

These functions call the respective algorithms in the loa module described above. Note that in this configuration, the
solution to the LOA algorithm is used to initialize the GLOA algorithm, providing an initial upper bound (assuming
minimization). However, either one of the two algorithms can be started and will execute independently of the other.

3.3 Data Management Framework (DMF)

3.3.1 About IDAES and the DMF

The Data Management Framework (DMF) is part of the Institute for the Design of Advanced Energy Systems (IDAES,
pronounced “eye-DAY-iss”) project. IDAES’ goal is to be the “world’s premier resource for the development and
analysis of innovative advanced energy systems through the use of process systems engineering tools and approaches.”
You can read more about IDAES on the project website.

The core functionality of IDAES is building and executing mathematical models of energy systems. The DMF com-
plements this functionality by providing the ability to track the inputs (parameters, property models, etc.), processing
(model code, Jupyter notebooks, scripts, etc.) and outputs (images, tables, etc.) of IDAES experiments. The DMF
does not attempt to record all aspects of the environment, such as operating system and library versions. Instead, it
focuses on tracking the environment-agnostic elements of the analysis that are specific to process engineering within
the IDAES framework.

Below is a conceptual diagram of the DMF, showing the Workspaces residing on the local disk, and the contents of the
workspaces being the tracked Resources, linked by Relations and containing metadata and (optionally) data files.

188 Chapter 3. Contents



http://www.idaes.org/

IDAES Documentation, Release 0.60

+--+ Local disk +-—————————""——"——————— +
| B e + fom + e +
| | Workspace | | Workspace | | Workspace | |Global | |
[ (. [ | lconfig.| |
| B e + fom e + e +
fm T B +
/ \

/ \

/ \
e +

\ |

\ |

\ fom + |

| | Resource <—-—————-— + |

\ tom— + | Relation |

| | e.g. "derivedFrom" |

\ to——— + | or "versionOf" |

| | Resource <———+ +

| o +

\ o +

| +————+" | Resource (detail) |

|+ + | = Type

| | Resource | | * Name, ID, Date |

|+ + |  x Metadata \

| Th————+. | + Data files |

\ | \

Fo—————————— + | + - + o + |
| | File | |File | | File | |
| - + +————- + +————— + |
et +

The DMF provides a command line (terminal) interface and a Python library to create, retrieve, update, and delete
resources and workspaces. The Python library is designed to be relatively easy to use interactively from within, e.g.,
Jupyter notebooks.

3.3.2 Getting started

Installation

The Data Management Framework (DMF) is installed automatically as part of the IDAES framework installation.
Please refer to the general IDAES installation instructions for details.

Initialization

To use the DMF you will need to first create a Workspace. The instructions below show how to do this with the
command-line interface, which is installed as the dmf command. Use dmf create —-i <directory> to create
a new workspace in the given directory, with interactive prompts for initial values:

$ dmf create -i /tmp/newdir
Interactive mode for workspace configuration

Field : htmldocs
Description: HTML documentation paths. Each item is a directory containing Sphinx-
—generated HTML docs

(continues on next page)

3.3. Data Management Framework (DMF) 189



http://www.jupyter.org/

IDAES Documentation, Release 0.60

(continued from previous page)

Enter value(s) separated by commas [{dmf_root}/doc/build/html]:

Field : description

Description: A human-readable description of the workspace
Enter value []: This is an example workspace

Field : name

Description: A short name for the workspace

Enter value []: examplel

After you enter the final value, the workspace will be created. The command will then print the results of the dmf
info command for the newly created workspace:

Workspace
examplel - This is an example workspace

General information
- Location = /tmp/newdir
— Workspace identifier (_id) = b3ab53e3eaflld421fbble2ld5baabaddl
- Created = 2018-07-17T04:06:03.246855
- Modified = 2018-07-17T04:06:03.246855

— Num. resources = 0
Configuration
— conf = None
- htmldocs = ['/home/dang/src/idaes/dangunter/idaes/doc/build/html"']

- showver = False

Note: The htmldocs configuration parameter is used internally for interactive help in the Jupyter Notebook. The value
of this parameter does not usually need to be changed by the user.

Setting default workspace

If you are working on the command-line, it is convenient to set the current workspace for all commands. This value
is recorded in the global configuration at ~/ .dmf (the file “.dmf” in your home directory), and can be viewed or
changed with the dmf init command:

dmf init /tmp/newdir

Like the “create” command, this will also print out the current settings when it finishes. You can get this same printout
by invoking the command with no arguments:

DMF global configuration </home/dang/.dmf>
> workspace = /tmp/newdir

Now all the other commands will use this workspace by default (the -p/—path option can override this default for most
commands).

Adding a resource

You can add resources with the dmf import command or programmatically with the Python API. Importing files
directly from the command line is convenient for things like Jupyter Notebooks and images. For example:

190 Chapter 3. Contents




IDAES Documentation, Release 0.60

dmf import examples/dmf/generate_resources.ipynb

You can list resources in a workspace with dmf 1s.

Getting help
For help on the command-line tools, the dmf command and its subcommands all use the —h option. For the main dmf
command, the help will also list all the available subcommands.

If you are working in the Jupyter Notebook or another interactive Python environment, you can get details on the API
calls through the standard help or “?” keywords. For example:

from idaes.dmf.dmf import DMF
help (DMF.add) # generic Python help
DMF . add? # IPython / Jupyter help

Next steps

There are more details and more commands in the full command-line interface.

For the Python API, you could start with some of the example Jupyter notebooks. and look at the Python API for
details.

3.3.3 DMF Global Configuration
class idaes.dmf.dmf.DMFConfig (defaults=None)
Global DMF configuration.

Every time you create an instance of the DMF, or run a dmf command on the command-line, the library opens
the global DMF configuration file to figure out wthe default workspace (and, eventually, other values).

The default location for this configuration file is “~/.dmf”, i.e. the file named “.dmf” in the user’s home directory.
This can be modified programmatically by changing the “filename” attribute of this class.

The contents of .dmf are formatted as YAML, with the following keys defined:
workspace Path to the default workspace directory.

An example file is shown below:

{workspace: /tmp/newdir}

3.3.4 DMF Workspace

As shown in the overview diagram on the About IDAES and the DMF page, the DMF Workspace is the container for
all DMF Resources that can be worked on as a unit. Below is the documentation for the Workspace main class:

class idaes.dmf.workspace.Workspace (path, create=False, add_defaults=False)
DMF Workspace.

In essence, a workspace is some information at the root of a directory tree, a database (currently file-based, so
also in the directory tree) of Resources, and a set of files associated with these resources.

Workspace Configuration

3.3. Data Management Framework (DMF) 191


http://www.yaml.org/

IDAES Documentation, Release 0.60

When the DMF is initialized, the workspace is given as a path to a directory. In that directory is a special file
named config.yaml, that contains metadata about the workspace. The very existence of a file by that name
is taken by the DMF code as an indication that the containing directory is a DMF workspace:

/path/to/dmf: Root DMF directory

\

+— config.yaml: Configuration file

+- resourcedb. json: Resource metadata "database" (uses TinyDB)
+— files: Data files for all resources

The configuration file is a YAML formatted file

The DMF configuration file defines the following key/value pairs:
_id Unique identifier for the workspace. This is auto-generated by the library, of course.
name Short name for the workspace.
description Possibly longer text describing the workspace.
created Date at which the workspace was created, as string in the ISO8601 format.
modified Date at which the workspace was last modified, as string in the ISO8601 format.

htmldocs Full path to the location of the built (not source) Sphinx HTML documentation for the
idaes_dmf package. See DMF Help Configuration for more details.

There are many different possible “styles” of formatting a list of values in YAML, but we prefer the simple
block-indented style, where the key is on its own line and the values are each indented with a dash:

_id: fe5372a7e51d498fb377da49704874eb
created: '2018-07-16 11:10:44"
description: A bottomless trashcan
modified: '2018-07-16 11:10:44"

name: Oscar the Grouch's Home
htmldocs:

- '"{dmf_root}/doc/build/html/dmf"

- '"{dmf_root}/doc/build/html/models’

Any paths in the workspace configuration, e.g., for the “htmldocs”, can use two special variables that will take on
values relative to the workspace location. This avoids hardcoded paths and makes the workspace more portable
across environments. {ws_root } will be replaces with the path to the workspace directory, and { dmf_root }
will be replaced with the path to the (installed) DMF package.

The config.yaml file will allow keys and values it does not know about. These will be accessible, loaded into
a Python dictionary, via the meta attribute on the Workspace instance. This may be useful for passing
additional user-defined information into the DMF at startup.

3.3.5 DMF Command-line interface

Overview

The DMF command-line interface (CLI) is used to perform common start-up, browsing, etc. tasks.

Getting started

192 Chapter 3. Contents


http://www.yaml.org/

IDAES Documentation, Release 0.60

Note: In the examples that follow the terminal shell prompt will be represented by a $. It will be omitted in cases
where there is no terminal output shown.

To use the CLI, open a shell window and run “dmf <command>". For example, to see the help message, run:

dmf -h

All operations in the DMF occur in the context of a base container called a “workspace”. This container has a config-
uration and all the metadata and files, called “resources”. A workspace corresponds to a directory on the filesystem.
You can have many workspaces, but only one is active at a time. To choose the currently active workspace, you can
specify it explicitly for each command, e.g.:

’dmf -p /path/to/workspace <commands...> ‘

But this quickly becomes tedious. It is easier to use the DMF’s global configuration to set the current workspace with
the “init” command:

’dmf init /path/to/workspace ‘

After you run this command, subsequent commands will operate within this workspace. To create a blank workspace
to run in, use “dmf create”:

’dmf create /path/to/workspace —-name "MyWorkspace" --description "My first workspace" ‘

You’ll notice that this command prints out some information about the workspace at the end. To see that same
information at any time for your current workspace, use “dmf info”:

$ dmf info

Workspace
MyWorkspace - My first workspace

General information
- Location = /home/dang/src/workspace
— Workspace identifier (_id) = 2f0a82e03e5747ccbcb04£f83cb417f5a
- Created = 2018-07-07 07:10:02
- Modified = 2018-07-07 07:10:02

— Num. resources = 0
Configuration
- conf = None
- htmldocs = ['/home/dang/src/idaes/doc/build/html"']
- showver = False

To see the contents of a workspace, a.k.a. the workspace resources, you can use the “dmf Is”. This will be quite
boring if you just created the workspace, since there are no resources in it yet:

$ dmf 1s
$

To see some results from the listing, use “dmf import” to add a generic file resouce to the workspace and then try again
with “Is”:

$ echo 'hello' > hello.txt # create the text file
$ dmf import hello.txt

(continues on next page)

3.3. Data Management Framework (DMF) 193



IDAES Documentation, Release 0.60

(continued from previous page)

Imported 1 resource
S dmf 1s
hello.txt:data

Command reference
The DMF command-line interface (CLI) uses the main command / subcommand interface that many people will know
from tools such as git and subversion. The main command is dmf. The subcommands are:

e dmf create

* dmfimport

e dmf info

* dmf init

e dmfls
e dmfws
dmf create
usage: dmf create [-h] [-v] [-c PATH] [-—interactive] [--htmldocs VALUE]
[--description VALUE] [--name VALUE]
path
Positional Arguments
path Directory for new workspace. In this directory, a directory “config.yaml” will be

created to hold metadata.

Named Arguments

-v, --verbose Default: 0
-c, --conf Use global config at PATH (default = ~/.dmf)
--interactive, -i Interactively ask for configuration values

Default: False

--htmldocs HTML documentation paths. Each item is a directory containing Sphinx-
generated HTML docs (repeatable)

Default: [‘{dmf_root}/doc/build/html’]
--description A human-readable description of the workspace

Default:

194 Chapter 3. Contents




IDAES Documentation, Release 0.60

--name A short name for the workspace
Default: *”
Examples:

Interactively create a new workspace: dmf create -1 $HOME/data/my-workspace

dmf import

usage: dmf import [-h] [-v] [-c¢ PATH] [-p PATH] [-x] [FILE [FILE ...]]

Positional Arguments

FILE One or more files, or patterns of files, to import (default=empty)
Default: []

Named Arguments

-v, --verbose Default: 0

-c, --conf Use global config at PATH (default = ~/.dmf)

-p, --path Use workspace at PATH (default = from config or “.”)
-X, --exitfirst Exit on first error

Default: False

dmf info

usage: dmf info [-h] [-v] [-c PATH] [PATH]

Positional Arguments

PATH Search for DMF configuration at PATH (default="_")

Named Arguments

-v, --verbose Default: 0
-c, --conf Use global config at PATH (default = ~/.dmf)
Examples:

Get info about current workspace: dmf info

3.3. Data Management Framework (DMF) 195



IDAES Documentation, Release 0.60

Get info about “~/data” directory: dmf info -p ~/data

dmf init

usage: dmf init [-h] [-v] [-c PATH] [WORKSPACE]

Positional Arguments

WORKSPACE Set path to default workspace

Named Arguments

-v, --verbose Default: 0
-c, --conf Use global config at PATH (default = ~/.dmf)
Examples:

Print current settings: dmf init
Print settings from ‘“/opt/dmf” dmf init -c /opt/dmf

Set workspace to ‘““~/data/project/my-dmf” dmf init ~/data/project/my-dmf

dmfls

usage: dmf 1s [-h] [-v] [-c PATH] [-1] [-r] [PATH]

Positional Arguments

PATH List resources in workspace at PATH (default = from config or “.”)

Named Arguments

-v, --verbose Default: 0
-c, --conf Use global config at PATH (default = ~/.dmf)
-1, --long Use a long listing format

Default: False
-1, --relations With long listing, show relationships
Default: False

Examples:

196 Chapter 3. Contents



IDAES Documentation, Release 0.60

List objects in current workspace: dmf 1s
List objects, in long format, in workspace at SHOME/foo: dmf 1s -1 SHOME/foo

List objects and their relations (in long format): dmf 1s -1r

dmf ws

usage: dmf ws [~-h] [-v] [-c PATH] [-p PATH]

Named Arguments

-v, --verbose Default: O
-c, --conf Use global config at PATH (default = ~/.dmf)
-p, --path List workspaces at/below PATH (default = “.”)
Default: “”
Examples:

List workspaces below current directory: dmf ws

List workspaces below user SHOME directory: dmf ws -p ~

3.3.6 DMF API Examples

The DMF API allows you to add, find, retrieve, and delete Resources <resources> from the DMF. See the dmf . DMF
class docs for the full API reference.

The rest of this section has a brief description, with examples, of the major operations of the API.
Initialize

To perform these functions, you should first create an instance of the DMF object, which is linked of course to its
configuration and the underlying file system:

from idaes.dmf import dmf
my_dmf = dmf.DMF (path="'/path/to/my-workspace")

The path given to the constructor is the DMF’s “workspace” directory, that holds the configuration files, resource
metadata and data. This directory is laid out like this:

my-workspace: Root DMF "workspace" directory

\

+- config.yaml: Configuration file

+- resourcedb.json: Resource metadata "database" (if using TinyDB)

+- files: Data files for all resources
|
+- 195d6e5e-73da-4a0e-85f4-129bfcfda6db: Unique hash of directory
|  with the datafiles (this is in the “datafiles_dir" attribute

(continues on next page)

3.3. Data Management Framework (DMF) 197




IDAES Documentation, Release 0.60

(continued from previous page)

of the Resource object).

|

+- <fileA>: Datafile for that resource
+- <fileB>: Another datafile, etc.

4+ - — — — —

- 36206516-88ce-400f-ac72-e42918e34aaf: Another directory, etc.

The “resourcedb.json” is a JSON file that is used by TinyDB. If you configured the DMF to use another database
backend (not currently an option, but definitely in the roadmap), this file will not exist.

Find resources

You can find resources by searching on any of the fields that are part of the resource metadata. The basic syntax is a
filter consisting of key/value pairs. The key is the name of the attribute in the Resource class; sub-attributes should
be referred to with dotted notation. For example, the query for looking for version 1.0.0 would be:

spec = {'version.revision': '1.0.0"}
resources = my_dmf.find (spec)

For dates, you should pass a datetime.datetime or an instance the Pendulum class, from the pendulum package. The
pendulum package is pretty easy to use, as shown here:

import pendulum
last_week = pendulum.now () .subtract (weeks=1)
spec = {'version.created': last_week}

Combining expressions. You can combine multiple filter expressions by simply putting them together in the same
dictionary. A given record must match all fields to match. There is currently no built-in way to select records matching
less than all the fields:

halloween = pendulum.Pendulum (2017, 10, 31)
scary _query = {'version.revision': '13.13.13'",
'version.created': halloween}

Inequalities. There are modifiers for inequalities in the style of MongoDB, i.e. are nested dictionaries with the key
being the inequality prefixed with a “$” and the value being the end of the range. An example should clarify the
general idea, see the documentation for i nd for details:

from pendulum import Pendulum
# see 1f 'version.created' is in October 2017

7 Sge : greater than or equal
# sle : less than or equal
spec = {'version.created': {'S$Sge': Pendulum('2017-10-1"),

'Sle': Pendulum('2017-10-31")}

Lists. There is some special notation to help with lists of values. If the resource’s attribute value is a list, e.g. the
tags attribute, then you need to pass a list of values to match against. By default, the method will return resources that
match any of the provided values. If you want to only get resources that match all of the provided values, then add a
‘I’ after the attribute name. For example:

# match any resource with tags "MEA" or "model"
y

spec = {'tags': ['MEA', 'model'l]}
# match resources that have both tags "MEA" and "model"
spec = {'tags!': ['MEA', 'model']}

198 Chapter 3. Contents



http://tinydb.readthedocs.io/en/latest/
https://pendulum.eustace.io/

IDAES Documentation, Release 0.60

Find related resources

You may to want to find a group of resources that are connected by some (set of) relationships. You can imagine the
resources in a mathematical graph, where the resource information is contained at the vertices and the relations are the
edges, and you want to find vertices reachable from some given starting point. The find related method is used
to navigate all “relations” (as they are called in the DMF code) from a given resource.

We adopt the Resource Description Format (RDF) terminology for relations, where in a relation between two re-
sources, the starting resource is called the “subject”, the ending resource is called the “object” and the type of relation
between them is called the “predicate”. See examples for clarification.

There are a only a few predicates, i.e. types of relations, in the DMF. These are enumerated in the resource.
RelationType class.

derived The object is derived from the subject, as in a property model being derived from property data. See uses
description for the difference between the two.

contains The object is part of the subject. This is used for describing “in”, or container/contained, relationships
such as some type of resource being part of an experiment .Experiment, or an Experiment being part of
another Experiment.

uses The object was/is used by the subject in some way. This is like derived in that there is a dependency on the
subject, but different because the object was created before that dependency existed. If the object depends on
the subject in order to be created, then you should express that as a derived relationship instead.

version The object is a (newer) version of the subject. The “version” field should be different in the two resources.
You should use this relation where the object represents changes in the subject, and use derived where the subject
and object represent different resources.

The find_related method starts with a resource and then navigates through relations to other resources, to some
maximum depth (distance) from the starting resource. The parameters control which relations are included, which
types of resources, and how deep the search can go. For example:

from idaes.dmf import DMF

from idaes.dmf.resource import ResourceTypes
ws = DMF (path="'/my/workspace')

for exp in ws.find({'type': ResourceTypes.xp}) :

println ('Experiment :'.format (exp.name) )

info_fields = ['name', 'type'l]

for depth, rel, info in ws.find_related(exp, meta=info_fields):
indent = ' ' x depth
println ("' * —> [ ]'.format (indent, rel.predicate,

info['name'], info['type'l))

Retrieve resources

Resources can be retrieved directly, and reasonably quickly, by their identifiers. The methods that do that start with
the word “fetch”. The fetch_one method gets a single resource and fetch_many gets a number of them at once:

from idaes.dmf import DMF
from idaes.dmf.resource import Resource

my_dmf = DMF (path='/my/workspace")
def add_test_resource():

r = Resource (desc='test resource')
dmf.add (r) # Resource id is assigned at this point

(continues on next page)

3.3. Data Management Framework (DMF) 199




IDAES Documentation, Release 0.60

(continued from previous page)

return r.id_

# Demonstrate, in a somewhat contrived way, how "fetch_one" works
rid = add_test_resource ()
r = my_dmf.fetch_one(rid) # returns the new resource

# Demonstrate, in a somewhat contrived way, how "fetch_many" works
rids = [add_test_resource() for i in range (10)]
rlist = my_dmf.fetch_many (rids) # returns the new resources

Add resources

The add method puts a resource into the DMF. This is mostly simply adding the metadata in the resource.

Datafiles. At this time, files in the datafiles attribute are copied and, if they were marked as temporary, the original
is deleted. The default is to copy, and not delete the original. If a file is not copied, it is the user’s responsibility to
update the record if the original file moves. Below are examples of the three possibilities:

from idaes_dmf import dmf
from idaes_dmf.resource import Resource, FilePath

my_dmf = dmf.DMF (path='/where/my/config/lives/")
r = Resource (desc='"'test resource')

# (1) Copy, and don't remove

r.datafiles.append(FilePath (path="'/tmp/my-data.csv'))
# (2) Copy, and remove original
r.datafiles.append(FilePath (path="'/tmp/temp-data.csv',

tempfile=True))
(3) Neither copy nor remove
.datafiles.append(FilePath (path="'/home/bigfile', copy=False))

H

-

# Att this point, and not before, the copies occur
dmf.add (r)

This is an error! It makes no sense to ask the file
to be removed, but not copied (just a file delete?!)
.datafiles.append(FilePath (path="'foo', copy=False, tempfile=True))

AA

H* B o$ %

raises ValueError

Update resources

Resources are updated by providing a new Resource object to the update method. However, you cannot change the
“type” of a Resource in the process of updating it:

from idaes_dmf import dmf
from idaes_dmf.resource import Resource

my_dmf = dmf.DMF (path='/where/my/config/lives/")
r = Resource (desc='"'test resource')

my_dmf.add (r)

# Valid update

(continues on next page)

200 Chapter 3. Contents




IDAES Documentation, Release 0.60

(continued from previous page)

r.aliases.append('tester")
my_dmf.update (r)

# Invalid update
r.type = 'free to be me'
my_dmf.update (r) # !! Raises: errors.DMFError

Delete resources

Resources are deleted by their id, or a filter, using the remove method:

from idaes_dmf import dmf
from idaes_dmf.resource import Resource, FilePath

my_dmf = dmf.DMF (path='/where/my/config/lives/")
r = Resource (desc='test resource')
my_dmf.add(r)

# (a) delete by ID:

my_dmf.remove (identifier=r.id_)

# (b) alternatively, delete by filter:
my_dmf.remove (filter_dict={"'desc':'test_resource'})

3.3.7 DMF API Documentation

Information on specific functions, classes, and methods for the IDAES Data Management Framework (DMF).

idaes.dmf package

IDAES Data Management Framework (DMF)
The DMF lets you save, search, and retrieve provenance related to your models.

This package is documented with Sphinx. To build the documentation, change to the ‘docs’ directory and run, e.g.,
‘make html’.

Resource representaitons.

Subpackages
idaes.dmf.schemas package
Submodules
idaes.dmf.codesearch module

Search through the code and index static information in the DMF.

class idaes.dmf.codesearch.Cl
Bases: idaes.dmf.codesearch._TestClass

classmethod get_metadata ()

3.3. Data Management Framework (DMF) 201




IDAES Documentation, Release 0.60

class idaes.dmf.codesearch.C2
Bases: idaes.dmf.codesearch._TestClass

classmethod get_metadata ()

class idaes.dmf.codesearch.C3
Bases: idaes.dmf.codesearch._ TestClass

classmethod get_metadata ()

class idaes.dmf.codesearch.ModuleClassWalker (from_path=None, from_pkg=None,
class_expr=None, parent_class=None,
suppress_warnings=False, ex-

clude_testdirs=True, exclude_tests=True,
exclude_init=True, exclude_setup=True,

exclude_dirs=None)
Bases: idaes.dmf.codesearch.Walker

Walk modules from a given root (e.g. ‘idaes’), and visit all classes in those modules whose name matches a
given pattern.

Example usage:

walker = ModuleClassWalker (from_pkg=idaes,
class_expr="'_PropertyParameter.x")

walker.walk (PrintMetadataVisitor()) # see below

walk (visitor)
Interface for walkers.

Parameters visitor (Visitor)— Class whose visit method will be called for each item.
Returns None

class idaes.dmf.codesearch.PrintPropertyMetadataVisitor
Bases: idaes.dmf.codesearch.PropertyMetadataVisitor

visit_metadata (0bj, meta)
Print the module and class of the object, and then the metadata dict, to standard output.

class idaes.dmf.codesearch.PropertyMetadataVisitor
Bases: idaes.dmf.codesearch.Visitor

Visit something implementing HasPropertyClassMetadata and pass that metadata, as a dict, to the
visit_metadata() method, which should be implemented by the subclass.

visit (obj)
Visit one object.

Parameters obj (idaes.core.property_base.HasPropertyClassMetadata) —
The object

Returns None

visit_metadata (0bj, meta)
Do something with the metadata.

Parameters
* obj (object) — Object from which metadata was pulled, for context.

* meta(idaes.core.property_base.PropertyClassMetadata)—The meta-
data

202 Chapter 3. Contents


https://docs.python.org/3/library/functions.html#object

IDAES Documentation, Release 0.60

Returns None

class idaes.dmf.codesearch.Visitor
Bases: object

Interface for the ‘visitor’ class passed to Walker subclasses’ walk() method.

visit (obj)
Visit one object.

Parameters obj (object)— Some object to operate on.
Returns None

class idaes.dmf.codesearch.Walker
Bases: object

walk (visitor)
Interface for walkers.

Parameters visitor (Visitor)— Class whose visit method will be called for each item.

Returns None

idaes.dmf.commands module

Perform all logic, input, output of commands that is particular to the CLIL.
Call functions defined in ‘api’ module to handle logic that is common to the API and CLI.
idaes.dmf.commands.cat_resources (path, objects=(), color=True)

idaes.dmf.commands.init_conf (workspace)
Initialize the workspace.

idaes.dmf.commands.list_resources (path, long_format=None, relations=False)
List resources in a given DMF workspace.

Parameters

* path (str)— Path to the workspace

* long_format (bool) - Listinlong format flag

* relations (bool)— Show relationships, in long format
Returns None

idaes.dmf.commands.list_workspaces (root, stream=None)
List workspaces found from a given root path.

Parameters
* root —root path
* stream - Output stream (must have .write() method)

idaes.dmf.commands .workspace_import (path, patterns, exit_on_error)
Import files into workspace.

Parameters
* path (str) - Target workspace directory

* patterns (Iist) — List of Unix-style glob for files to import. Files are expected to be
resource JSON or a Jupyter Notebook.

3.3. Data Management Framework (DMF) 203


https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

IDAES Documentation, Release 0.60

* exit_on_error (bool) — If False, continue trying to import resources even if one or
more fail.

Returns Number of things imported
Return type int

Raises BadResourceError, if there is a problem

idaes.dmf.commands.workspace_info (dirname)

idaes.dmf.commands .workspace_init (dirname, metadata)

Initialize from root at dirname, set environment variable for other commands, and parse config file.

idaes.dmf.dmf module

Data Management Framework

class idaes.dmf.dmf .DMF (path=", name=None, desc=None, **ws_kwargs)

Bases: idaes.dmf.workspace.Workspace, traitlets.traitlets.HasTraits
Data Management Framework (DMF).

Expected usage is to instantiate this class, once, and then use it for storing, searching, and retrieve resource s
that are required for the given analysis.

For details on the configuration files used by the DMF, see documentation for DMFConfig (global configura-
tion) and idaes.dmf.workspace.Workspace.

CONF_DATA DIR = 'datafile dir'
CONF_DB_FILE = 'db_file'
CONF_HELP PATH = 'htmldocs'

add (rsrc)
Add a resource and associated files.

If the resource has ‘datafiles’, there are some special values that cause those files to be copied and possibly
the original removed at this point. There are attributes do_copy and is_tmp on the resource, and also
potentially keys of the same name in the datafiles themselves. If present, the datafile key/value pairs
will override the attributes in the resource. For do_copy, the original file will be copied into the DMF
workspace. If do_copy is True, then if is_tmp is also True the original file will be removed (after the copy
is made, of course).

Parameters rsrc (resource.Resource) — The resource
Returns (str) Resource ID
Raises DMFError, DuplicateResourceError

count ()

datafile dir
A trait for unicode strings.

db_file
A trait for unicode strings.

fetch_many (rid_list)
Fetch multiple resources, by their identifiers.

Parameters rid_list (1ist)— List of integer resource identifers

204

Chapter 3. Contents


https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

IDAES Documentation, Release 0.60

Returns (list of resource.Resource) List of found resources (may be empty)

fetch_one (rid)
Fetch one resource, from its identifier.

Parameters rid (st r)— Resource identifier
Returns (resource.Resource) The found resource, or None if no match

find (filter_dict=None, id_only=False)
Find and return resources matching the filter.

The filter syntax is a subset of the MongoDB filter syntax. This means that it is represented as a dictionary,
where each key is an attribute or nested attribute name, and each value is the value against which to match.
There are four possible types of values:

1. scalar string or number (int, float): Match resources that have this exact value for the given attribute.

2. date, as datetime.datetime or pendulum.Pendulum instance: Match resources that have this exact date
for the given attribute.

3. list: Match resources that have a list value for this attribute, and for which any of the values in the
provided list are in the resource’s corresponding value. If a ‘!’ is appended to the key name, then this
will be interpreted as a directive to only match resources for which all values in the provided list are
present.

4. dict: This is an inequality, with one or more key/value pairs. The key is the type of inequality and the
value is the numeric value for that range. All keys begin with ‘$’. The possible inequalities are:

e “$1t”: Less than (<)

* “$le”: Less than or equal (<=)

e “$gt”: Greater than (>)

e “$ge”: Greater than or equal (>=)

* “$ne”: Not equal to (!=)

Parameters
e filter_ dict (dict)— Search filter.

* id only (bool) — If true, return only the identifier of each resource; otherwise a Re-
source object is returned.

Returns (list of intlResource) Depending on the value of id_only.
find_related (rsrc, filter_dict=None, maxdepth=0, meta=None, outgoing=True)
Find related resources.
Parameters
e rsrc (resource.Resource)— Resource starting point
e filter_dict (dict)— See parameter of same name in £ind ().
* maxdepth (int) - Maximum depth of search (starts at 1)
* meta (List [str])— Metadata fields to extract for meta part

* outgoing (bool) — If True, look at outgoing relations. Otherwise look at incoming
relations. e.g. if A ‘uses’ B and if True, would find B starting from A. If False, would find
A starting from B.

3.3.

Data Management Framework (DMF) 205


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

IDAES Documentation, Release 0.60

Returns Generates triples (depth, Triple, meta), where the depth is an integer (starting at 1), the
Triple is a simple namedtuple wrapping (subject, object, predicate), and meta is a dict of
metadata for the endpoint of the relation (the object if outgoing=True, the subject if outgo-
ing=False) for the fields provided in the meta parameter.

Raises NoSuchResourceError — if the starting resource is not found

remove (identifier=None, filter_dict=None, update_relations=True)
Remove one or more resources, from its identifier or a filter. Unless told otherwise, this method will scan
the DB and remove all relations that involve this resource.

Parameters
e identifier (str) - Identifier for a resource.
e filter_dict (dict) - Filter to use instead of identifier

* update_relations (bool) — If True (the default), scan the DB and remove all rela-
tions that involve this identifier.

update (rsrc, sync_relations=False, upsert=False)
Update/insert stored resource.

Parameters
e rsrc (resource.Resource) — Resource instance

* sync_relations (bool) — If True, and if resource exists in the DB, then the “rela-
tions” attribute of the provided resource will be changed to the stored value.

* upsert (bool)—If true, and the resource is not in the DMF, then insert it. If false, and
the resource is not in the DMF, then do nothing.

Returns

True if the resource was updated or added, False if nothing was done.
Return type bool
Raises errors.DMFError — If the input resource was invalid.

class idaes.dmf.dmf.DMFConfig (defaults=None)
Bases: object

Global DMF configuration.

Every time you create an instance of the DMF, or run a dmf command on the command-line, the library opens
the global DMF configuration file to figure out wthe default workspace (and, eventually, other values).

The default location for this configuration file is “~/.dmf”, i.e. the file named “.dmf” in the user’s home directory.
This can be modified programmatically by changing the “filename” attribute of this class.

The contents of .dmf are formatted as YAML, with the following keys defined:
workspace Path to the default workspace directory.

An example file is shown below:

{workspace: /tmp/newdir}

DEFAULTS = {'workspace': '/home/ksb/Projects/IDAES/github/IDAES/idaes_0.6_rel/doc'}
WORKSPACE = 'workspace'

filename = '/home/ksb/.dmf’'

save ()

206 Chapter 3. Contents


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
http://www.yaml.org/

IDAES Documentation, Release 0.60

workspace

idaes.dmf.dmf.get_propertydb_table (rsrc)

idaes.dmf.errors module

Exception classes.

exception idaes.dmf.errors.AlamoDisabledError
Bases: idaes.dmf.errors.AlamoError

exception idaes.dmf.errors.AlamoError (msg)
Bases: 1daes.dmf.errors.DmfError

exception idaes.dmf.errors.BadResourceError
Bases: idaes.dmf.errors.ResourceError

exception idaes.dmf.errors.CommandError (command, operation, details)
Bases: Exception

exception idaes.dmf.errors.DMFBadWorkspaceError (path, why)
Bases: idaes.dmf.errors.DMFError

exception idaes.dmf.errors.DMFError (detailed_error)
Bases: Exception

exception idaes.dmf.errors.DMFWorkspaceNotFoundError (path)
Bases: idaes.dmf.errors.DMFError

exception idaes.dmf.errors.DataFormatError (dtype, err)
Bases: idaes.dmf.errors.DmfError

exception idaes.dmf.errors.DmfError
Bases: Exception

exception idaes.dmf.errors.DuplicateResourceError (op,id_)
Bases: 1daes.dmf.errors.ResourceError

exception idaes.dmf.errors.FileError
Bases: Exception

exception idaes.dmf.errors.InvalidRelationError (subj, pred, obj)
Bases: idaes.dmf.errors.DmfError

exception idaes.dmf.errors.ModuleFormatError (module_name, type_, what)
Bases: Exception

exception idaes.dmf.errors.NoSuchResourceError (name=None, id_=None)
Bases: idaes.dmf.errors.ResourceError

exception idaes.dmf.errors.ParseError
Bases: Exception

exception idaes.dmf.errors.ResourceError
Bases: Exception

exception idaes.dmf.errors.SearchError (spec, problem)
Bases: Exception

exception idaes.dmf.errors.WorkspaceConfMissingField (path, name, desc)
Bases: idaes.dmf.errors.WorkspaceError

3.3. Data Management Framework (DMF)

207


https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception

IDAES Documentation, Release 0.60

exception idaes.dmf.errors.WorkspaceConfNotFoundError (path)

Bases: idaes.dmf.errors.WorkspaceError

exception idaes.dmf.errors.WorkspaceError

Bases: Exception

exception idaes.dmf.errors.WorkspaceNotFoundError (from_dir)

Bases: idaes.dmf.errors.WorkspaceError

idaes.dmf.experiment module

The ‘experiment’ is a root container for a coherent set of ‘resources’.

class idaes.dmf.experiment .Experiment (dmf, **kwargs)

Bases: idaes.dmf.resource.Resource
An experiment is a way of grouping resources in a way that makes sense to the user.

It is also a useful unit for passing as an argument to functions, since it has a standard ‘slot’ for the DMF instance
that created it.

add (rsrc)
Add a resource to an experiment.

This does two things:
1. Establishes an “experiment” type of relationship between the new resource and the experiment.

2. Adds the resource to the DMF

Parameters rsrc (resource.Resource)— The resource to add.
Returns Added (input) resource, for chaining calls.
Return type resource.Resource
copy (new_id=True, **kwargs)
Get a copy of this experiment. The returned object will have been added to the DMF.
Parameters
* new_id (bool) - If True, generate a new unique ID for the copy.
* kwargs — Values to set in new instance after copying.
Returns
A (mostly deep) copy.

Note that the DMF instance is just a reference to the same object as in the original, and they
will share state.

Return type Experiment
dmf

1ink (subj, predicate="contains’, obj=None)
Add and update relation triple in DMF.

Parameters
* subj (resource.Resource) — Subject

e predicate (str)— Predicate

208

Chapter 3. Contents


https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

IDAES Documentation, Release 0.60

* obj (resource.Resource)— Object
Returns None

remove ()
Remove this experiment from the associated DMF instance.

update ()
Update experiment to current values.

idaes.dmf.help module

Find documentation for modules and classes in the generated Sphinx documentation and return its location.

idaes.dmf.help.find_html_docs (dmf, obj, **kw)
Get one or more files with HTML documentation for the given object, in paths referred to by the dmf instance.

idaes.dmf.help.get_html_docs (dmf, module_, name, sphinx_version=(1, 5, 5))

idaes.dmf.magics module

Jupyter magics for the DMF.

class idaes.dmf.magics.DmfMagics (shell)
Bases: IPython.core.magic.Magics

NEED_INIT CMD = {'help': '+', 'info': 'x'}

dmf (line)
DMF outer command

dmf_ help ( *names)
Provide help on IDAES objects and classes.

Invoking with no arguments gives general help. Invoking with one or more arguments looks for help in the
docs on the given objects or classes.

dmf_info (*fopics)
Provide information about DMF current state for whatever ‘topics’ are provided. With no topic, provide
general information about the configuration.

Parameters topiecs ((List [str]))— Listof topics
Returns None

dmf_init (path, *extra)
Initialize DMF (do this before most other commands).

Parameters path (st r)— Full path to DMF home

dmf list ()
List resources in the current workspace.

dmf workspaces (*paths)
List DMF workspaces.

Parameters paths (List [str])— Paths to search, use “.” by default

idaes (line)
%idaes magic

3.3. Data Management Framework (DMF) 209


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

IDAES Documentation, Release 0.60

idaes_help (*names)
Provide help on IDAES objects and classes.

Invoking with no arguments gives general help. Invoking with one or more arguments looks for help in the
docs on the given objects or classes.

magics = {'cell': {}, 'line': {'dmf"': 'dmf', 'idaes': 'idaes'}}
registered = True

idaes.dmf.magics.register ()

idaes.dmf.propdata module

Property data types.
Ability to import, etc. from text files is part of the methods in the type.

Import property database from textfile(s): * See PropertyData. from csv (), for the expected format for data.
* See PropertyMetadata () for the expected format for metadata.

exception idaes.dmf.propdata.AddedCSVColumnError (names, how_bad, column_type="")
Bases: KeyError

Error for :meth:PropertyData.add_csv()

class idaes.dmf.propdata.Fields
Bases: idaes.dmf.tabular.Fields

Constants for fields.
C_PROP = 'property'
C_STATE = 'state'

class idaes.dmf.propdata.PropertyColumn (name, data)
Bases: idaes.dmf.tabular.Column

Data column for a property.
data ()
type_name = 'Property'

class idaes.dmf.propdata.PropertyData (data)
Bases: 1daes.dmf.tabular.TabularData

Class representing property data that knows how to construct itself from a CSV file.

You can build objects from multiple CSV files as well. See the property database section of the API docs for
details, or read the code in add_csv () and the tests in idaes_dmf.propdb.tests.test_mergecsv.

add_csv (file_or_path, strict=False)
Add to existing object from a new CSV file.

Depending on the value of the strict argument (see below), the new file may or may not have the same
properties as the object — but it always needs to have the same number of state columns, and in the same
order.

Note: Data that is “missing” because of property columns in one CSV and not the other will be filled with
float(nan) values.

210 Chapter 3. Contents


https://docs.python.org/3/library/exceptions.html#KeyError

IDAES Documentation, Release 0.60

Parameters

e file_or path(file or str)- Inputfile. This should be in exactly the same for-
mat as expected by :meth:from_csv().

e strict (bool) — If true, require that the columns in the input CSV match columns in
this object. Otherwise, only require that state columns in input CSV match columns in
this object. New property columns are added, and matches to existing property columns
will append the data.

Raises AddedCSVColumnError — If the new CSV column headers are not the same as the
ones in this object.

Returns (int) Number of added rows
as_arr (states=True)
Export property data as arrays.

Parameters states (bool)—If False, exclude “state” data, e.g. the ambient temperature, and
only include measured property values.

Returns (values[M,N], errors[M,N]) Two arrays of floats, each with M columns having N val-
ues.

Raises ValueError if the columns are not all the same length
embedded_units = ' (.*)\\((.*)\\)"'

errors_dataframe (states=Fualse)
Get errors as a dataframe.

Parameters states (bool) — If False, exclude state data. This is the default, because states
do not normally have associated error information.

Returns Pandas dataframe for values.
Return type pd.DataFrame
Raises ImportError —If pandas or numpy were never successfully imported.

static from_csv (file_or_path, nstates=0)
Import the CSV data.

Expected format of the files is a header plus data rows.

Header: Index-column, Column-name(1), Error-column(1), Column-name(2), Error-column(2), .. Data:

<index>, <val>, <errval>, <val>, <errval>, ..
Column-name is in the format “Name (units)”
Error-column is in the format “<type> Error”, where “<type>" is the error type.
Parameters
e file or path(file-like or str)-Inputfile
* nstates (int)— Number of state columns, appearing first before property columns.
Returns New properties instance
Return type PropertyData

is_property_ column (index)
Whether given column is a property. See is_state _column().

3.3.

Data Management Framework (DMF)

211


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ImportError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

IDAES Documentation, Release 0.60

is_state_column (index)
Whether given column is state.

Parameters index (int) — Index of column
Returns (bool) State or property and the column number.
Raises ITndexError —No column at that index.

names (states=True, properties=True)
Get column names.

Parameters

* states (bool) - If False, exclude “state” data, e.g. the ambient temperature, and only

include measured property values.
* properties (bool) - If False, excluse property data
Returns List of column names.
Return type list[str]
properties
states

values_dataframe (states=True)
Get values as a dataframe.

Parameters states (bool)—see names ().

Returns (pd.DataFrame) Pandas dataframe for values.

Raises ImportError —If pandas or numpy were never successfully imported.

class idaes.dmf.propdata.PropertyMetadata (values=None)
Bases: idaes.dmf.tabular.Metadata

Class to import property metadata.

class idaes.dmf.propdata.PropertyTable (data=None, **kwargs)
Bases: 1daes.dmf.tabular.Table

Property data and metadata together (at last!)

classmethod load (file_or_path, validate=True)
Create PropertyTable from JSON input.

Parameters

e file or_path (file or str) — Filename or file object from which to read the

JSON-formatted data.

* validate (bool) - If true, apply validation to input JSON data.

Example input:

306-310",

D.A.",

{

"meta": [
{"datatype": "MEA",
"info": "J. Chem. Eng. Data, 2009, Vol 54, pg.
"notes": "r is MEA weight fraction in aqueous soln.",
"authors": "Amundsen, T.G., Lars, E.O., Eimer,
"title": "Density and Viscosity of ..."}

]I

(continues on next page)

212

Chapter 3. Contents



https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ImportError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

IDAES Documentation, Release 0.60

(continued from previous page)

"data": [

{"name": "Viscosity Value",
"units": "mPa-s",
"values": [2.6, 6.2],
"error_type": "absolute",
"errors": [0.06, 0.0047],
"type": "property"},

{"name": "r",

"units": "",
"values": [0.2, 10007,
"type": "state"}
]
}

class idaes.dmf.propdata.StateColumn (name, data)
Bases: idaes.dmf.tabular.Column

Data column for a state.
data ()
type_name = 'State'

idaes.dmf.propdata.convert_csv (meta_csv, datatype, data_csv, nstates, output)

idaes.dmf.propindex module

Index Property metadata

class idaes.dmf.propindex.DMFVisitor (dmf, default_version=None)
Bases: idaes.dmf.codesearch.PropertyMetadataVisitor

visit_metadata (0bj, meta)

Called for each property class encountered during the “walk” initiated by in-
dex_property_metadata().

Parameters
e obj (property_base.PropertyParameterBase) — Property class instance

* meta (property_base.PropertyClassMetadata)— Associated metadata

Returns None

Raises AttributeError —if

idaes.dmf.propindex.index_property metadata (dmf, pkg=<module ‘idaes’  from
"/home/ksb/anaconda3/envs/idaes/lib/python3.7/site-
packages/idaes-0.6.0-
py3.7.egglidaes/__init__.py’>,
expr="_PropertyMetadata.*’, de-
fault_version="0.0.1", **kwargs)
Index all the PropertyMetadata classes in this package.

Usually the defaults will be correct, but you can modify the package explored and set of classes indexed.

When you re-index the same class (in the same module), whether or not that is a “duplicate” will depend on the
version found in the containing module. If there is no version in the containing module, the default version is

3.3. Data Management Framework (DMF) 213


https://docs.python.org/3/library/exceptions.html#AttributeError

IDAES Documentation, Release 0.60

used (so it is always the same). If it is a duplicate, nothing is done, this is not considered an error. If a new
version is added, it will be explicitly connected to the highest version of the same module/code. So, for example,

1. Starting with (a.module.ClassName version=0.1.2)

2. If you then find a new version (a.module.ClassName version=1.2.3) There will be 2 resources, and you

will have the relation:

a.module.ClassName/1.2.3 —-version——-> a.module.ClassName/0.1.2

3. If you add another version (a.module.ClassName version=1.2.4), you will have two relations:

a.module.ClassName/1.2.3 —-version———-> a.module.ClassName/0.1.2
a.module.ClassName/1.2.4 ——version—-——> a.module.ClassName/1.2.3
Parameters

e dmf (idaes.dmf.DMF) — Data Management Framework instance in which to record the

found metadata.

* pkg (module)— Root module (i.e. package root) from which to find the classes containing

metadata.

* expr (str)— Regular expression pattern for the names of the classes in which to look for

metadata.

* default_version (str)— Default version to use for modules with no explicit version.

* kwargs — Other keyword arguments passed to codesearch.ModuleClassWalker.

Returns None
Raises
e This instantiated a DMFVisitor and calls its walk() method to
» walk/visit each found class, so any exception raised by the constructor

e or DMFVisitor.visit_metadata().

idaes.dmf.resource module

Resource representaitons.

class idaes.dmf.resource.Dict (*args, **kwargs)
Bases: dict

Subclass of dict that has a ‘dirty’ bit.
is_dirty ()
set_clean ()

idaes.dmf.resource.PR_DERIVED = 'derived'
Constants for relation predicates

class idaes.dmf.resource.Resource (value=None, type_=None)
Bases: object

Core object for the Data Management Framework.

ID FIEID = 'id '
Identifier field name constant

214

Chapter 3. Contents



https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

IDAES Documentation, Release 0.60

TYPE_FIELD = 'type'
Resource type field name constant

data
Get JSON data for this resource.

get_datafiles (mode="r’")
Generate readable file objects for ‘datafiles’ in resource.

Parameters mode (st r)— Mode for open()
Returns Generates ‘file‘s.
Return type generator
id
Get resource identifier.

set_id (value=None)

type
Get resource type.

validate ()

idaes.dmf.resource.TY EXPERIMENT = 'experiment'
Constants for resource ‘types’

class idaes.dmf.resource.Triple (subject, predicate, object)
Bases: tuple

Provide attribute access to an RDF subject, predicate, object triple

object
Alias for field number 2

predicate
Alias for field number 1

subject
Alias for field number O

idaes.dmf.resource.create_relation (rel)
Create a relationship between two Resource instances.

Relations are stored in both the subject and object resources, in the following way:

If R = (subject)S, (predicate)P, and (object)O

then store the following:
In S.relations: {predicate: P, identifier:0.id, role:subject}
In O.relations: {predicate: P, identifier:S.id, role:object}

Parameters rel (Triple) — Relation triple. The ‘subject” and ‘object’ parts should be
Resource, and the ‘predicate’ should be a simple string.

Returns None
Raises ValueError — if this relation already exists in the subject or object resource, or the predi-
cate is not in the list of valid ones in RELATION_PREDICATES
idaes.dmf.resource.create_relation_args (*args)
Syntactic sugar to take 3 args instead of a Triple.

idaes.dmf.resource.date_ float (value)

3.3. Data Management Framework (DMF) 215


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/exceptions.html#ValueError

IDAES Documentation, Release 0.60

idaes.dmf.resource.format_version (values)

idaes.dmf.resource.identifier str (value=None)
Unique identifier.

Parameters value (str) — If given, validate that it is a 32-byte str If not given or None, set new
random value.

idaes.dmf.resource.triple_from_resource_relations (id_, rrel)
Create a Triple from one entry in resource[ ‘relations’].

Parameters

* id (str) - Identifier of the containing resource.

* rrel (dict) — Stored relation with three keys, see create_relation().
Returns A triple
Return type 7riple

idaes.dmf.resource.version_list (value)
Semantic version.

Three numeric identifiers, separated by a dot. Trailing non-numeric characters allowed.

Inputs, string or tuple, may have less than three numeric identifiers, but internally the value will be padded with
zeros to always be of length four.

A leading dash or underscore in the trailing non-numeric characters is removed.
Some examples:
e I =>valid=>(1,0,0, )
* rc3 =>invalid: no number
e I.1=>valid=>(,1,0, )
e la=>valid=>(1,0,0, ‘a’)
¢ l.a.l => invalid: non-numeric can only go at end
1.12.1 =>valid=> (1, 12, 1, )
1.12.13-1 => valid => (1, 12, 13, ‘1")

L]

1.12.13.x => invalid: too many parts

Returns [major:int, minor:int, debug:int, release-type:str]

Return type list

idaes.dmf.resource_old module

Resource representaitons.

class idaes.dmf.resource_old.Code (*args, **kwargs)
Bases: 1daes.dmf.resource _old.TraitContainer

Some source code, such as a Python module or C file.
This can also refer to packages or entire Git repositories.

desc
Description of the code

216 Chapter 3. Contents


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

IDAES Documentation, Release 0.60

idhash
Git or other unique hash

language
Programming language, e.g. “Python” (the default).

location
Flie path or URL location for the code

name
Name of the code object, e.g. Python module name

release
Version of the release, default is ‘0.0.0°

type
‘method’, ‘function’, ‘module’, ‘class’, ‘file’, ‘package’, ‘repository’, or ‘notebook’.

Type Type of code resource, must be one of

class idaes.dmf.resource_old.Contact (*args, **kwargs)
Bases: idaes.dmf.resource_old.TraitContainer

Person who can be contacted.

email
Email of the contact

name
Name of the contact

class idaes.dmf.resource_old.DateTime (default value=traitlets. Undefined, al-
low_none=False, read_only=None, help=None,

config=None, **kwargs)
Bases: traitlets.traitlets.TraitType

A trait type for a datetime.

Input can be a string, float, or tuple. Specifically:
e string, [ISO8601: YYYY[-MM-DD[Thh:mm:ss[.uuuuuu]]]
* float: seconds since Unix epoch (1/1/1970)
* tuple: format accepted by datetime.datetime()

No matter the input, validation will transform it into a floating point number, since this is the easiest form to
store and search.

default_value = 0
info _text = 'a datetime'
classmethod isoformat (1s)
validate (0bj, value)

class idaes.dmf.resource_old.FilePath (tempfile=False, copy=True, **kwargs)
Bases: 1daes.dmf.resource _old.TraitContainer

Path to a file, plus optional description and metadata.

So that the DMF does not break when data files are moved or copied, the default is to copy the datafile into the
DMF workspace. This behavior can be controlled by the copy and tempfile keywords to the constructor.

For example, if you have a big file you do NOT want to copy when you create the resource:

3.3. Data Management Framework (DMF) 217



IDAES Documentation, Release 0.60

’FilePath(path:'/my/biq.file', desc="100GR file', copy=False)

On the other hand, if you have a file that you want the DMF to manage entirely:

’FilePath(path:'/Some/file.txt', desc='a file', tempfile=True)

CSV_MIMETYPE = 'text/csv'

desc
Description of the file’s contents

do_copy
fullpath
is_tmp

metadata
Metadata to associate with the file

mimetype
MIME type

open (mode='r")

path
Path to file

read ( *args)
root

subdir
Unique subdir

class idaes.dmf.resource_old.FlowsheetResource (*args, **kwargs)
Bases: 1daes.dmf.resource old.Resource

Flowsheet resource & factory.

classmethod from_ flowsheet (0bj, **kw)

class idaes.dmf.resource_old.Identifier (default_value=traitlets.Undefined,
low_none=False, read_only=None,

config=None, **kwargs)
Bases: traitlets.traitlets.TraitType

Unique identifier.

Will set it itself automatically to a 32-byte unique hex string. Can only be set to strings

default_value = None
expr = re.compile('[0-9a-f]{32}")
info_text = 'Unique identifier'

validate (0bj, value)

al-
help=None,

class idaes.dmf.resource_old.PropertyDataResource (property_table=None, **kwargs)

Bases: 1daes.dmf.resource_old.TabularDataResource
Property data resource & factory.

idaes.dmf.resource_old.R _DERIVED = 'derived'
Constants for RelationType predicates

218

Chapter 3. Contents



IDAES Documentation, Release 0.60

class idaes.dmf.resource_old.RelationType (default_value=traitlets.Undefined, al-
low_none=False, read_only=None, help=None,

config=None, **kwargs)
Bases: traitlets.traitlets.TraitType

Traitlets type for RDF-style triples relating resources to each other.

Predicates = {'contains', 'derived', 'uses', 'version'}

info_text = 'triple of (subject-id, predicate, object-id), all strings, with a predica
validate (0bj, value)

class idaes.dmf.resource_old.Resource (*args, **kwargs)
Bases: idaes.dmf.resource_old.TraitContainer

A dynamically typed resource.

Resources have metadata and (same for all resoures) a type-specific “data” section (unique to that type of re-
source).

ID_FIELD = 'id '
TYPE_FIELD = 'type'

aliases
List of aliases for the resource

codes
List of code objects (including repositories and packages) associated with the resource. Each value is a
Code.

collaborators
List of other people involved. Each value is a Contact.

copy (**kwargs)
Get a copy of this Resource.

As a convenience, optionally set some attributes in the copy.

Parameters kwargs — Attributes to set in new instance after copying.
Returns: Resource: A deep copy.
The copy will have an empty (zero) identifier and a new unique value for uuid. The
relations are not copied.
static create_relation (subj, pred, obj)
Create a relationship between two Resource instances.
Parameters
* subj (Resource) — Subject
* pred (str) - Predicate
* obj (Resource) — Object
Returns None
Raises TypeError —if subject & object are not Resource instances.

created
Date and time when the resource was created. This defaults to the time when the object was created. Value
isa DateTime.

3.3. Data Management Framework (DMF) 219


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError

IDAES Documentation, Release 0.60

creator
Creator of the resource. Value is a Contact.

data
An instance of a Python dict.

datafiles
List of data files associated with the resource. Each value is a Fi IePath.

datafiles_dir
Datafiles subdirectory (single directory name)

desc
Description of the resource

help (name)
Return descriptive ‘help’ for the given attribute.

Parameters name (st r)— Name of attribute
Returns Help string, or error starting with “Error:

Return type str

id_
Integer identifier for this Resource. You should not set this yourself. The value will be automatically
overwritten with the database’s value when the resource is added to the DMF (with the .add() method).
modified
Date and time the resource was last modified. This defaults to the time when the object was created. Value
isa DateTime.
name

Human-readable name for the resource (optional)

property_table
For property data resources, this property builds and returns a PropertyTable object.

Returns

A representation of metadata and data in this resource.
Return type propdata.PropertyTable
Raises TypeError —if this resource is not of the correct type.

relations
Validate values in a list as belonging to a given TraitType.

This can be used in place of the Traitlets.List class.

sources
Sources from which resource is derived, i.e. its provenance. Each value is a Source.

table

For tabular data resources, this property builds and returns a Table object.

Returns
A representation of metadata and data in this resource.
Return type tabular.Table

Raises TypeError —if this resource is not of the correct type.

220 Chapter 3. Contents


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError

IDAES Documentation, Release 0.60

tags
List of tags for the resource

type
Type of this Resource. See ResourceTypes for standard values for this attribute.

uuid
Universal identifier for this resource

version
Version of the resource. Value is a SemanticVersion.

class idaes.dmf.resource_old.ResourceTypes
Bases: object

Standard resource type names.

Use these as opaque constants to indicate standard resource types. For example, when creating a Resource:

rsrc = Resource (type=ResourceTypes.property_data, ...)

data = 'data'
Data (e.g. result data)

experiment = 'experiment'
Experiment
fs = '"flowsheet'
Flowsheet resource.
jupyter = 'notebook'
jupyter_nb = 'notebook'
nb = 'notebook'
Jupyter Notebook

property_data = 'propertydb'
Property data resource, e.g. the contents are created via classes in the i daes.dmf . propdata module.

python = 'python'
Python code

surrmod = 'surrogate_model'
Surrogate model

tabular_data = 'tabular data'
Tabular data
Xp = 'experiment'
class idaes.dmf.resource_old.SemanticVersion (default_value=traitlets.Undefined, al-

low_none=Fualse, read_only=None,
help=None, config=None, **kwargs)
Bases: traitlets.traitlets.TraitType

Semantic version.
Three numeric identifiers, separated by a dot. Trailing non-numeric characters allowed.

Inputs, string or tuple, may have less than three numeric identifiers, but internally the value will be padded with
zeros to always be of length four.

A leading dash or underscore in the trailing non-numeric characters is removed.

3.3. Data Management Framework (DMF) 221


https://docs.python.org/3/library/functions.html#object

IDAES Documentation, Release 0.60

Some examples:

e 1=>valid=>(1,0,0, )

* rc3 =>invalid: no number
1.1 =>valid=>(1,1,0, )

e la=>valid=>(1,0,0, ‘a’)

L]

¢ l.a.1 => invalid: non-numeric can only go at end
e 1.12.1 =>valid=>(1, 12, 1, ")
e 1.12.13-1 =>valid => (1, 12, 13, ‘I")
e 1.12.13.x => invalid: too many parts
default_value = (0, 0, 0, '")
info_text = 'semantic version major, minor, patch, & modifier'
classmethod pretty (values)
validate (0bj, value)

class idaes.dmf.resource_old.Source (*args, **kwargs)
Bases: 1daes.dmf.resource_old.TraitContainer

A work from which the resource is derived.

date
Date associated with resource

doi
Digital object identifier

isbn
ISBN

language
The primary language of the intellectual content of the resource

source
The work, either print or electronic, from which the resource was derived

class idaes.dmf.resource_old.TabularDataResource (table=None, **kwargs)
Bases: 1daes.dmf.resource _old.Resource

Tabular data resource & factory.

class idaes.dmf.resource_old.TraitContainer (*args, **kwargs)
Bases: traitlets.traitlets.HasTraits

Base class for Resource, that knows how to serialize and parse its traits.
as_dict ()
classmethod from dict (d)

class idaes.dmf.resource_old.Triple (subject, predicate, object)
Bases: tuple

Provide attribute access to an RDF subject, predicate, object triple

object
Alias for field number 2

222 Chapter 3. Contents


https://docs.python.org/3/library/stdtypes.html#tuple

IDAES Documentation, Release 0.60

predicate
Alias for field number 1

subject
Alias for field number O

class idaes.dmf.resource_old.ValidatingList (*args, **kwargs)
Bases: traitlets.traitlets.List

Validate values in a list as belonging to a given TraitType.
This can be used in place of the Traitlets.List class.

validate_elements (0bj, value=None)
This is called when the initial value is set.

class idaes.dmf.resource_old.Version (*args, **kwargs)
Bases: 1daes.dmf.resource old.TraitContainer

Version of something (code, usually).

created
When this version was created. Default “empty”, which is encoded as the start of Unix epoch (1970/01/01).

name
Name given to version

revision
Revision, e.g. 1.0.0rc3

idaes.dmf.resource_old.get_resource_structure ()

idaes.dmf.resourcedb module

Resource database.

class idaes.dmf.resourcedb.ResourceDB (dbfile=None, connection=None)
Bases: object

A database interface to all the resources within a given DMF workspace.

delete (id_=None, idlist=None, filter_dict=None)
Delete one or more resources with given identifiers.

Parameters

e id (int) - If given, delete this id.

e idlist (1ist)— If given, delete ids in this list

e filter_dict (dict)—If given, perform a search and delete ids it finds.
Returns (list[str]) Identifiers

find (filter_dict, id_only=False)
Find and return records based on the provided filter.

Parameters
e filter_dict (dict)— Search filter. For syntax, see docs in dmf.DMF. find ().

* id only (bool) — If true, return only the identifier of each resource; otherwise a Re-
source object is returned.

Returns (list of intlResource) Depending on the value of id_only

3.3. Data Management Framework (DMF) 223


https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

IDAES Documentation, Release 0.60

find_one (*args, **kwargs)
Same as find(), but returning only first value or None.

find_related (id_, filter_dict=None, outgoing=True, maxdepth=0, meta=None)
Find all resources connected to the identified one.

Parameters
e id (str)— Unique ID of target resource.
e filter_dict (dict) - Filter to these resources
* outgoing —
* maxdepth —
* meta (List [str])— Metadata fields to extract
Returns Generator of (depth, relation, metadata)
Raises KeyError if the resource is not found.
put (resource)

update (id_, new_dict)
Update the identified resource with new values.

Parameters

e id (int) - Identifier of resource to update

* new_dict (dict)— New dictionary of resource values
Returns None
Raises

* ValueError — If new resource is of wrong type

e KeyError — If old resource is not found

idaes.dmf.surrmod module

Surrogate modeling helper classes and functions. This is used to run ALAMO on property data.

class idaes.dmf.surrmod.SurrogateModel (experiment, **kwargs)
Bases: object

Run ALAMO to generate surrogate models.
Automatically track the objects in the DMF.

Example:

model = SurrogateModel (dmf, simulator='linsim.py')
rsrc = dmf.fetch_one(l) # get resource ID 1

data = rsrc.property_table.data
model.set_input_data(data, ['temp'], 'density'")
results = model.run{()

PARAM DATA KEY = 'parameters'

Key in resource ‘data’ for params

run ( **kwargs)
Run ALAMO.

224 Chapter 3. Contents


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#object

IDAES Documentation, Release 0.60

Parameters *xkwargs — Additional arguments merged with those passed to the class con-
structor. Any duplicate values will override the earlier ones.

Returns The dictionary returned from alamopy .doalamo ()
Return type dict

set_input_data (data, x_colnames, z_colname)
Set input from provided dataframe or property data.

Parameters
* data (PropertyData|pandas.DataFrame)— Input data
* x_colnames (List [str] [str)—One or more column names for parameters
* z_colname (str)— Column for response variable

Returns None

Raises KeyError — if columns are not found in data

set_input_data_np (x, z, xlabels=None, zlabel="7")
Set input data from numpy arrays.

Parameters
* x (arr)— Numpy array with parameters
e xlabels (List [str])— List of labels for x
e zlabel (st r)—Label for z
* z (arr)— Numpy array with response variables
Returns None

set_validation_data (data, x_colnames, z_colname)
Set validation data from provided data.

Parameters
* data (PropertyData|pandas.DataFrame)— Input data
* x_colnames (List [str] [str)— One or more column names for parameters
* z_colname (str)— Column for response variable

Returns None

Raises KeyError —if columns are not found in data

set_validation_data_np (x, z, xlabels=None, zlabel="7")
Set input data from numpy arrays.

Parameters
* x (arr)— Numpy array with parameters
e xlabels (List [str])— List of labels for x
e zlabel (str) - Label for z
* z (arr)— Numpy array with response variables

Returns None

3.3.

Data Management Framework (DMF) 225


https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

IDAES Documentation, Release 0.60

idaes.dmf.tabular module

Tabular data handling

class idaes.dmf.tabular.Column (name, data)
Bases: object

Generic, abstract column
data ()
type_name = 'generic'

class idaes.dmf.tabular.Fields
Bases: object

Constants for field names.
AUTH = 'authors'
COLTYPE = 'type'

DATA = 'data'

DATA ERRORS = 'errors'
DATA ERRTYPE = 'error_type'
DATA_NAME = 'name'

Keys for data mapping
DATA_UNITS = 'units'
DATA_VALUES = 'values'
DATE = 'date'

DTYPE = 'datatype'

INFO = 'info'
META = 'meta'’
ROWS = 'rows'
TITLE = 'title'
VALS = 'values'

class idaes.dmf.tabular.Metadata (values=None)
Bases: object

Class to import metadata.
as_dict ()

author
Publication author(s).

datatype

date
Publication date

static from_csv (file_or_path)
Import metadata from simple text format.

Example input:

226 Chapter 3. Contents


https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

IDAES Documentation, Release 0.60

Source,Han, J., Jin, J., Eimer, D.A., Melaaen, M.C.,"Density of
—Water (1) + Monoethanolamine (2) + C02(3) from (298.15 to 413.15) K
— and Surface Tension of Water (1) + Monethanolamine (2) from (

—303.15 to 333.15)K", J. Chem. Eng. Data, 2012, Vol. 57, Pg.,.,
—1095-1103"

Retrieval,"J. Morgan, date unknown"

Notes,r is MEA weight fraction in aqueous soln. (CO2-free basis)

Parameters file_or_path (str or file)- Inputfile
Returns (PropertyMetadata) New instance
info
Publication venue, etc.
line_expr = re.compile ('\\s* (\\w+)\\s*, \\s* (.*)\\sx")

source
Full publication info.

source_expr = re.compile ('\\s*(.*)\\s*, \\s*" (.*)"\\s*x,\\s*(.*x)\\s*")

title
Publication title.

class idaes.dmf.tabular.Table (data=None, metadata=None)
Bases: idaes.dmf.tabular.TabularObject

Tabular data and metadata together (at last!)
add _metadata (m)

as_dict ()
Represent as a Python dictionary.

Returns (dict) Dictionary representation
data

dump (fp, **kwargs)
Dump to file as JSON. Convenience method, equivalent to converting to a dict and calling json . dump ().

Parameters

e fp (file)— Write output to this file

* xxkwargs — Keywords passed to json.dump()
Returns see json.dump()

dumps ( **kwargs)
Dump to string as JSON. Convenience method, equivalent to converting to a dict and calling json.
dumps () .

Parameters *xkwargs — Keywords passed to json.dumps()
Returns (str) JSON-formatted data

classmethod load (file_or_path, validate=True)
Create from JSON input.

Parameters

3.3. Data Management Framework (DMF) 227


https://docs.python.org/3/library/stdtypes.html#str

IDAES Documentation, Release 0.60

e file or_path (file or str) — Filename or file object from which to read the
JSON-formatted data.

* validate (bool)—If true, apply validation to input JSON data.

Example input:

{
"meta": [{
"datatype": "MEA",
"info": "J. Chem. Eng. Data, 2009, Vol 54, pg. 3096-30100",
"notes": "r is MEA weight fraction in aqueous soln.",
"authors": "Amundsen, T.G., Lars, E.O., Eimer, D.A.",
"title": "Density and Viscosity of Monoethanolamine + etc."
} ] 4
"data": [
{
"name": "Viscosity Value",
"units": "mPa-s",
"values": [2.6, 6.2],
"error_type": "absolute",
"errors": [0.06, 0.0047,
"type": "property"
}
]
}
metadata

class idaes.dmf.tabular.TabularData (data, error_column=False)
Bases: object

Class representing tabular data that knows how to construct itself from a CSV file.

You can build objects from multiple CSV files as well. See the property database section of the API docs for
details, or read the code in add_csv () and the tests in idaes_dmf.propdb.tests.test_mergecsv.

as_arr()
Export property data as arrays.

Returns (values[M,N], errors[M,N]) Two arrays of floats, each with M columns having N val-
ues.

Raises ValueError if the columns are not all the same length

as_list ()
Export the data as a list.

Output will be in same form as data passed to constructor.
Returns (list) List of dicts
columns
embedded_units = " (.*)\\((.*)\\)"'

errors_dataframe ()
Get errors as a dataframe.

Returns Pandas dataframe for values.

Return type pd.DataFrame

228 Chapter 3. Contents


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

IDAES Documentation, Release 0.60

Raises TmportError —If pandas or numpy were never successfully imported.

static from_csv (file_or_path, error_column=False)
Import the CSV data.

Expected format of the files is a header plus data rows.

Header: Index-column, Column-name(1), Error-column(1), Column-name(2), Error-column(2), .. Data:
<index>, <val>, <errval>, <val>, <errval>, ..

Column-name is in the format “Name (units)”
Error-column is in the format “<type> Error”, where “<type>" is the error type.
Parameters
e file or_path(file-like or str)-—Inputfile

e error_column (bool) — If True, look for an error column after each value column.
Otherwise, all columns are assumed to be values.

Returns New table of data
Return type TabularData

get_column (key)
Get an object for the given named column.

Parameters key (st r)— Name of column
Returns (TabularColumn) Column object.
Raises KeyError — No column by that name.

get_column_index (key)
Get an index for the given named column.

Parameters key (st r)— Name of column
Returns (int) Column number.
Raises KeyError —No column by that name.

names ()
Get column names.

Returns List of column names.
Return type list[str]

num_columns
Number of columns in this table.

A “column” is defined as data + error. So if there are two columns of data, each with an associated error
column, then num_columns is 2 (not 4).

Returns Number of columns.
Return type int

num_rows
Number of rows in this table.

obj.num_rows is a synonym for len(obj)
Returns Number of rows.

Return type int

3.3.

Data Management Framework (DMF) 229


https://docs.python.org/3/library/exceptions.html#ImportError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

IDAES Documentation, Release 0.60

values_dataframe ()
Get values as a dataframe.

Returns (pd.DataFrame) Pandas dataframe for values.
Raises ImportError —If pandas or numpy were never successfully imported.

class idaes.dmf.tabular.TabularObject
Bases: object

Abstract Property data class.

as_dict ()
Return Python dict representation.

idaes.dmf.util module

Utility functions.

class idaes.dmf.util.CPrint (color=True)
Bases: object

Colorized terminal printing.
Codes are below. To use:

cprint = CPrint() cprint(“This has no colors’) # just like print() cprint(‘This is @b[blue] and @_r[red
underlined]’)

You can use the same class as a no-op by just passing color=False to the constructor.

COLORS = {'*': '\xlb[lm', '-': '\xlb[2m', '.': '\x1lb[Om', '_': '\x1lb[4m', 'b':

colorize (s)
println (s)
write (s)

class idaes.dmf.util.TempDir (*args)
Bases: object

Simple context manager for mkdtemp().

idaes.dmf.util.datetime_timestamp (v)
Get numeric timestamp. This will work under both Python 2 and 3.

idaes.dmf.util.find_process_byname (name, uid=None)
Generate zero or more PIDs where ‘name’ is part of either the first or second token in the command line.
Optionally also filter the returned PIDs to only those with a ‘real’ user UID (UID) equal to the provided uid. If
None, the default, is given, then use the current process UID. Providing a value of < 0 will skip the filter.

idaes.dmf.util.get_£file (file_or_path, mode="r")
Open a file for reading, or simply return the file object.

idaes.dmf.util.get_logger (name=")
Create and return a DMF logger instance.

The name should be lowercase letters like ‘dmf” or ‘propdb’.
Leaving the name blank will get the root logger. Also, any non-string name will get the root logger.

idaes.dmf.util.get_module_author (mod)
Find and return the module author.

230 Chapter 3. Contents


https://docs.python.org/3/library/exceptions.html#ImportError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

IDAES Documentation, Release 0.60

Parameters mod (module)— Python module
Returns (str) Author string or None if not found
Raises nothing

idaes.dmf.util.get_module_version (mod)
Find and return the module version.

Version must look like a semantic version with <a>.<b>.<c> parts; there can be arbitrary extra stuff after the
<c>. For example:

1.0.12
0.3.6
1.2.3-alpha-rel0

Parameters mod (module)— Python module
Returns (str) Version string or None if not found

Raises ValueError if version is found but not valid

idaes.dmf.util.import_module (name)

idaes.dmf.util.is_jupyter_notebook (filename)
See if this is a Jupyter notebook.

idaes.dmf.util.is_python (filename)
See if this is a Python file. Do not import the source code.

idaes.dmf.util.is_resource_json (filename)

idaes.dmf.util.mkdir_p (path, *args)
Try to create all non-existent components of a path.

Parameters
* path (str)— Path to create
* args — Other arguments for os.mkdir().
Returns None
Raises os.error —Raised from os.mkdir()
idaes.dmf.util.strlist (x, sep=",")

idaes.dmf.util.terminate_pid (pid, waitfor=1)

idaes.dmf.validate module

XXX: This module is going way soon -dang 10/26/18

class idaes.dmf.validate.InstanceGenerator (schema, params=None)
Bases: object

bplate_div = 'DO NOT MODIFY BEYOND THIS POINT'
create_script (output_file, preserve_old=True, **kwargs)

default_arr len =1

3.3. Data Management Framework (DMF) 231


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.error
https://docs.python.org/3/library/functions.html#object

IDAES Documentation, Release 0.60

get_script (n=1, output_files="/tmp/file{i}.json’)

Code to load & generate n schemas as a Python string template with the spot for the variables as ‘{vari-

ables}’.

Returns

Pair of strings, first is user-modifiable part and second is boilerplate with the template

data. This allows separate modification of these 2 sections.
Return type (str, str)

get_template ()
Generate a new template for the instance.

Returns JSON of the instance
Return type str

get_variables (commented=True)

indent = 2
keywords = ('$schema', 'id', 'definitions')
root_var = 'root'

class idaes.dmf.validate.JsonSchemaValidator (modpath="idaes.dmf’,
tory="schemas’, do_not_cache=False)

Bases: object

Validate JSON documents against schemas defined in this package.

direc-

The schemas are in the “schemas/” directory of the package. They are first processed as Jinja2 templates, to
allow for flexible re-use of common schema elements. The actual resulting schema is stored in a temporary

directory that is removed when this class is deleted.

Example usage:

vdr = JsonSchemaValidator ()
# Validate document against the "foobar" schema.

ok, msg = vdr.validate({'foo': '1l'", 'bar': 2}, 'foobar')
if ok:

print ("Success!")
else:

print ("Failed: ".format (msg))

# Validate input YAML file against the "config" schema
ok, msg = vdr.validate('/path/to/my_config.yaml', 'config', yaml=True)
if ok:
print ("Success!")
else:
print ("Failed: ".format (msqg))

get_schema (schema)

Load the schema and return it as a Python (dict) object. See validate () for details.

Parameters schema (st r)— Schema name. Same as schema arg to validate ()
Returns Parsed schema

Return type dict

Raises

* IOError if file cannot be opened.

232

Chapter 3. Contents



https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 0.60

* ValueError if file cannot be parsed.

instances (schema, param_file)

reset ()
Clear cached schemas, so that changes in the base templates are picked up by the validation code.

validate (doc, schema, yaml=False)
Validate a JSON file against a schema.

Parameters

* doc (str/file|list/dict) — Input filename or object. May be JSON or YAML.
Also may be a list/dict, which is assumed to represent parsed JSON.

* schema (str)— Name of schema in this package. This will be the name, without the
.template suffix, of a file in the ‘schemas/’ directory.

e yaml (bool)—If true, use the YAML parser instead of the JSON parser on the input file.
Returns

(bool, str) Pair whose first value is whether it validated and second is set to the error
message if it did not.

Raises
* IOError if either file cannot be opened.

 ValueError if either file cannot be parsed.

idaes.dmf.workspace module

Workspace classes and functions.

class idaes.dmf.workspace.Fields
Bases: object

Workspace configuration fields.
DOC_HTML PATH = 'htmldocs'
LOG_CONF = 'logging'

class idaes.dmf.workspace.Workspace (path, create=False, add_defaults=False)
Bases: object

DMEF Workspace.

In essence, a workspace is some information at the root of a directory tree, a database (currently file-based, so
also in the directory tree) of Resources, and a set of files associated with these resources.

Workspace Configuration

When the DMF is initialized, the workspace is given as a path to a directory. In that directory is a special file
named config.yaml, that contains metadata about the workspace. The very existence of a file by that name
is taken by the DMF code as an indication that the containing directory is a DMF workspace:

/path/to/dmf: Root DMF directory

\

+— config.yaml: Configuration file

+— resourcedb. json: Resource metadata "database" (uses TinyDB)
+- files: Data files for all resources

3.3. Data Management Framework (DMF) 233


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

IDAES Documentation, Release 0.60

The configuration file is a YAML formatted file

The DMF configuration file defines the following key/value pairs:
_id Unique identifier for the workspace. This is auto-generated by the library, of course.
name Short name for the workspace.
description Possibly longer text describing the workspace.
created Date at which the workspace was created, as string in the ISO8601 format.
modified Date at which the workspace was last modified, as string in the ISO8601 format.

htmldocs Full path to the location of the built (not source) Sphinx HTML documentation for the
idaes_dmf package. See DMF Help Configuration for more details.

There are many different possible “styles” of formatting a list of values in YAML, but we prefer the simple
block-indented style, where the key is on its own line and the values are each indented with a dash:

_id: fe5372a7e51d498fb377da49704874eb
created: '2018-07-16 11:10:44"
description: A bottomless trashcan
modified: '2018-07-16 11:10:44"

name: Oscar the Grouch's Home
htmldocs:

- '"{dmf_root}/doc/build/html/dmf"

— '"{dmf_root}/doc/build/html/models’

Any paths in the workspace configuration, e.g., for the “htmldocs”, can use two special variables that will take on
values relative to the workspace location. This avoids hardcoded paths and makes the workspace more portable
across environments. {ws_root } will be replaces with the path to the workspace directory, and { dmf_root}
will be replaced with the path to the (installed) DMF package.

The config.yaml file will allow keys and values it does not know about. These will be accessible, loaded into
a Python dictionary, via the meta attribute on the Workspace instance. This may be useful for passing
additional user-defined information into the DMF at startup.

CONF_CREATED = 'created'
Configuration field for created date

CONF_DESC = 'description'
Configuration field for description

CONF_MODIFIED = 'modified'
Configuration field for modified date

CONF_NAME = 'name'
Configuration field for name
ID_FIELD = '_id'
Name of ID field
WORKSPACE_CONFIG = 'config.yaml'

Name of configuration file placed in WORKSPACE_DIR
description

get_doc_paths ()
Get paths to generated HTML Sphinx docs.

Returns (list) Paths or empty list if not found.

234

Chapter 3. Contents



http://www.yaml.org/

IDAES Documentation, Release 0.60

meta
Get metadata.

This reads and parses the configuration. Therefore, one way to force a config refresh is to simply refer to
this property, e.g.:

dmf = DMF (path="my-workspace')
# ... do stuff that alters the config ...

dmf.meta # re-read/parse the config

Returns (dict) Metadata for this workspace.

name

root
Root path for this workspace. This is the path containing the configuration file.

set_meta (values, remove=None)
Update metadata with new values.

Parameters
* values (dict)— Values to add or change
* remove (11ist)— Keys of values to remove.

wsid
Get workspace identifier (from config file).

Returns Unique identifier.
Return type str

class idaes.dmf.workspace.WorkspaceConfig
Bases: object

DEFAULTS = {'array': [1, 'boolean': False, 'number': 0, 'string': '}

get_fields (only_defaults=False)
Get all possible metadata fields for workspace config.

These values come out of the configuration schema. Keys starting with a leading underscore, like ‘_id’,
are skipped.

Parameters only_defaults — Only include fields that have a default value in the schema.
Returns

Keys are field name, values are (field description, value). The ‘value’ gives a default
value. Its type is either a list, a number, bool, or a string; the list may be empty.

Return type dict

idaes.dmf.workspace.find_workspaces (roof)
Find workspaces at or below ‘root’.

Parameters root — Path to start at

Returns List of paths, which are all workspace roots.

3.3. Data Management Framework (DMF) 235


https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 0.60

3.3.8 DMF Resources

Data items stored in the DMF, whether they be property data, property models, flowsheets, or other user-defined
objects, are called “resources”. They are represented in the Python API by a class, Resource, with attributes for
metadata and a generic “data” section where resource-type-specific information can be held. You store Resources in
the DMF with the add method on an instance of the DMF class. See the DMF API Examples documentation for all
the available operations.

Resource classes documented on this page: Resource, PropertyDataResource, FlowsheetResource.

A “special” type of resource is an “experiment”. The idea of experiments is that they anchor a set of resources that were
the result of one coherent set of activities. Experiments are initialized with their associated DMF instance and have
some convenience methods to make them a handy way to track a set of resources. See the experiment documentation
page <experiment> for more details.

Here is a diagram of the resource structure:

236 Chapter 3. Contents



IDAES Documentation, Release 0.60

created

modified

version

Ccreator

sSources

sources_wvalues

Eesource

- codes —— o codes_values

datafiles

datafiles walues

aliases

tags

relations

relations wvalues

data

Resources are populated by simply setting their attributes. The attributes are actually traits, using the Traitlets library,
to make them “smarter” and easier to use. Some of the attributes, such as creator or sources, are lists of containers
with more attributes. All the attributes are documented in the API Reference section.

3.3. Data Management Framework (DMF)

237


https://github.com/ipython/traitlets

IDAES Documentation, Release 0.60

Example

Below is an example of creating and then setting all (well, most) of the attributes for a resource that is a plot of the
standard ‘iris’ dataset.

(Zddazdsdasddsdsadsdadasdadsdadatdadatdadadaadddddddddlddddldddddddddidsdsdidi
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.

Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online

# at the URL "https://github.com/IDAES/idaes".
lZddazdddadasdadatdadasdadatdadatsadatasdatsadatsddadaddadataadataadadsadadsiii
from idaes.dmf import resource_old

S oH H KR R R KR W

# Create an empty resource
rsrc = resource_old.Resource (type="plot"')

# Populate the resource. All the attributes are optional.
# This 1is set automatically to current time
rsrc.created = '2017-10-31"
# This is set automatically to current time
rsrc.modified = '2017-11-23"
# Description of the resource
rsrc.desc = 'Plots of the Iris dataset'
# Version of the resource
rsrc.version = resource_old.Version(revision='1.0.3-a7",
name='november—-release')
# Name and contact email of creator of the resource
rsrc.creator = resource_old.Contact (name="'Dan Gunter',
email='dang@science-lab.gov')
# Name and contact email of other people involved
rsrc.collaborators = [resource_old.Contact (name='John Eslick',
email="john@science-lab.gov'"),
resource_old.Contact (name="'David Miller',
email="'david@science-lab.gov')]
# Provenance: sources, such as publications —-- but
# really anything is allowed -—- for the resource.
rsrc.sources = [resource_old.Source (
source='R. A. Fisher. "The use of multiple measurements '
'in taxonomic problems". '
'Annals of Eugenics. 7 (2): 179-188.",
doi="10.1111/7.1469-1809.1936.tb02137.x"', date='1936"),
resource_old.Source (source="'Edgar Anderson. '
'"The species problem in Iris". '
'Annals of the Missouri Botanical Garden. '
'23 (3): 457-509. '
'JSTOR 2394164"',
date="'1936")1]
# Associated code files, including Jupyter notebooks.
# If these codes are worth making into their own Resources,
# you should not put them here, but instead link to them
# through the ‘relations’ attribute.
rsrc.codes = [resource_old.Code (type='notebook',

(continues on next page)

238 Chapter 3. Contents




IDAES Documentation, Release 0.60

(continued from previous page)

desc='Python plotting code',
name='plot_iris_dataset.ipynb',
language="Python',
location='http://scikit-learn.org/stable/_downloads/"
'plot_iris_dataset.ipynb')]
# Associated data files. Same comment as for ‘codes’ re: linking.
rsrc.datafiles = [resource_old.FilePath(path='iris-data.csv',
desc="'Iris data')]
# Short names that make it easier to find this resource.
rsrc.aliases = ['iris', 'iris-plots']
# Tags that make it easier to find this resource later.
rsrc.tags = ['iris', 'anderson', 'fisher']
# Arbitrary additional data to add into the resource.
# Note that larger data units should be made into files and
# added into the ‘“datafiles’ attributes.
rsrc.data = {
'features': ['sepal length (cm)', 'sepal width (cm)',
'petal length (cm)', 'petal width (cm)'],
# the data is already defined in the datafile,
# but we could also put it here, inline

'‘array': [[5.1, 3.5, 1.4, 0.2]1, [4.9, 3.0, 1.4, .21,
(4.7, 3.2, 1.3, 0.21, [4.6, 3.1, 1.5, 0.2],
[5.0, 3.6, 1.4, 0.2], [5.4, 3.9, 1.7, 0.4],
# ... you get the idea..

]

API Reference

This section shows the documentation from the source code for the Resource and ResourceType classes, as well as
Python classes that inherit from Resource in order to add custom functionality: PropertyDataResource and
FlowsheetResource.

class idaes.dmf.resource.Resource (value=None, type_=None)
Core object for the Data Management Framework.

ID FIEID = 'id '
Identifier field name constant

TYPE_FIELD = 'type'
Resource type field name constant

id
Get resource identifier.

type
Get resource type.

data
Get JSON data for this resource.

get_datafiles (mode="r’")
Generate readable file objects for ‘datafiles’ in resource.

Parameters mode (st r)— Mode for open()
Returns Generates ‘file‘s.

Return type generator

3.3. Data Management Framework (DMF) 239



https://docs.python.org/3/library/stdtypes.html#str

IDAES Documentation, Release 0.60

Resource schema

Below are HTML and raw JSON versions of the resource “schema”. This describes the structure of a resource. Having
a schema is useful for other programs to be able to independently manipulate the resource representation.

Resource Schema (HTML)

Resouce Schema (JSON)

"Sschema": "http://json-schema.org/draft-04/schema#",

"id": "http://idaes.org",
"definitions": {
"SemanticVersion": {
"type": "array",
"items": [
{
"type": "integer"

"type": "integer"

"type": "integer"

"type": "string"
}
]I
"minItems": 4
}
}I
"type": "object",
"properties": {
"aliases": {
"type": "array",
"items": {
"type": "string"
}
}I
"codes": {
"type": "array",
"items": {
"type": "object",
"properties": {
"type": {
"type": "string",
"enum": [
"method",
"function",
"module",
"class",
"file",
"package",
"repository",

(continues on next page)

240

Chapter 3. Contents




IDAES Documentation, Release 0.60

(continued from previous page)

"notebook"
1
}I
"desc": {
"type": "string"
}I
"name": {
"type": "string"
}I
"language": {
"type": "string"
}I
"idhash": {
"type": "string"
}I
"location": {
"type": "string"
}I
"version": {
"Sref": "#/definitions/SemanticVersion"
}
}
}
}I
"collaborators": {
"type": "array",
"items": {
"type": "object",
"properties": {
"email": {
"type": "string",
"format": "email"
}I
"name": {
"type": "string"
}
}I
"required": [
"name"
1
}
}I
"created": {
"type": "number"
}I
"creator": {
"type": "object",
"properties": {
"email": {
"type": "string",
"format": "email"
}I
"name": {
"type": "string"
}
}I

"required": [

(continues on next page)

3.3. Data Management Framework (DMF)

241




IDAES Documentation, Release 0.60

(continued from previous page)

"name"
]

by
"data": {

"type": "object"

by
"datafiles": {

"type": "array",

"items": {

"type": "object",
"properties": {

"desc": {

thpe":
by

"metadata":

thpe":
by

"mimetype":

"type":
by

"path": {

"type":
by
"subdir":

"type":
}

}I
"required":
"desc",

"string"

{
"object"

{

"string"

"string"

{

"string"

[

"metadata",

"mimetype",

llpath",
"subdir"

}
}y

"datafiles_dir":

{

"type": "string"

b
"desc": {

"type": "string"

}y
"id_": {

"type": "integer"

by
"modified": {

"type": "number"

}y

"relations": {

thpen: "array",

"items": {

"type": "object",
"properties": {
"predicate": {

"type" :
"enum" :

"WasGeneratedBy",

"string",

[

(continues on next page)

242

Chapter 3. Contents




IDAES Documentation, Release 0.60

(continued from previous page)

"Used",
"WasDerivedFrom",
"WasTriggeredBy",
"WasControlledBy",
"WasRevisionOf"
]
}I
"identifier": {
"type": "string"
}I
"role": {
"type": "string",
"enum": [
"subject",
"object"

}

}I

"required": [
"predicate",
"identifier",

"role"
1
}
}I
"sources": {
"type": "array",
"items": {
"type": "object",
"properties": {
"date": {
"type": "number"
}I
"doi": {
"type": "string"
}I
"isbn": {
"type": "string"
}I
"language": {
"type": "string"
}I
"source": {
"type": "string"
}
}
}
}I
"tags": {
"type": "array",
"items": {
"type": "string"
}
}I
"type": {

"type": "string"
b

(continues on next page)

3.3. Data Management Framework (DMF) 243




IDAES Documentation, Release 0.60

(continued from previous page)

"version": {
"type": "object",
"properties": {
"created": {
"type": "number"
}I
"name": {
"type": "string"
}I
"revision": {
"Sref": "#/definitions/SemanticVersion"
}
}
}
}I
"required": [
"id_ll
]I
"additionalProperties": false

3.3.9 Experiments

Experiments are a type of resource intended to be the “anchor” resource that groups other resources into logical units

that can be repeated, versioned, etc.

When you create an Experiment instance, it is immediately added to the given DMF instance. For example, the

following code] adds a new experiment to the DMF workspace at “workspace/path”:

from idaes.dmf import DMF, experiment
mydmf = DMF (path='workspace/path")
exp = experiment.Experiment (mydmf, name='tryl', desc='Nice try')

You can create new versions of an experiment with the Experiment . copy () method:

from idaes.dmf import DMF, experiment

from idaes.dmf.resource import R_VERSION

mydmf = DMF (path='workspace/path")

expl = experiment.Experiment (mydmf, name='try', version='0.0.1")
exp2 = expl.copy(version='0.0.2")

# add a relation indicating that exp2Z is a revision of expl
expl.link (exp2, R_VERSION)

class idaes.dmf.experiment .Experiment (dmf, **kwargs)
An experiment is a way of grouping resources in a way that makes sense to the user.

It is also a useful unit for passing as an argument to functions, since it has a standard ‘slot’ for the DMF instance

that created it.

add (rsrc)
Add a resource to an experiment.

This does two things:

1. Establishes an “experiment” type of relationship between the new resource and the experiment.

2. Adds the resource to the DMF

244

Chapter 3. Contents




IDAES Documentation, Release 0.60

Parameters rsrc (resource.Resource)— The resource to add.
Returns Added (input) resource, for chaining calls.
Return type resource.Resource

copy (new_id=True, **kwargs)
Get a copy of this experiment. The returned object will have been added to the DMF.

Parameters
* new_id (bool) - If True, generate a new unique ID for the copy.
* kwargs — Values to set in new instance after copying.

Returns
A (mostly deep) copy.

Note that the DMF instance is just a reference to the same object as in the original, and they
will share state.

Return type Experiment

update ()
Update experiment to current values.

remove ()
Remove this experiment from the associated DMF instance.

1ink (subj, predicate="contains’, obj=None)
Add and update relation triple in DMF.

Parameters
e subj (resource.Resource)— Subject
* predicate (str)— Predicate
* obj (resource.Resource)— Object

Returns None

3.3.10 DMF Tabular Data

The DMF has some classes and methods specifically for adding tabular data, e.g. data from a spreadsheet. Before
importing external data, you will usually convert it to comma-separated values (CSV), although the DMF also has
its own internal JSON format that you could use. There are two related modules for handling tabular data. The
tabular module is designed for any set of labeled columns, whereas the propdata module has some additional
bells and whistles for IDAES “property” data. In the description that follows, both will be dealt with together, with
differences highlighted in the text and notes.

Note: Inthe Python code, the propdata.PropertyTable class inherits from the base tabular. Table class,
meaning that methods expecting a Table can also take a PropertyTable object.

Tabular data can be imported into Python objects from comma-separated values (CSV) files, JSON files, or Python
dictionaries. Data files can be merged and the data can be changed through the Python API. From the Python objects,
the data can be exported to CSV or JSON, or saved to the DMF as a TabularDataResource (for property data,
PropertyDataResource).

Steps to get new property data into the DMF:

3.3. Data Management Framework (DMF) 245


https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

IDAES Documentation, Release 0.60

0. Initialize the DMF (see the “Initialize” section of the API examples).

1. Load the data into a tabular. Table (for property data, propdata.PropertyTable) object, using the
import methods for CSV, JSON, or a Python dictionary.

2. Create a TabularDataResource (for property data, PropertyDataResource), passing the object from
the previous step into its constructor.

3. Add the new resource to the DMF with dmf.DMF . add ().

Below are more details about importing from different data sources.

Import from CSV

The expected form of CSV data is one or two files: one for metadata, the other for the data. The metadata indicates
the provenance of the data, e.g., a publication or website.

Note: For property data, the metadata is especially important to identify the associated sources of the data.

Tabular data example

Here is a simple example of importing from CSV to a Tab e object, and from there to the DMF:

from idaes_dmf import dmf, resource, tabular
# Note: Working directory is inside the DMF “examples’ tree

# Initialize the DMF in the current directory,
# creating '.dmf' tree if necessary.
d = dmf.DMF (create=True)

# Load tabular data
pd = tabular.TabularData.from_csv('wwc_input_lig vap.csv')

# Load tabular metadata
pm = tabular.Metadata.from_csv('wwc_input_lig vap_sources.csv')

# Create table with data/metadata combined
tbl = tabular.Table (data=pd, metadata=pm)

# Make tabular resource with table

# This will automatically save the DMF representation to
# a temporary file

rsrc = resource.TabularDataResource (tbl)

Add the resource to the DMF
This will copy the temporary file with the converted
tabular data into the DMF workspace.
(Note that for very large files this behavior can be
overridden to avoid the copy overhead.)
.add (rsrc)

0. 3 HH H W H

246 Chapter 3. Contents




IDAES Documentation, Release 0.60

Property data example

This is the same as the example above, but for property data, import using PropertyTable:

from idaes_dmf import dmf, resource, propdata
# Note: Working directory is inside the DMF ‘examples’ tree

# Initialize the DMF in the current directory,
# creating '.dmf' tree if necessary.
d = dmf.DMF (create=True)

# Load property data
# '12° 1is number of non-measurement columns, i.e. most of them
pd = propdata.PropertyData.from_csv ('wwc_input_lig vap.csv', 12)

# Load property metadata
# 'MEA® 1is the user-selected "type" of the property data
pm = propdata.PropertyMetadata.from_csv ('wwc_input_lig vap_sources.csv', 'MEA'")

# Create PropertyTable from data and metadata
tbl = propdata.PropertyTable (data=pd, metadata=pm)

# Create resource from PropertyTable.

#

# At this point, you can modify the resource metadata to reflect

# links to other objects, aliases, tags, a detailed description, etc.
rsrc = resource.PropertyDataResource (tbl)

# Add the resource to the DMF
d.add(rsrc)

CSV Formats

Tabular metadata

The metadata file has two columns, name and value. One name, “Source”, is required. All other names are user-
defined. Below is an example CSV metadata file (line continuations added for legibility).

Source,Han, J., Jin, J., Eimer, D.A., Melaaen, M.C.,"Density of \
Water (1) + Monoethanolamine(2) + CO02(3) from (298.15 to 413.15) K\
and Surface Tension of Water (l) + Monethanolamine (2) from ( \
303.15 to 333.15)K", J. Chem. Eng. Data, 2012, Vol. 57, \

pg. 1095-1103"

Notes,r is MEA weight fraction in aqueous soln. (CO2-free basis)

This might be exported from a spreadsheet that looks like the following:

Table 3: Sample Property Metadata

Name Value

Source Han, J., Jin, J., Eimer, D.A., Melaaen, M.C.,”Density of Water(1) + Monoethanolamine(2) +
CO2(3) from (298.15 to 413.15) K and Surface Tension of Water(1) + Monethanolamine(2)
from ( 303.15 to 333.15)K”, J. Chem. Eng. Data, 2012, Vol. 57 pg. 1095-1103

Notes ris MEA weight fraction in aqueous soln. (CO2-free basis)

3.3. Data Management Framework (DMF) 247




IDAES Documentation, Release 0.60

The “Source” will be parsed according to the regular expression in the source_expr attribute of tabular.
Metadata, which by default is just three parts: {authors}, “title”, {venue and year}. The year is inferred from a
comma followed by optional whitespace and 4 digits.

Tabular data

The data file is a standard CSV file, with a “header” row followed by one or more value rows. The first column is
always an identifier, whose value is largely ignored. Columns can either be interpreted as values or pairs of <value
column>, <error column>. The default behavior differs depending on whether you are importing a generic table
or property data:

* For a generic table, the default is to see each column as a value. You can pass “error_column=True” to change
this.

* For property data, error columns are the default. You need to pass error_column=False to change this.

Note: For property data, some number of initial column pairs are called “states”, which means they are the in-
dependent variables, and the remaining columns are called “properties”’, which are dependent on the values for the
states.

Tabular CSV data example

Thus, the overall layout of the file is like this, for generic tabular data:

id, wvaluel, value2,
OR

id, wvaluel, errorl, value2, error2,

Property CSV data example

The overall layout is like this, for property data:

id, state-valuel, state-errorl, state-value2, state-error2, ..., \
prop-valuel, prop-errorl, prop-value2, prop-errorz2,

For example, here is a property data CSV with two data rows, and two columns: one state value and one property
value column.

Data No.,T (K),Absolute Error,Density (g/cm3),Absolute Error
1,303.15,0,0.2,0
2,304.15,0,0.3,0

And in a spreadsheet, this example may look like this:

Table 4: Sample Property Data
Data No. | T (K) | Absolute Error | Density (9/cm3) | Absolute Error
1 303.15 | 0 0.2 0
2 304.15 | O 0.3 0

248 Chapter 3. Contents




IDAES Documentation, Release 0.60

The format for the header columns is:

For state/property value colummns <value name> (<units>), where the units are optional but
recommended. Example: “Density (g/cm3)”.

For state/property error columns <type of error> Error. Example: “Absolute Error”.

Import from JSON

The JSON representation of the tabular data, unlike the CSV representation, combines the data and metadata in a
single file.

JSON import example

Here is a simple example of importing tabular data (or property data) from JSON and adding to the DMF:

from idaes_dmf import dmf, resource, propdata, tabular
# Note: Working directory is inside the DMF “examples’ tree

# Initialize the DMF in the current directory,
# creating '.dmf' tree if necessary.
d = dmf.DMF (create=True)

# Create generic Table from JSON file

tbl = tabular.Table.load(open ('wwc_input_lig_vap.json'))

#

# OR

#

# Create PropertyTable from (same) JSON file

tbl2 = propdata.PropertyTable.load (open('wwc_input_lig vap.json'))

# Create resource from PropertyTable.

#

# At this point, you can modify the resource metadata to reflect

# links to other objects, aliases, tags, a detailed description, etc.
rsrc = resource.PropertyDataResource (tbl)

# Add the resource to the DMF
d.add(rsrc)

Note: Because the JSON format explicitly labels the “states” and “properties” columns, and separates error values
from non-error vallues, the only real difference between importing as PropertyTable and a tabular.Table is the type of
the objects that are returned.

JSON format

The “schema” of the JSON format is shown at the end of this section. But, since nobody likes reading schemas, here
is a JSON version of the CSV metadata and data given above (truncated to six rows).

{
"data": [

(continues on next page)

3.3. Data Management Framework (DMF) 249




IDAES Documentation, Release 0.60

(continued from previous page)

"name" :
"units":
"values":

"T",

298.
298.
298.
298.
298
313.

15,
15,
15,
15,

.15,

15,

:| 14

"errors":
0.0,

r

14

4

’

O O O o o
O O O O O

’

i

llKll,
[

[

"error_type": "absolute",
lltype" . "property"

"name": "CO2 Loading",

"units":
"values":
0.1,
.21,
.32,
.44,
.56,
.1,

O O O o O

1,
"errors":
0.0,

’

o O

’

o

’

O O O O
o

’

i

"mol CO2/MEA",
[

[

"error_type": "absolute",
lltype" . "property"

"name" :

"units":

"values":
0.3,

14

14

14

’

O O O o O
w W w w w

’

1,

"errors":

0.0,
0.0,

won
ey

nn
4

[

[

(continues on next page)

250

Chapter 3. Contents




IDAES Documentation, Release 0.60

(continued from previous page)

~

~

o O O O
O O O O
~

~

]l

"error_type":

"type" .

"name" :
"units":

"absolute",
"property"

"Density Data",
"g/cm3",

"values": [
1.0333,
.0534,
.0756,
.0964,
.1142,
.0253,

e e S

]I
"errors": [
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,

]I

"error_type": "absolute",

"type": "property"
}
]I
"meta": [
{

"authors": "Han, J., Jin, J., Eimer, D.A., Melaaen, M.C.",

"date": "1970-01-01",

"title": "Density of Water (l) + Monoethanolamine(2) + CO2(3) from (298.15 to_
-+413.15) K and Surface Tension of Water (l) + Monethanolamine (2) from (303.15 to 333.
—~15)K",

"info": "J. Chem. Eng. Data, 2012, Vol. 57, pg. 1095-1103",

"retrieval": "J. Morgan, date unknown",

"notes": "r is MEA weight fraction in aqueous soln. (CO2-free basis)"

Import from Python dictionary

Creating a new table from a Python dictionary is similar to importing from JSON, except in this case the data and
metadata dicts are created separately from Python dicts, and then combined.

Import from dictionary example

The import API is shown in the following example:

3.3. Data Management Framework (DMF) 251




IDAES Documentation, Release 0.60

from idaes_dmf import dmf, resource, tabular, propdata

# Note: Working directory is inside the DMF ‘examples’ tree

# Initialize the DMF in the current directory,
# creating '.dmf' tree if necessary.
d = dmf.DMF (create=True)

# Create PropertyTable from two inputs:

# — ‘data’ 1is a dict in the same format as the 'data' secion of the JSON
# schema

# - 'metadata’ is a list of metadata dicts, just like the "meta’

# section of the JSON schema.

tbl = tabular.Table (data=data, metadata=metadata)

#

# OR, for property data:

tbl = propdata.PropertyTable (data=data, metadata=metadata)

# Add the property data resource to the DMF
d.add (resource.PropertyDataResource (tbl))

JSON Schemas

Schema (HTML version)

Schema (raw JSON version)

"Sschema": "http://json-schema.org/draft-04/schema#",
"id": "http://idaes.org",
"definitions": {
"Column": {
"type": "object",
"properties": {
"name": {
"type": "string",
"examples": [
"Density",
"r"
]
}V
"units": {
"type": "string",
"examples": [
"mPa-s",
"K"
]
}I
"values": {
"description": "Column of numeric values",
"type": "array",
"items": {
"type": "number"

by

(continues on next page)

252 Chapter 3. Contents




IDAES Documentation, Release 0.60

(continued from previous page)

"examples": [
"[2.6, 6.21]"
]
}I
"error_type": {
"description":
"type":
}V
"errors": {
"description":
"type":
"items": {
"type":

narrayu

}I
"examples": [
"[0.001,
1
}I
"type": {
"description":
"enum": [
"state",
"property"

}
}y
"required": [
"name",
"units",
"values"

1y

"additionalProperties":

}I
"Metadata": {
"type": "object",
"properties": {
"datatype": {
"description":
"type":
"examples": [
"MEA"
]
}I
"info": {
"description":
"type":
"examples": [
"J. Chem.
]
}I
"notes": {
"description":
"type":
"examples": [

Eng. Data,

"Type for error values",

"string"

"Column of numeric errors",

’

"number"

0.035]"

"Type of column",

false

"name of the data type",

"string",

"Additional information about the source

"string",

2009, Vol 54, 3096-30100"

Pg.

"Free—-form text with notes about the data",

"string",

"r is MEA weight fraction in aqueous soln."

(i.

e.

publication)",

(continues on next page)

3.3. Data Management Framework (DMF)

253




IDAES Documentation, Release 0.60

(continued from previous page)

"authors": {
"description": "Author list in format Lastl, Firstl, Last2,
"type": "string",
"examples": [

"Amundsen, T.G., Lars, E.O., Eimer, D.A."
1
br

First2, etc.",

"title": {
"description": "Title of the source (e.g. publication title)",
"type": "string",
"examples": [

"Density and Viscosity of Monoethanolamine +
]
}V
"date": {
"description": "Date of source data",
"type": "string",
"examples": [
"2009"

}
}I
"required": [
"datatype",
"authors",
"title",
"date"
]I
"additionalProperties": true
}
}I
"type": "object",
"properties": {
"meta": {
"description": "List of information about the data
"type": "array",
"items": {
"Sref": "#/definitions/Metadata"
}
}I
"data": |
"description": "Measured data columns",
"type": "array",
"items": {
"Sref": "#/definitions/Column"

}

}I

"required": [
"meta",
"data"

]I

"additionalProperties": false

.etc.”

source",

254

Chapter 3. Contents




IDAES Documentation, Release 0.60

3.3.11 DMF Help

The DMF help function provides a link between objects that the user is working with in a Jupyter Notebook and the
detailed documentation pages that you have created for those objects in Sphinx.

Creating help pages

The mechanism is relatively simple, once you have a documentation page already created. Simply add special “index”
entries at the appropriate place in the page, with the following format:

. index::
pair: full.path.to.your.module;ClassName

For example, if you were to add help for the Port class of the idaes.core.ports, you could add the following to the page:

. index::
pair: idaes.core.ports;Port

You can have multiple index entries for the same page.

DMF Help Configuration

The DMF finds the help pages by searching a user-configured set of paths that point to the generated (note: not the
source) HTML documentation. This information goes under the htmldocs keyword in the DMF configuration file
(found in <workspace_root>/config.yaml).

Using the special key {dmf_root} to indicate the root of the DMF installation, the default configuration is:

htmldocs:
- /doc/build/html/dmf"’
- ! /doc/build/html/models"

Sensible values for these documentation paths are automatically generated by the dmyf init command, and most users
will not need to modify this. Note that these paths are searched in the order given, and the first match is the one used.

DMF Help Usage

In the Jupyter notebook, the $dmf help <object-or-class> magic will invoke the help functionality. If a
page is found, it will be automatically shown in a new window or tab of the browser. See this Jupyter notebook for an
example of using the $dmf help magics.

3.3.12 Example Jupyter Notebooks

The Jupyter Notebook is a web-based interactive Python (and, actually, other languages as well) environment that can
mix rich text, graphics, and running Python code. It is used widely within IDAES as a tool for performing and sharing
analyses.

This page provides links to some example notebooks, rendered in their HTML version with the Jupyter Notebook
viewer. You can run the original form of the notebook from the “examples” directory in the DMF source code, with a
command like:

3.3. Data Management Framework (DMF) 255



http://www.jupyter.org/

IDAES Documentation, Release 0.60

# 1f necessary setup your virtual environment first
# to include the installed DMF code, e.g.:
# 'source activate dmf_dev' for Anaconda and an env named 'dmf_dev'

cd examples
jupyter notebook <name-of-notebook>.ipynb

DMF Properties APl example

July 30, 2017 - Dan Gunter dkgunter @1bl.gov
This example shows usage of the DMF “Properties” API in the DMF.

# Standard library imports
import json

import os

import tempfile

# Third-party imports
import pandas as pd
import numpy as np

Initialize the DMF

The DMF is initialized with a root directory, called the “workspace”. For this example, we’ll use a temporary directory
that we create.

from idaes_dmf import dmf
from idaes_dmf import propdata

tmpdir = tempfile.mkdtemp ()
mydmf = dmf.DMF (tmpdir, create=True)

Create property data from Python dictionary

Create some inline property data and write it to a temporary file. This file could have been created in other ways, e.g.
by using Python or CLI functions to convert the data from comma-separated values.

amundsen_properties = {
"meta":
"datatype": "MEA",
"info": "J. Chem. Eng. Data, 2009, Vol 54, pg. 3096-30100",
"notes": "r is MEA weight fraction in aqueous soln.",
"authors": "Amundsen, T.G., Lars, E.O., Eimer, D.A.",
"title": "Density and Viscosity of Monoethanolamine + .etc.",

"date": "2009"
}I
"data": {
"properties" : [
{

"name": "Viscosity Value",

(continues on next page)

256 Chapter 3. Contents



mailto:dkgunter@lbl.gov

IDAES Documentation, Release 0.60

(continued from previous page)

"units": "mPa-s",
"values": [2.6, 6.2],
"error_type": "absolute",
"errors": [0.06, 0.004]
}
] 14
"states": [
{
"name": "r",
"units": "",
"values": [0.2, 1000]

# Make temporary directory in which to write the file
scratchdir = os.path.join (mydmf.root, 'scratch')
if not os.path.exists(scratchdir):

os.mkdir (scratchdir)
# Dump the Python dictionary as JSON to the file
tmpf = open(os.path.join(scratchdir, 'resource.json'),
tmpf.write (json.dumps (amundsen_properties))
tmpf.close ()

lwl)

Load property data into DMF

The newly created property data is just a file, that could be anywhere on the file system. So the DMF can locate it and
manipulate it, we need to explicitly “add” it.

# Add the resource

factory = dmf.ResourceFactory ()

resource = factory.create_propertydb (tmpf.name)
rid = mydmf.add(resource, copy_files=(tmpf.name,))

Get the property data as an object

Now that the property data is in the DMF, we can retrieve it as an object. Since we just loaded it, we can take a shortcut
and “get” the data using the resource ID returned by the “add_resource” method.

r2 = mydmf.fetch_one(rid)
table = dmf.get_propertydb_table (r2)
table.data.values_dataframe ()

Extract values and errors as Pandas Dataframes

After extracting each dataframe, merge them together.

vf = table.data.values_dataframe ()
ef = table.data.errors_dataframe ()
vi.join(ef, rsuffix='.err') .head()

3.3. Data Management Framework (DMF) 257




IDAES Documentation, Release 0.60

The ‘states=False’ parameter means we only see measured properties, not the associated states — which in this case is
temperature.

vf table.data.values_dataframe (states=False)
ef table.data.errors_dataframe (states=False)
vf.join(ef, rsuffix='.err') .head()

Create property data from CSV

The DMF properties classes also understand how to convert data from specifically formatted CSV files into the JSON
format shown above. Once that is done, the process for importing that data into the DMF is the same. In this example,
we’ll start with some example CSV data, which we write to a file and then convert before importing to the DMF.

Han properties as CSV

The CSV format has two files, one for “metadata” and one for “data”.

han_meta = '''Source,Han, J., Jin, J., Eimer, D.A., Melaaen, M.C.,"Density of_
—Water (1) + Monoethanolamine (2) + CO2(3) from (298.15 to 413.15) K and Surface,
—Tension of Water(l) + Monethanolamine(2) from (303.15 to 333.15)K", J. Chem. Eng._
—Data, 2012, Vol. 57, pg. 1095-1103

Retrieval,J. Morgan, date unknown

Notes,r is MEA weight fraction in aqueous soln. (CO2-free basis)

Tr

han_data = '''Data No.,T (K),Absolute Error,CO2 Loading (mol CO2/MEA),Absolute Error,
—r,Absolute Error,Density Data (g/cm3),Absolute Error
1,298.15,0,0.1,0,0.3,0,1.0333,5E-05

2,298.15,0,0.21,0,0.3,0,1.0534,5E-05

3,298.15,0,0.32,0,0.3,0,1.0756,5E-05

4,298.15,0,0.44,0,0.3,0,1.0964,5E-05

5,298.15,0,0.56,0,0.3,0,1.1142,5E-05

6,313.15,0,0.1,0,0.3,0,1.0253,5E-05

7,313.15,0,0.21,0,0.3,0,1.0464,5E-05

8,313.15,0,0.32,0,0.3,0,1.0669,5E-05

9,313.15,0,0.44,0,0.3,0,1.0891,5E-05

10,313.15,0,0.56,0,0.3,0,1.1068, 5E-05

11,323.15,0,0.1,0,0.3,0,1.0196,5E-05

12,323.15,0,0.21,0,0.3,0,1.0412,5E-05

13,323.15,0,0.32,0,0.3,0,1.0613,5E-05

14,323.15,0,0.44,0,0.3,0,1.0838,5E-05

15,323.15,0,0.56,0,0.3,0,1.1014,5E-05

16,333.15,0,0.1,0,0.3,0,1.0138,5E-05
17,333.15,0,0.21,0,0.3,0,1.0356,5E-05
18,333.15,0,0.32,0,0.3,0,1.0556,5E-05
19,333.15,0,0.44,0,0.3,0,1.0782,5E-05
20,333.15,0,0.56,0,0.3,0,1.0957,5E-05
21,343.15,0,0.1,0,0.3,0,1.0076,5E-05
22,343.15,0,0.21,0,0.3,0,1.0297,5E-05
23,343.15,0,0.32,0,0.3,0,1.0496,5E-05
24,343.15,0,0.44,0,0.3,0,1.0723,5E-05
25,343.15,0,0.56,0,0.3,0,1.0887,5E-05
26,353.15,0,0.1,0,0.3,0,1.0002,5E-05
27,353.15,0,0.21,0,0.3,0,1.0234,5E-05
28,353.15,0,0.32,0,0.3,0,1.0434,5E-05

’

’

(continues on next page)

258 Chapter 3. Contents




IDAES Documentation, Release 0.60

(continued from previous page)

29,353.15,0,
30,353.15,0,
31,298.15,0,
32,298.15,0,
33,298.15,0,
34,298.15,0,
35,313.15,0,
36,313.15,0,
37,313.15,0,
38,313.15,0,

0.44,0,0.3,0,1.066,5E-05
0.56,0,0.3,0,1.0812,5E-05
0.1,0,0.4,0,1.0376,5E-05
0.21,0,0.4,0,1.0627,5E-05
0.33,0,0.4,0,1.0945,5E-05
0.45,0,0.4,0,1.1296,5E-05
0.1,0,0.4,0,1.0295,5E-05
0.21,0,0.4,0,1.0547,5E-05
0.33,0,0.4,0,1.0867,5E-05
0.45,0,0.4,0,1.1199,5E-05
39,323.15,0,0.1,0,0.4,0,1.0237,5E-05
40,323.15,0,0.21,0,0.4,0,1.049,5E-05
41,323.15,0,0.33,0,0.4,0,1.0811,5E-05
42,323.15,0,0.45,0,0.4,0,1.1138,5E-05
43,333.15,0,0.1,0,0.4,0,1.0178, 5E-05
44,333.15,0,0.21,0,0.4,0,1.043,5E-05
45,333.15,0,0.33,0,0.4,0,1.0752,5E-05
46,333.15,0,0.45,0,0.4,0,1.1087,5E-05
47,343.15,0,0.1,0,0.4,0,1.011,5E-05

48,343.15,0,0.21,0,0.4,0,1.0367,5E-05
49,343.15,0,0.33,0,0.4,0,1.0686,5E-05
50,343.15,0,0.45,0,0.4,0,1.1032,5E-05
51,353.15,0,0.1,0,0.4,0,1.0048,5E-05
52,353.15,0,0.21,0,0.4,0,1.0292,5E-05
53,353.15,0,0.33,0,0.4,0,1.0626,5E-05
54,353.15,0,0.45,0,0.4,0,1.0963,5E-05

# use 'scratchdir' from above to write the files,

# saving the names of these files in some local variables
prop_meta = os.path.join(scratchdir, 'prop-meta.csv')
open (prop_meta, 'w').write(han_meta)

prop_data = os.path.join(scratchdir, 'prop-data.csv')
open (prop_data, 'w').write (han_data)

2151

Convert from CSV to JSON

A single convenience function can convert the properties data from CSV to JSON. In addition to the files, it needs two
parameters:

e The “type” of the data, which is a free-form string such as “MEA” to identify what kinds of property data this
is. Right now, the vocabulary, etc. of this string is outside the scope of the DMF code.

e The number of initial columns of data (value,error = one “column”) that are state variables (as opposed to
measured variables). This information is necessary for good display of the data, as well as merging data from
multiple sources. In the case of the dataset here, the first 3 values are “states” and only the last one (Density) is
measured.

from idaes_dmf import propdata

output_file = os.path.join(scratchdir, 'prop.json')
propdata.convert_csv (prop_meta, 'MEA', prop_data, 3, output_file)
jdata = json.load (open (output_£file))

println(json.dumps (jdata, indent=2))

3.3. Data Management Framework (DMF) 259




IDAES Documentation, Release 0.60

"data": {
"properties": [
{

"name": "Density Data",

"units": "g/cm3",

"values": [

1.0333,

.0534,
.0756,
.0964,
.1142,
.0253,
.0464,
.0669,
.0891,
.1068,
.0196,
.0412,
.0613,
.0838,
.1014,
.0138,
.0356,
.0556,
.0782,
.0957,
.0076,
.0297,
.0496,
.0723,
.0887,
.0002,
.0234,
.0434,
.066,
.0812,
.0376,
.0627,
.0945,
.129¢6,
.0295,
.0547,
.0867,
L1199,
.0237,
.049,
.0811,
.1138,
.0178,
.043,
.0752,
.1087,
.011,
.0367,
.0686,
.1032,

FRP R RPRPRPRrRPRPRPRPRERRPRPRERRPRPRERRPRPRPRERPPRRPRPRPRRPRRPRPRRRPRERRRERERRERERRERERRRERRRE R

(continues on next page)

260

Chapter 3. Contents




IDAES Documentation, Release 0.60

(continued from previous page)

.0048,
.0292,
L0626,
.0963

e e

J 14
"errors": [
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,
5e-05,

(continues on next page)

3.3. Data Management Framework (DMF)

261




IDAES Documentation, Release 0.60

(continued from previous page)

5e-05,
5e-05,
5e-05

i

"error_type":

}
1,
"states":

{

"name"

[

e "TH,

llunitsll: "K",
"values": [

298.
298.
298.
298.
298.

313

323

323

333

343

353

313

15,
15,
15,
15,
15,

.15,
313.
313.
313.
313.

15,
15,
15,
15,

.15,
323.
323.
323.

15,
15,
15,

.15,
333.
333.
333.
333.
.15,
343.
343.
343.

15,
15,
15,
15,

15,
15,
15,

.15,
343.
353.
353.
353.
.15,
353.
298.
298.
298.
298.
313.
313.
313.
.15,
323.
323.
323.
323.
333.
333.
333.

15,
15,
15,
15,

15,
15,
15,
15,
15,
15,
15,
15,

15,
15,
15,
15,
15,
15,
15,

"absolute"

(continues on next page)

262

Chapter 3. Contents




IDAES Documentation, Release 0.60

(continued from previous page)

333.
343.
343.
343.
343.
353.
353.

15,
15,
15,
15,
15,
15,
15,

353.15,
353.15

]
bo
{

"name": "CO2 Loading",

"units": "mol CO2/MEA",

"values": [
.1,
.21,
.32,
.44,
.56,
.1,
.21,
.32,
.44,
.56,
.1,
.21,
.32,
.44,
.56,
.1,
.21,
.32,
.44,
.56,
.1,
.21,
.32,
.44,
.56,
.1,
.21,
.32,
.44,
.56,
.1,
.21,
.33,
.45,
.1,
.21,
.33,
.45,
.1,
.21,
.33,
.45,

o

O O O O O O O O O O OO OO OO OO OO0 O00O00O00Oo0Oo0Oo0OoOoOoooOoOoOoOoooo oo

(continues on next page)

3.3. Data Management Framework (DMF)

263




IDAES Documentation, Release 0.60

(continued from previous page)

.21,
.33,
.45,

.21,
.33,
.45,
.1,

.21,
.33,
.45

O O O O O O O o o o o o

"y

n. nn
. ’

n
14

N T e R Y e T . e T

~

R T T T N e T

O O O O O O O O O OO OO OO OO OO0 0O00Oo0Oo0Oo0Oo0OoOoOooooooooo oo
BSOS DWWWWWWWWWWWWWWWWWWWWWWWWWWwWwww
~

~

(continues on next page)

264 Chapter 3. Contents




IDAES Documentation, Release 0.60

(continued from previous page)

N N SN S~ N~ N

~

~ S N~~~

~

O O O O O O O O O oo o o o o
B D D D D D D D D D D DD
~

]
}y

"meta": {

"datatype": "MEA",

"authors": "Han, J., Jin, J., Eimer, D.A., Melaaen, M.C.",

"date": 2012,

"title": "Density of Water (l) + Monoethanolamine(2) + CO2(3) from (298.15 to 413.
—15) K and Surface Tension of Water(l) + Monethanolamine(2) from (303.15 to 333.15)K
— "I

"info": "J. Chem. Eng. Data, 2012, Vol. 57, pg. 1095-1103",

"retrieval": "J. Morgan, date unknown",

"notes": "r is MEA weight fraction in aqueous soln. (CO2-free basis)"

Load PropertyTable

Once there is a standard JSON version of the data, you can simply load it back into a PropertyTable

table2 = propdata.PropertyTable.load (output_file)

Show the data

As before, we extract the data to a Pandas dataframe so it is easy to view in the notebook.

vf = table2.data.values_dataframe ()
ef table2.data.errors_dataframe ()
vf.join(ef, rsuffix='.err').head(10)

DMF help example

# Import DMF
from idaes_dmf import dmf, util, magics

3.3. Data Management Framework (DMF) 265




IDAES Documentation, Release 0.60

’from idaes_model_contrib.mea_simple.flowsheet.flowsheet import MeaSheet

$dmf init ../WORKSPACE

You put the doc locations in the configuration

The paths can be relative to the location of the DMF “workspace”, or to where the code is installed, or absolute paths.
If they are wrong, then of course the DMF will have trouble finding the documentation.

$dmf info

Configuration

e created: 2017-08-11T17:52:16.350098
* htmldocs:
— /home/dang/src/idaes/dangunter/model_contrib/doc/_build/html
— /home/dang/src/idaes/dangunter/models/docs/html
— /home/dang/src/idaes/dangunter/DMF/docs/build/html
modified: 2017-08-11T17:52:16.350098

* property_data: resources/index.sqlite

You can get help on the class

%dmf help MeaSheet

You can also get help on instances

This takes you the same page you would get for the class. Note that the warning comes from a half-baked initialization
of MeaSheet ().

mm = MeaSheet ()

dmf help mm

/home/dang/anaconda3/envs/idaes_dev/1lib/python3.6/site-packages/idaes_models-0.1.0-
—py3.6.egg/idaes_models/core/process_base.py:957: UserWarning: Component set
—unspecified for unit Unnamed_Flowsheet

'Component set unspecified for unit '.format (self.unit_name))

You can also get help on the DMF itself

%dmf help dmf

266 Chapter 3. Contents



IDAES Documentation, Release 0.60

How does it work? Let’s see the help page!

sdmf help help

Property Data from CSV

’from idaes_dmf import dmf, propdata, resource

’ls *.CSV

amundsen-data.csv han-data.csv Jjayarathna-data.csv
amundsen-meta.csv han-meta.csv Jayarathna-meta.csv

Load CSV files into a PropertyTable object

# load data

data3 = propdata.PropertyData.from_csv ("han-data.csv", 2)

data3.add_csv ("jayarathna-data.csv")

data3.add_csv ("amundsen—-data.csv")

table3 = propdata.PropertyTable (data=data3)

# add metadata (sources)

for f in "han-meta.csv", "Jayarathna-meta.csv", "amundsen-meta.csv":
table3.add_metadata (propdata.PropertyMetadata.from_csv(f, "MEA"))

Add PropertyTable object, containing all the property data, to the DMF

’d = dmf.DMF ()

’rsrc = resource.PropertyDataResource (property_table=table3)

ident = d.add(rsrc)
println (ident)

’ 4

’d2 = d.fetch_one (ident)

’data3 = d2.property_table

’data3.data.values_dataframe()

3.3.13 Glossary

DMF Data Management Framework. This is the overarching component.
data files Files, text or binary, that are tracked by the DMF by being associated with one or more resources.

flowsheet An object that encapsulates the connections between models to create a meaningful end to end description
of a process.

property data A set of values relating to measured properties for chemical compounds or other components of inter-
est. For example, pressure and temperature data.

3.3. Data Management Framework (DMF) 267



IDAES Documentation, Release 0.60

property model A model, usable in Pyomo, for calculating property values based on property data.

Pyomo Python-based, open-source optimization modeling language used to perform all the underlying computation
for the models. See the Pyomo website for more details.

relation A connection between two resources. These connections have labels, such as “contains” or “derivedfrom”.
They can be expressed as triples of the form (subject, predicate, object), which is not coincidentally the basic
unit of the Resource Description Framework (RDF), a web data interchange standard.

resource A distinct object stored in the DMF, e.g., a unit model, flowsheet, property data package. Resources have a
unique identifier, and may connect to each other.

unit model A Pyomo “block” that models one unit in a flowsheet.

workspace The container for a set of DMF resources and files. Associated with a configuration file. All DMF actions
occur within a single workspace.

3.3.14 How to use this documentation
The goal of this documentation is to provide a guide and reference to using the DMF, for all kinds of users. It is
organized into four major sections:

* Getting started: First steps in installing and configuring the DMF

* Topic guides: Step-by-step guides on using specific features of the DMF.

* Reference: Detailed reference for the Python API and command-line tools, as well as any data formats or
schemas.

» Example notebooks: A collection of example Jupyter notebooks. These are also cross-referenced from the topic
guides.

268 Chapter 3. Contents


http://pyomo.org

CHAPTER
FOUR

INDICES AND TABLES

* genindex
¢ modindex

¢ search

269



IDAES Documentation, Release 0.60

270 Chapter 4. Indices and tables



PYTHON MODULE INDEX

i idaes.dmf.magics, 209

idaes.core, 148 idaes.dmf.propdata, 210

idaes.core.flowsheet_model, 164 idaes.dmf.propindex, 213
idaes.core.holdup, 164 idaes.dmf.resource, 214
idaes.core.plugins, 148 idaes.dmf.resource_old, 216

idaes.core.plugins.pyosyn, 148 idaes.dmf.resourcedb, 223
idaes.core.ports, 174 idaes.dmf.schemas, 201
idaes.core.process_base, 178 :1daes .dmf . surrmod, 224
idaes.core.process_block, 178 idaes.dmf.tabular, 226

idaes.core.property_base, 179 idaes.dmf.util, 230
idaes.core.stream, 18] idaes.dmf.validate, 231

unit_model, 183 idaes.dmf.workspace, 233

- idaes.models.cstr, 129
idaes.models.equilibrium_reactor, 132
idaes.models. feed, 102
idaes.models.flash, 125

idaes.core.
idaes.core.util, 148
idaes.core.util.compare, 153
idaes.core.util.concave, 153
idaes.core.util.config, 153
idaes.core.util.convergence, 148 idaes.models.gibbs_reactor, 134
idaes.core.util.convergence.convergence, rdaes.models.heat_exchanger, I 19

149 idaes.models.heat_exchanger_1D, 122

idaes.core.util.convergence.convergence bgdags-models.mixer, 106
149 idaes.models.pfr, 131

idaes.core.util.convergence.mpi_utils, idaes.models.pressure_changer, 113
152 idaes.models.product, 104
idaes.core.util.convex, 154 idaes.models.separator, 110

idaes.core.util.cut_gen, 154 idaes.models.splitter, 108
idaes.core.util.debug, 155 idaes.models.stoichiometric_reactor, 127

idaes.models.temperature_changer, 116
idaes.models.translator, 136
idaes.vis.plot_utils, 141
idaes_models.core.flowsheet_model, 186
idaes_models.core.process_base, 187
idaes_models.core.unit_model, 186

idaes.core.util.expr, 155
idaes.core.util.initialization, 156
idaes.core.util.mccormick, 156
idaes.core.util.misc, 156
idaes.core.util.model_serializer, 159
idaes.core.util.mpdisagg, 162

idaes.core.util.stream, 162 idaes_models.core.util.model_serializer,
idaes.core.util.var, 163 97

idaes.core.util.var_test, 164 idaes_models.process.conceptd.water.flowsheet,
idaes.dmf, 201 187

idaes.dmf.codesearch, 201 idaes_models.process.conceptd.water.main,
idaes.dmf.commands, 203 188

idaes.dmf.dmf, 204 idaes_models.unit.water_net.feed, 187
idaes_models.unit.water_net.reactor, 187
idaes_models.unit.water_net.sink, 187

idaes.dmf.errors, 207
idaes.dmf.experiment, 208
idaes.dmf.help, 209

271



IDAES Documentation, Release 0.60

272 Python Module Index



A

activate() (idaes.core.stream.StreamData method), 59,
182

add() (idaes.dmf.dmf DMF method), 204

add() (idaes.dmf.experiment.Experiment method), 208

add_concave_linear_underest() (in module
idaes.core.util.concave), 153

add_concave_relaxation() (in module
idaes.core.util.concave), 153

add_convex_relaxation() (in module

idaes.core.util.convex), 154
add_csv() (idaes.dmf.propdata.PropertyData method),

210

add_exchanger_labels() (in module idaes.vis.plot_utils),
141

add_mccormick_cut() (in module
idaes.core.util. mccormick), 156

add_mccormick_relaxation() (in module

idaes.core.util.mccormick), 156
add_metadata() (idaes.dmf.tabular.Table method), 227

add_module_markers_to_heat_exchanger_plot() (in
module idaes.vis.plot_utils), 142
add_mpDisagg_cut() (in module

idaes.core.util. mpdisagg), 162
add_object_ref() (in module idaes.core.util.misc), 98, 156
add_property_metadata()

(idaes.core.property_base.PropertyClassMetadata

method), 181

INDEX

as_dict() (idaes.dmf.tabular.Table method), 227

as_dict() (idaes.dmf.tabular. TabularObject method), 230

as_list() (idaes.dmf.tabular. TabularData method), 228

assert_var_equal() (in module idaes.core.util.var_test),
164

AUTH (idaes.dmf.tabular.Fields attribute), 226

author (idaes.dmf .tabular.Metadata attribute), 226

B

BadResourceError, 207

base_class_module() (idaes.core.process_block.ProcessBlock

class method), 96, 179

base_class_name() (idaes.core.process_block.ProcessBlock
class method), 96, 179

bound() (idaes.core.util.model_serializer.StoreSpec class
method), 161

bplate_div  (idaes.dmf.validate.InstanceGenerator  at-
tribute), 231

build() (idaes.core.flowsheet_model. FlowsheetBlockData
method), 53

build() (idaes.core.holdup.HoldupOdData method), 70,
167

build() (idaes.core.holdup.HoldupldData method), 79,
170

build() (idaes.core.holdup.HoldupData method), 64, 171

build() (idaes.core.holdup.HoldupStaticData method), 85,
173

build() (idaes.core.ports.InletMixerData method), 89, 175

add_sampled_input() (idaes.core.util.convergence.convergeréildasdidegsecremeiisQuiletvsipeeiRatd omethod), 91,

method), 150
AddedCSVColumnError, 210
AlamoDisabledError, 207
AlamoError, 207
aliases (idaes.dmf.resource_old.Resource attribute), 219

177

build() (idaes.core.ports.Port method), 87, 178

build() (idaes.core.process_base.ProcessBlockData
method), 96, 178

build() (idaes.core.property_base.PropertyBlockDataBase

allgather_global_data() (idaes.core.util.convergence.mpi_utils.Parallelfgdaothn £fer! 80

method), 152
annotate() (idaes.vis.plot.Plot method), 137
as_arr() (idaes.dmf.propdata.PropertyData method), 211
as_arr() (idaes.dmf.tabular. TabularData method), 228
as_dict() (idaes.dmf.resource_old.TraitContainer
method), 222
as_dict() (idaes.dmf.tabular.Metadata method), 226

build() (idaes.core.property_base.PropertyParameterBase
method), 93, 180

build() (idaes.core.stream.StreamData method), 59, 182

build() (idaes.core.unit_model.UnitBlockData method),
56, 183

build() (idaes.models.cstr. CSTRData method), 129

build() (idaes.models.equilibrium_reactor.EquilibriumReactorData

273



IDAES Documentation, Release 0.60

method), 132

build() (idaes.models.feed.FeedData method), 102

build() (idaes.models.flash.FlashData method), 125

build()  (idaes.models.gibbs_reactor.GibbsReactorData
method), 134

build() (idaes.models.heat_exchanger.HeatExchangerData
method), 119

build() (idaes.models.heat_exchanger_1D.HeatExchanger1d&atponent_data_from_dict()

method), 122
build() (idaes.models.mixer.MixerData method), 106

build() (idaes.models.pressure_changer.PressureChangerData

method), 113
build() (idaes.models.product.ProductData method), 104
build() (idaes.models.separator.SeparatorData method),
110
build() (idaes.models.splitter.SplitterData method), 108

comm (idaes.core.util.convergence.mpi_utils. MPIInterface
attribute), 152

CommandError, 207

compare() (in module idaes.core.util.compare), 153

compare_block() (in module idaes.core.util.compare),

153
compare_var() (in module idaes.core.util.compare), 153
(in module
idaes.core.util.model_serializer), 161
component_data_to_dict() (in module

idaes.core.util.model_serializer), 161

CONF_CREATED (idaes.dmf.workspace.Workspace at-
tribute), 234

CONF_DATA_DIR (idaes.dmf.dmf.DMEF attribute), 204

CONF_DB_FILE (idaes.dmf.dmf.DMF attribute), 204

CONF_DESC  (idaes.dmf.workspace.Workspace  at-

build() (idaes.models.stoichiometric_reactor.StoichiometricReactorDataibute), 234

method), 127

CONF_HELP_PATH (idaes.dmf.dmf DMF attribute),

build() (idaes.models.temperature_changer. TemperatureChangerData 204

method), 116

build() (idaes.models.translator. TranslatorData method),
136

build_inlets() (idaes.core.unit_model.UnitBlockData
method), 56, 184

build_outlets() (idaes.core.unit_model.UnitBlockData
method), 56, 184

C

C1 (class in idaes.dmf.codesearch), 201

C2 (class in idaes.dmf.codesearch), 202

C3 (class in idaes.dmf.codesearch), 202

C_PROP (idaes.dmf.propdata.Fields attribute), 210
C_STATE (idaes.dmf.propdata.Fields attribute), 210
cat_resources() (in module idaes.dmf.commands), 203
category() (in module idaes.core.util.misc), 98, 157
clone_block() (in module idaes.core.util.cut_gen), 154

clone_block_constraints() (in module
idaes.core.util.cut_gen), 154
clone_block_params() (in module

idaes.core.util.cut_gen), 154

clone_block_sets() (in module idaes.core.util.cut_gen),
154

clone_block_vars() (in module idaes.core.util.cut_gen),
154

Code (class in idaes.dmf.resource_old), 216

codes (idaes.dmf.resource_old.Resource attribute), 219

collaborators  (idaes.dmf.resource_old.Resource  at-
tribute), 219

colorize() (idaes.dmf.util. CPrint method), 230

COLORS (idaes.dmf.util.CPrint attribute), 230

COLTYPE (idaes.dmftabular.Fields attribute), 226

Column (class in idaes.dmf .tabular), 226

columns (idaes.dmf.tabular. TabularData attribute), 228

CONF_MODIFIED (idaes.dmf.workspace.Workspace at-
tribute), 234

CONF_NAME (idaes.dmf.workspace. Workspace
tribute), 234

CONFIG (idaes.core.holdup.HoldupldData attribute),
170

CONFIG (idaes.core.holdup.HoldupData attribute), 171

CONFIG (idaes.core.ports.InletMixerData attribute), 175

CONFIG (idaes.core.ports.OutletSplitterData attribute),
177

CONFIG (idaes.core.ports.Port attribute), 178

CONFIG (idaes.core.process_base.ProcessBlockData at-
tribute), 178

CONFIG (idaes.core.property_base.PropertyBlockDataBase
attribute), 179

CONFIG (idaes.core.property_base.PropertyParameterBase
attribute), 180

CONFIG (idaes.core.stream.StreamData attribute), 182

CONFIG (idaes.core.unit_model.UnitBlockData  at-
tribute), 183

Contact (class in idaes.dmf.resource_old), 217

converged() (idaes.core.stream.StreamData method), 60,
182

ConvergenceEvaluation (class in
idaes.core.util.convergence.convergence_base),
150

ConvergenceEvaluationSpecification (class in
idaes.core.util.convergence.convergence_base),
150

convert_csv() (in module idaes.dmf.propdata), 213

copy() (idaes.dmf.experiment.Experiment method), 208

copy() (idaes.dmf.resource_old.Resource method), 219

copy_var_data() (in module idaes.core.util.cut_gen), 154

count() (idaes.dmf.dmf DMF method), 204

count_vars() (in module idaes.core.util.cut_gen), 154

at-

274

Index



IDAES Documentation, Release 0.60

Counter (class in idaes.core.util.model_serializer), 159

CPrint (class in idaes.dmf.util), 230

create_relation() (idaes.dmf.resource_old.Resource static
method), 219

create_relation() (in module idaes.dmf.resource), 215

create_relation_args() (in module idaes.dmf.resource),
215

create_script() (idaes.dmf.validate.InstanceGenerator
method), 231

created (idaes.dmf.resource_old.Resource attribute), 219

created (idaes.dmf.resource_old.Version attribute), 223

creator (idaes.dmf.resource_old.Resource attribute), 219

CSTRData (class in idaes.models.cstr), 129

CSV_MIMETYPE (idaes.dmf.resource_old.FilePath at-
tribute), 218

D

data (idaes.dmf.resource.Resource attribute), 215

data (idaes.dmf.resource_old.Resource attribute), 220

data (idaes.dmf.resource_old.ResourceTypes attribute),
221

DATA (idaes.dmf.tabular.Fields attribute), 226

data (idaes.dmf.tabular.Table attribute), 227

data files, 267

data() (idaes.dmf.propdata.PropertyColumn method), 210

data() (idaes.dmf.propdata.StateColumn method), 213

data() (idaes.dmf.tabular.Column method), 226

DATA_ERRORS (idaes.dmf.tabular.Fields attribute), 226

DATA_ERRTYPE (idaes.dmf.tabular.Fields attribute),
226

DATA_NAME (idaes.dmf.tabular.Fields attribute), 226

DATA_UNITS (idaes.dmf.tabular.Fields attribute), 226

DATA_VALUES (idaes.dmf.tabular.Fields attribute), 226

datafile_dir (idaes.dmf.dmf.DMF attribute), 204

datafiles (idaes.dmf.resource_old.Resource attribute), 220

datafiles_dir (idaes.dmf.resource_old.Resource attribute),
220

DataFormatError, 207

datatype (idaes.dmf.tabular.Metadata attribute), 226

date (idaes.dmf.resource_old.Source attribute), 222

DATE (idaes.dmf.tabular.Fields attribute), 226

date (idaes.dmf.tabular.Metadata attribute), 226

date_float() (in module idaes.dmf.resource), 215

DateTime (class in idaes.dmf.resource_old), 217

datetime_timestamp() (in module idaes.dmf.util), 230

db_file (idaes.dmf.dmf. DMF attribute), 204

deactivate() (idaes.core.stream.StreamData method), 60,
182

declare_process_block_class() (in
idaes.core.process_block), 97, 179

default_arr_len (idaes.dmf.validate.InstanceGenerator at-
tribute), 231

default_value (idaes.dmf.resource_old.DateTime at-
tribute), 217

module

default_value  (idaes.dmf.resource_old.Identifier  at-
tribute), 218

default_value (idaes.dmf.resource_old.SemanticVersion
attribute), 222

DEFAULTS (idaes.dmf.dmf. DMFConfig attribute), 206

DEFAULTS (idaes.dmf.workspace.WorkspaceConfig at-
tribute), 235

delete() (idaes.dmf.resourcedb.ResourceDB method), 223

desc (idaes.dmf.resource_old.Code attribute), 216

desc (idaes.dmf.resource_old.FilePath attribute), 218

desc (idaes.dmf.resource_old.Resource attribute), 220

description (idaes.dmf.workspace.Workspace attribute),
234

Dict (class in idaes.dmf.resource), 214

dict_set() (in module idaes.core.util.misc), 98, 157

display() (idaes.core.stream.StreamData method), 60, 182

display() (idaes.core.stream.VarDict method), 60, 183

display() (idaes.models.feed.FeedData method), 102

display() (idaes.models.product.ProductData method),
105

display_flows() (idaes.core.unit_model.UnitBlockData
method), 57, 185

display_infeasible_bounds() (in module
idaes.core.util.debug), 155
display_infeasible_constraints() (in module

idaes.core.util.debug), 155
display_P() (idaes.core.unit_model.UnitBlockData
method), 57, 185
display_T() (idaes.core.unit_model.UnitBlockData
method), 57, 185
display_total_flows() (idaes.core.unit_model.UnitBlockData
method), 57, 185
display_variables() (idaes.core.unit_model.UnitBlockData
method), 57, 185
DME, 267
idaes.dmf, 188
idaes.dmf.dmf, 188, 197
idaes_dmf.dmf, 188
Dmf
dmf.help, 188
DMF (class in idaes.dmf.dmf), 204
dmf (idaes.dmf.experiment.Experiment attribute), 208
dmf() (idaes.dmf.magics.DmfMagics method), 209
dmf.help
Dmf, 188
Help, 254
dmf_help() (idaes.dmf.magics.DmfMagics method), 209
dmf_info() (idaes.dmf.magics.DmfMagics method), 209
dmf_init() (idaes.dmf.magics.DmfMagics method), 209
dmf_list() (idaes.dmf.magics.DmfMagics method), 209
dmf_workspaces() (idaes.dmf.magics.DmfMagics
method), 209
DMFBadWorkspaceError, 207
DMFConfig

Index

275



IDAES Documentation, Release 0.60

idaes.dmf.dmf, 191
DMFConfig (class in idaes.dmf.dmf), 206
DMFError, 207
DmfError, 207
DmfMagics (class in idaes.dmf.magics), 209
DMFVisitor (class in idaes.dmf.propindex), 213
DMFWorkspaceNotFoundError, 207
do_copy (idaes.dmf.resource_old.FilePath attribute), 218
DOC_HTML_PATH (idaes.dmf.workspace.Fields

attribute), 233

doi (idaes.dmf.resource_old.Source attribute), 222
doNothing() (in module idaes.core.util.misc), 99, 157
DTYPE (idaes.dmf.tabular.Fields attribute), 226
dump() (idaes.dmf.tabular. Table method), 227
dumps() (idaes.dmf.tabular.Table method), 227
DuplicateResourceError, 207

E

email (idaes.dmf.resource_old.Contact attribute), 217

embedded_units (idaes.dmf.propdata.PropertyData at-
tribute), 211

embedded_units (idaes.dmf .tabular.TabularData  at-
tribute), 228

EquilibriumReactorData (class in
idaes.models.equilibrium_reactor), 132

errors_dataframe() (idaes.dmf.propdata.PropertyData
method), 211

errors_dataframe()
method), 228

Experiment

idaes.dmf.experiment, 244

Experiment (class in idaes.dmf.experiment), 208

experiment (idaes.dmf.resource_old.ResourceTypes at-
tribute), 221

expr (idaes.dmf.resource_old.Identifier attribute), 218

F

FeedData (class in idaes.models.feed), 102

fetch_many() (idaes.dmf.dmf.DMF method), 204

fetch_one() (idaes.dmf.dmf.DMF method), 205

Fields (class in idaes.dmf.propdata), 210

Fields (class in idaes.dmf.tabular), 226

Fields (class in idaes.dmf.workspace), 233

FileError, 207

filename (idaes.dmf.dmf.DMFConfig attribute), 206

FilePath (class in idaes.dmf.resource_old), 217

find() (idaes.dmf.dmf.DMF method), 205

find() (idaes.dmf.resourcedb.ResourceDB method), 223

find_html_docs() (in module idaes.dmf.help), 209

find_one() (idaes.dmf.resourcedb.ResourceDB method),
223

find_process_byname() (in module idaes.dmf.util), 230

find_related() (idaes.dmf.dmf. DMF method), 205

(idaes.dmf .tabular. TabularData

find_related() (idaes.dmf .resourcedb.ResourceDB
method), 224
find_workspaces() (in module idaes.dmf.workspace), 235
fix() (idaes.core.stream.VarDict method), 60, 183
fix() (idaes.models.feed.FeedData method), 103
fix_initial_conditions() (idaes.core.process_base.ProcessBlockData
method), 96, 178
fix_port() (in module idaes.core.util.misc), 99, 157
FlashData (class in idaes.models.flash), 125
flowsheet, 267
FlowsheetBlock (class in idaes.core.flowsheet_model), 53
FlowsheetBlockData
idaes.core.flowsheet_model, 51

FlowsheetBlockData (class in
idaes.core.flowsheet_model), 53
FlowsheetResource

idaes.dmf.resource, 240
FlowsheetResource (class in idaes.dmf.resource_old),
218
format_version() (in module idaes.dmf.resource), 215

from_csv()  (idaes.dmf.propdata.PropertyData  static
method), 211

from_csv() (idaes.dmf.tabular.Metadata static method),
226

from_csv() (idaes.dmf .tabular. TabularData static

method), 229
from_dict() (idaes.dmf.resource_old.TraitContainer class
method), 222
from_flowsheet() (idaes.dmf.resource_old.FlowsheetResource
class method), 218
from_json() (in module idaes.core.util.model_serializer),
161
fs (idaes.dmf.resource_old.ResourceTypes attribute), 221
fullpath (idaes.dmf.resource_old.FilePath attribute), 218

G

gather_global_data() (idaes.core.util.convergence.mpi_utils.ParallelTaskMa
method), 152
get_class_attr_list() (idaes.core.util.model_serializer.StoreSpec
method), 161
get_color_dictionary() (in module idaes.vis.plot_utils),
142
get_column() (idaes.dmf.tabular.TabularData method),
229
get_column_index()
method), 229
get_data_class_attr_list()
(idaes.core.util.model_serializer.StoreSpec
method), 161
get_datafiles() (idaes.dmf.resource.Resource method),
215
get_doc_paths()
method), 234

(idaes.dmf.tabular. TabularData

(idaes.dmf.workspace. Workspace

276

Index



IDAES Documentation, Release 0.60

get_fields() (idaes.dmf.workspace.WorkspaceConfig
method), 235

get_file() (in module idaes.dmf.util), 230

get_html_docs() (in module idaes.dmf.help), 209

goodness_of_fit() (idaes.vis.plot.Plot class method), 137

H

HasPropertyClassMetadata (class in

get_initialized_model() (idaes.core.util.convergence.convergence_basqa@Qveieprspertudiga), 181

method), 150
get_logger() (in module idaes.dmf.util), 230

get_metadata() (idaes.core.property_base.HasPropertyClasskgfadd@hanger_network()

class method), 181

get_metadata() (idaes.core.property_base.PropertyParameteljaseExchanger 1 dData

class method), 93, 180

get_metadata() (idaes.dmf.codesearch.C1 class method),
201

get_metadata() (idaes.dmf.codesearch.C2 class method),
202

get_metadata() (idaes.dmf.codesearch.C3 class method),
202

get_module_author() (in module idaes.dmf.util), 230

get_module_version() (in module idaes.dmf.util), 231

have_mpi (idaes.core.util.convergence.mpi_utils. MPIInterface

attribute), 152

(idaes.vis.plot.Plot  class
method), 138
(class in
idaes.models.heat_exchanger_1D), 122
HeatExchangerData (class in

idaes.models.heat_exchanger), 119
Help
dmf.help, 254
idaes.help, 254
help() (idaes.dmf.resource_old.Resource method), 220
HENStreamType (class in idaes.vis.plot_utils), 141
hhmmss() (in module idaes.core.util.misc), 99, 158

get_package_units() (idaes.core.property_base.PropertyParappsfgiBagdass in idaes.core.holdup), 164

method), 93, 180

get_port_value() (in module idaes.core.util.initialization),
156

get_property_package() (idaes.core.holdup.HoldupData
method), 64, 172

get_propertydb_table() (in module idaes.dmf.dmf), 207

get_pyomo_tmp_files() (in module idaes.core.util.misc),
99, 158

get_resource_structure() (in
idaes.dmf.resource_old), 223

get_schema() (idaes.dmf.validate.JsonSchemaValidator
method), 232

get_script() (idaes.dmf.validate.InstanceGenerator
method), 231

module

HoldupOD (class in idaes.core.holdup), 166
HoldupOdData (class in idaes.core.holdup), 70, 167
Holdup1D (class in idaes.core.holdup), 168
HoldupldData (class in idaes.core.holdup), 79, 170
HoldupData (class in idaes.core.holdup), 64, 171
HoldupStatic (class in idaes.core.holdup), 172
HoldupStaticData (class in idaes.core.holdup), 85, 173

id (idaes.dmf.resource.Resource attribute), 215

id_ (idaes.dmf.resource_old.Resource attribute), 220

ID_FIELD (idaes.dmf.resource.Resource attribute), 214

ID_FIELD (idaes.dmf.resource_old.Resource attribute),
21

9
get_solver() (idaes.core.util.convergence.convergence_base.ﬁgnﬁﬁg«gﬁ%@&g&gﬁmﬁw orkspace.Workspace attribute)

method), 150

234
get_specification() (idaes.core.util.convergence.convergencel&g?esse.ConvergenceEvaluation

method), 150

get_stream_y_values() (in module idaes.vis.plot_utils),
143

get_sum_sq_diff() (in module idaes.core.util.cut_gen),
155

get_supported_properties()

idaes.help, 1
idaes() (idaes.dmf.magics.DmfMagics method), 209
idaes.core (module), 148
idaes.core.flowsheet_model

FlowsheetBlockData, 51
idaes.core.flowsheet_model (module), 53, 164

(idaes.core.property_base.PropertyParameterBase, ;. .. . ore.holdup (module), 64, 70, 79, 85, 164

method), 94, 181

get_template() (idaes.dmf.validate.InstanceGenerator
method), 232

get_time() (in module idaes.core.util.misc), 99, 158

get_variables() (idaes.dmf.validate.InstanceGenerator
method), 232

GibbsReactorData (class in idaes.models.gibbs_reactor),
134

idaes.core.plugins (module), 148
idaes.core.plugins.pyosyn (module), 148
idaes.core.ports (module), 87, 174
idaes.core.process_base (module), 95, 178
idaes.core.process_block (module), 96, 178
idaes.core.property_base (module), 93, 179
idaes.core.stream (module), 59, 181
idaes.core.unit_model (module), 55, 183

global_to_local_data() (idaes.core.util.convergence.mpi_utilisd]ggga&filérﬁ:ﬁh_ﬂﬁga%%) 148

method), 153

idaes.core.util.compare (module), 153

Index

277



IDAES Documentation, Release 0.60

idaes.core.util.concave (module), 153
idaes.core.util.config (module), 97, 153
idaes.core.util.convergence (module), 148
idaes.core.util.convergence.convergence (module), 149
idaes.core.util.convergence.convergence_base (module),
149

idaes.core.util.convergence.mpi_utils (module), 152
idaes.core.util.convex (module), 154
idaes.core.util.cut_gen (module), 154
idaes.core.util.debug (module), 155
idaes.core.util.expr (module), 155
idaes.core.util.initialization (module), 156
idaes.core.util.mccormick (module), 156
idaes.core.util.misc (module), 98, 156
idaes.core.util.model_serializer (module), 159
idaes.core.util. mpdisagg (module), 162
idaes.core.util.stream (module), 162
idaes.core.util.var (module), 163
idaes.core.util.var_test (module), 164
idaes.dmf

DMF, 188
idaes.dmf (module), 201
idaes.dmf.codesearch (module), 201
idaes.dmf.commands (module), 203
idaes.dmf.dmf

DMF, 188, 197

DMFConfig, 191
idaes.dmf.dmf (module), 204
idaes.dmf.errors (module), 207
idaes.dmf.experiment

Experiment, 244
idaes.dmf.experiment (module), 208
idaes.dmf.help (module), 209
idaes.dmf.magics (module), 209
idaes.dmf.propdata (module), 210
idaes.dmf.propindex (module), 213
idaes.dmf.resource

FlowsheetResource, 240

PropertyDataResource, 240

Resource, 239
idaes.dmf.resource (module), 201, 214
idaes.dmf.resource_old (module), 216
idaes.dmf.resourcedb (module), 223
idaes.dmf.schemas (module), 201
idaes.dmf.surrmod (module), 224
idaes.dmf.tabular (module), 226
idaes.dmf.util (module), 230
idaes.dmf.validate (module), 231
idaes.dmf.workspace

Workspace, 191

idaes.models.cstr (module), 129
idaes.models.equilibrium_reactor (module), 132
idaes.models.feed (module), 102
idaes.models.flash (module), 125
idaes.models.gibbs_reactor (module), 134
idaes.models.heat_exchanger (module), 119
idaes.models.heat_exchanger_1D (module), 122
idaes.models.mixer (module), 106
idaes.models.pfr (module), 131
idaes.models.pressure_changer (module), 113
idaes.models.product (module), 104
idaes.models.separator (module), 110
idaes.models.splitter (module), 108
idaes.models.stoichiometric_reactor (module), 127
idaes.models.temperature_changer (module), 116
idaes.models.translator (module), 136
idaes.vis.plot_utils (module), 141
idaes_dmf.dmf

DMEF, 188
idaes_dmf.propdata

PropertyData, 245

PropertyMetadata, 245

PropertyTable, 245
idaes_dmf.tabular

Metadata, 245

Table, 245

TabularData, 245
idaes_help() (idaes.dmf.magics.DmfMagics method), 209
idaes_models.core.flowsheet_model (module), 186
idaes_models.core.process_base (module), 187
idaes_models.core.unit_model (module), 186
idaes_models.core.util.model_serializer (module), 97

idaes_models.process.conceptd.water.flowsheet ~ (mod-
ule), 187

idaes_models.process.conceptd. water.main (module),
188

idaes_models.unit.water_net.feed (module), 187

idaes_models.unit.water_net.reactor (module), 187

idaes_models.unit.water_net.sink (module), 187

Identifier (class in idaes.dmf.resource_old), 218

identifier_str() (in module idaes.dmf.resource), 216

idhash (idaes.dmf.resource_old.Code attribute), 216

import_module() (in module idaes.dmf.util), 231

indent (idaes.dmf.validate.InstanceGenerator attribute),
232

index_property_metadata() (in
idaes.dmf.propindex), 213

INFO (idaes.dmf.tabular.Fields attribute), 226

info (idaes.dmf.tabular.Metadata attribute), 227

info_text (idaes.dmf.resource_old.DateTime attribute),

module

idaes.dmf.workspace (module), 233 217

idaes.help info_text (idaes.dmf.resource_old.Identifier attribute),
Help, 254 218
Idaes, 1

278 Index



IDAES Documentation, Release 0.60

info_text  (idaes.dmf.resource_old.RelationType  at-

tribute), 219

info_text (idaes.dmf.resource_old.SemanticVersion at-
tribute), 222

init_conf() (in module idaes.dmf.commands), 203

is_state_column()
method), 211
is_tmp (idaes.dmf.resource_old.FilePath attribute), 218
isbn (idaes.dmf.resource_old.Source attribute), 222
isfixed() (idaes.core.util.model_serializer.StoreSpec class

(idaes.dmf.propdata.PropertyData

init_isentropic() (idaes.models.pressure_changer.PressureChangerDatanethod), 161

method), 113

initialize() (idaes.core.holdup.HoldupOdData method),
70, 167

initialize() (idaes.core.holdup.HoldupldData method),
79, 170

initialize() (idaes.core.holdup.HoldupStaticData method),
86, 173

initialize() (idaes.core.ports.InletMixerData method), 89,
175

initialize() (idaes.core.ports.OutletSplitterData method),
91, 177

initialize() (idaes.core.property_base.PropertyBlockBase
method), 95

initialize() (idaes.core.unit_model.UnitBlockData
method), 57, 185

isobar() (idaes.vis.plot.Plot class method), 139
isoformat()  (idaes.dmf.resource_old.DateTime
method), 217

class

J

JsonSchemaValidator (class in idaes.dmf.validate), 232

jupyter  (idaes.dmf.resource_old.ResourceTypes  at-
tribute), 221

jupyter_nb (idaes.dmf.resource_old.ResourceTypes at-
tribute), 221

K

keywords  (idaes.dmf.validate.InstanceGenerator  at-

tribute), 232

initialize() (idaes.models.heat_exchanger.HeatExchangerDaﬂa_

method), 119

initialize() (idaes.models.heat_exchanger_1D.HeatExchan g%ll

method), 122

initialize() (idaes.models.pressure_changer.PressureChangegat

method), 114
initialize() (idaes.models.translator. TranslatorData
method), 136
InletMixer (class in idaes.core.ports), 174
InletMixerData (class in idaes.core.ports), 89, 175

language (idaes.dmf.resource_old.Code attribute), 217

4 (idaes.dmf.resource_old.Source attribute), 222

Ib() (in module idaes.core.util.var), 163

E_‘expr (idaes.dmf .tabular.Metadata attribute), 227

link() (idaes.dmf.experiment.Experiment method), 208

list_of_floats() (in module idaes.core.util.config), 98, 153

list_of_strings() (in module idaes.core.util.config), 98,
154

list_resources() (in module idaes.dmf.commands), 203

inputs (idaes.core.util.convergence.convergence_base.Conveﬁgf:n‘%%];ly%%gé)(xﬁﬁ?%aﬁg?daes. dmf.commands), 203

attribute), 151

InstanceGenerator (class in idaes.dmf.validate), 231

instances() (idaes.dmf.validate.JsonSchemaValidator
method), 233

InvalidRelationError, 207

is_dirty() (idaes.dmf.resource.Dict method), 214

is_fixed_by_bounds() (in module idaes.core.util.var), 163

is_hot_or_cold_utility() (in module idaes.vis.plot_utils),
144

is_jupyter_notebook() (in module idaes.dmf.util), 231

is_linear() (in module idaes.core.util.expr), 155

is_parameter_block() (in module idaes.core.util.config),
97, 153

is_port() (in module idaes.core.util.config), 98, 153

is_process_unit() (idaes.core.unit_model.UnitBlockData
method), 58, 185

is_property_column() (idaes.dmf.propdata.PropertyData
method), 211

is_python() (in module idaes.dmf.util), 231

is_resource_json() (in module idaes.dmf.util), 231

load() (idaes.dmf.propdata.PropertyTable class method),
212

load() (idaes.dmf .tabular.Table class method), 227

load_json() (in module idaes.core.util.model_serializer),
162

location (idaes.dmf.resource_old.Code attribute), 217

log_active_nonlinear_constraints() (in module
idaes.core.util.expr), 155

LOG_CONF (idaes.dmf.workspace.Fields attribute), 233

log_disjunct_values() (in module idaes.core.util.debug),
155

M

magics (idaes.dmf.magics.DmfMagics attribute), 210

main() (in module idaes.core.util.convergence.convergence),
149

make_stream_table() (in module idaes.core.util.stream),
162

max_ub() (in module idaes.core.util.var), 163

max_ubb() (in module idaes.core.util.var), 163

is_root() (idaes.core.util.convergence.rnpi_utils.ParallelTaskMEal%e(li‘ daes.dmf.tabular.Fields attribute), 226

method), 153

meta (idaes.dmf.workspace.Workspace attribute), 234

Index

279



IDAES Documentation, Release 0.60

Metadata
idaes_dmf.tabular, 245
Metadata (class in idaes.dmf.tabular), 226
metadata (idaes.dmf.resource_old.FilePath attribute), 218
metadata (idaes.dmf.tabular.Table attribute), 228
mimetype (idaes.dmf.resource_old.FilePath attribute),
218
min_Ib() (in module idaes.core.util.var), 163
min_lbb() (in module idaes.core.util.var), 163
MixerData (class in idaes.models.mixer), 106
mkdir_p() (in module idaes.dmf.util), 231

NoSuchResourceError, 207

num_columns (idaes.dmf.tabular.TabularData attribute),
229

num_rows (idaes.dmf.tabular. TabularData attribute), 229

O

object (idaes.dmf.resource.Triple attribute), 215
object (idaes.dmf.resource_old.Triple attribute), 222
open() (idaes.dmf.resource_old.FilePath method), 218
OutletSplitter (class in idaes.core.ports), 176
OutletSplitterData (class in idaes.core.ports), 91, 176

model_check() (idaes.core.flowsheet_model.FlowsheetBlockData

method), 53

model_check() (idaes.core.holdup.HoldupOdData
method), 70, 168

model_check() (idaes.core.holdup.Holdup1dData
method), 80, 171

model_check() (idaes.core.holdup.HoldupStaticData
method), 86, 174

model_check() (idaes.core.ports.InletMixerData method),
89, 176

model_check() (idaes.core.ports.OutletSplitterData
method), 92, 177

model_check()  (idaes.core.unit_model.UnitBlockData
method), 58, 185

model_check() (idaes.models.heat_exchanger.HeatExchangeﬁ‘Ps?t% ransform_build()

method), 119

P

ParallelTaskManager (class in
idaes.core.util.convergence.mpi_utils), 152

PARAM_DATA_KEY (idaes.dmf.surrmod.SurrogateModel
attribute), 224

ParseError, 207

path (idaes.dmf.resource_old.FilePath attribute), 218

Plot (class in idaes.vis.plot), 137

plot_line_segment() (in module idaes.vis.plot_utils), 144

plot_stream_arrow() (in module idaes.vis.plot_utils), 144

Port (class in idaes.core.ports), 87, 177

post_transform_build() (idaes.core.flowsheet_model.FlowsheetBlockData
method), 54

(idaes.models.cstr.CSTRData

method), 129

model_check() (idaes.models.heat_exchanger_lD.HeatExclﬁgﬁeﬁ}%%%m_buﬂd() (idaes.models.equilibrium_reactor.EquilibriumReac

method), 123

model_check() (idaes.models.pressure_changer.PressureChagltgsqr]a%t& form_build()

method), 114

model_check() (idaes.models.temperature_changer.Temperaﬁ%%%%gﬁgﬁglggt%uﬂ do)

method), 116

model_check() (idaes.models.translator. TranslatorData
method), 136

modified (idaes.dmf.resource_old.Resource attribute),
220

ModuleClassWalker (class in idaes.dmf.codesearch), 202

ModuleFormatError, 207

MPlIInterface (class in
idaes.core.util.convergence.mpi_utils), 152

N

name (idaes.dmf.resource_old.Code attribute), 217

name (idaes.dmf.resource_old.Contact attribute), 217

name (idaes.dmf.resource_old.Resource attribute), 220

name (idaes.dmf.resource_old. Version attribute), 223

name (idaes.dmf.workspace.Workspace attribute), 235

names() (idaes.dmf.propdata.PropertyData method), 212

names() (idaes.dmf.tabular. TabularData method), 229

nb (idaes.dmf.resource_old.ResourceTypes attribute), 221

NEED_INIT_CMD (idaes.dmf.magics.DmfMagics at-
tribute), 209

none_if_empty() (in module idaes.core.util.var), 163

method), 133

(idaes.models.feed.FeedData

method), 103

(idaes.models.flash.FlashData
method), 125

post_transform_build() (idaes.models.gibbs_reactor.GibbsReactorData
method), 135

post_transform_build() (idaes.models.heat_exchanger.HeatExchangerData
method), 119

post_transform_build() (idaes.models.heat_exchanger_1D.HeatExchanger1
method), 123

post_transform_build()
method), 106

post_transform_build() (idaes.models.pressure_changer.PressureChangerDz
method), 114

post_transform_build() (idaes.models.product.ProductData
method), 105

post_transform_build() (idaes.models.separator.SeparatorData
method), 110

post_transform_build() (idaes.models.splitter.SplitterData
method), 108

post_transform_build() (idaes.models.stoichiometric_reactor.Stoichiometric
method), 127

post_transform_build() (idaes.models.temperature_changer. TemperatureCh:
method), 116

(idaes.models.mixer.MixerData

280

Index



IDAES Documentation, Release 0.60

post_transform_build() (idaes.models.translator. TranslatorData

method), 137
PR_DERIVED (in module idaes.dmf.resource), 214
predicate (idaes.dmf.resource. Triple attribute), 215
predicate (idaes.dmf.resource_old.Triple attribute), 222
Predicates  (idaes.dmf.resource_old.RelationType at-
tribute), 219
PressureChangerData (class in
idaes.models.pressure_changer), 113
pretty() (idaes.dmf.resource_old.SemanticVersion class
method), 222

181
PropertyMetadata (class in idaes.dmf.propdata), 212
PropertyMetadataVisitor (class in idaes.dmf.codesearch),

202
PropertyParameterBase (class in
idaes.core.property_base), 93, 180
PropertyTable

idaes_dmf.propdata, 245
PropertyTable (class in idaes.dmf.propdata), 212
put() (idaes.dmf.resourcedb.ResourceDB method), 224
Pyomo, 268

print_active_units() (idaes.core.flowsheet_model. FlowsheetBlpadyatalass in idaes.core.plugins.pyosyn), 148

method), 54

print_all_units() (idaes.core.flowsheet_model.FlowsheetBlockData

method), 54
print_convergence_statistics() (in module
idaes.core.util.convergence.convergence_base),
151
println() (idaes.dmf.util. CPrint method), 230
PrintPropertyMetadataVisitor (class in
idaes.dmf.codesearch), 202
ProcessBase (class in idaes_models.core.process_base),
187
ProcessBlock (class in idaes.core.process_block), 96, 178
ProcessBlockData (class in idaes.core.process_base), 95,
178
ProductData (class in idaes.models.product), 104
profile() (idaes.vis.plot.Plot class method), 139
properties (idaes.dmf.propdata.PropertyData attribute),
212
property data, 267
property model, 268
property_data  (idaes.dmf.resource_old.ResourceTypes
attribute), 221
property_model() (idaes.vis.plot.Plot class method), 139
property_table (idaes.dmf.resource_old.Resource at-
tribute), 220
PropertyBlockBase (class in idaes.core.property_base),
95
PropertyBlockDataBase (class in
idaes.core.property_base), 94, 179
PropertyClassMetadata (class in
idaes.core.property_base), 181
PropertyColumn (class in idaes.dmf.propdata), 210
PropertyData
idaes_dmf.propdata, 245
PropertyData (class in idaes.dmf.propdata), 210
PropertyDataResource
idaes.dmf.resource, 240
PropertyDataResource (class in idaes.dmf.resource_old),
218
PropertyMetadata
idaes_dmf.propdata, 245
PropertyMetadata (class in idaes.core.property_base),

python  (idaes.dmf.resource_old.ResourceTypes  at-

tribute), 221

R

R_DERIVED (in module idaes.dmf.resource_old), 218

rank (idaes.core.util.convergence.mpi_utils. MPIInterface
attribute), 152

read() (idaes.dmf.resource_old.FilePath method), 218

register() (in module idaes.dmf.magics), 210

registered (idaes.dmf.magics.DmfMagics attribute), 210

relation, 268

relations (idaes.dmf.resource_old.Resource
220

RelationType (class in idaes.dmf.resource_old), 218

release (idaes.dmf.resource_old.Code attribute), 217

release_state() (idaes.core.holdup.HoldupOdData
method), 70, 168

release_state() (idaes.core.holdup.Holdup1dData
method), 80, 171

release_state() (idaes.core.holdup.HoldupStaticData
method), 86, 174

release_state() (idaes.core.ports.InletMixerData method),
89, 176

release_state() (idaes.core.ports.OutletSplitterData
method), 92, 177

remove() (idaes.dmf.dmf.DMF method), 206

remove() (idaes.dmf.experiment.Experiment
209

requires_solver() (in module idaes.core.util.misc), 99, 158

reset() (idaes.dmf.validate.JsonSchemaValidator
method), 233

residual() (idaes.vis.plot.Plot class method), 140

resize() (idaes.vis.plot.Plot method), 140

Resource

idaes.dmf.resource, 239

resource, 268

Resource (class in idaes.dmf.resource), 214

Resource (class in idaes.dmf.resource_old), 219

ResourceDB (class in idaes.dmf.resourcedb), 223

ResourceError, 207

ResourceTypes (class in idaes.dmf.resource_old), 221

revision (idaes.dmf.resource_old.Version attribute), 223

attribute),

method),

Index

281



IDAES Documentation, Release 0.60

root (idaes.dmf.resource_old.FilePath attribute), 218 SliceVar (class in idaes.core.util.var), 163
root (idaes.dmf.workspace. Workspace attribute), 235 smooth_abs() (in module idaes.core.util.misc), 99, 158
root_var (idaes.dmf.validate. InstanceGenerator attribute), smooth_max() (in module idaes.core.util.misc), 100, 158
232 smooth_min() (in module idaes.core.util.misc), 100, 158
round_() (in module idaes.core.util.misc), 99, 158 smooth_minmax() (in module idaes.core.util.misc), 100,
ROWS (idaes.dmf .tabular.Fields attribute), 226 158
run() (idaes.dmf.surrmod.SurrogateModel method), 224  solve_indexed_blocks() (in module idaes.core.util.misc),
run_convergence_evaluation() (in module 100, 159
idaes.core.util.convergence.convergence_base), Source (class in idaes.dmf.resource_old), 222
151 source (idaes.dmf.resource_old.Source attribute), 222
run_convergence_evaluation_from_sample_file() (in source (idaes.dmf.tabular.Metadata attribute), 227
module idaes.core.util.convergence.convergence_tsmace_expr (idaes.dmf.tabular.Metadata attribute), 227
151 sources (idaes.dmf.resource_old.Resource attribute), 220
SplitterData (class in idaes.models.splitter), 108
S squish() (in module idaes.core.util.mccormick), 156
save() (idaes.dmf.dmf.DMFConfig method), 206 squish_concat() (in module idaes.core.util. mccormick),
save() (idaes.vis.plot.Plot method), 140 156
save_convergence_statistics() (in module StateColumn (class in idaes.dmf.propdata), 213
idaes.core.util.convergence.convergence_base), states (idaes.dmf.propdata.PropertyData attribute), 212
151 Stats (class in idaes.core.util.convergence.convergence_base),
save_json() (in module idaes.core.util.model_serializer), 151
162 StoichiometricReactorData (class in
save_results_to_dmf() (in module idaes.models.stoichiometric_reactor), 127
idaes.core.util.convergence.convergence_base), StoreSpec (class in idaes.core.util. model_serializer), 159
151 Stream (class in idaes.core.stream), 181
SearchError, 207 stream_table() (idaes.vis.plot.Plot class method), 141
self_proj_var_rule() (in module idaes.core.util.cut_gen), StreamData (class in idaes.core.stream), 59, 182
155 strlist() (in module idaes.dmf.util), 231
SemanticVersion (class in idaes.dmf.resource_old), 221 subdir (idaes.dmf.resource_old.FilePath attribute), 218
sensitivity() (idaes.vis.plot.Plot class method), 140 subject (idaes.dmf.resource. Triple attribute), 215
SeparatorData (class in idaes.models.separator), 110 subject (idaes.dmf.resource_old.Triple attribute), 223
set_clean() (idaes.dmf.resource.Dict method), 214 suffix() (idaes.core.util.model_serializer.StoreSpec class
set_id() (idaes.dmf.resource.Resource method), 215 method), 161
set_input_data() (idaes.dmf .surrmod.SurrogateModel ~surrmod  (idaes.dmf.resource_old.ResourceTypes  at-
method), 225 tribute), 221

set_input_data_np() (idaes.dmf.surrmod.SurrogateModel SurrogateModel (class in idaes.dmf.surrmod), 224
method), 225
set_meta() (idaes.dmf.workspace.Workspace method), T

235 Table
set_read_callback() (idaes.core.util.model_serializer.StoreSpec  idaes_dmf.tabular, 245
method), 161 Table (class in idaes.dmf.tabular), 227
set_validation_data() (idaes.dmf.surrmod.SurrogateModel table (idaes.dmf.resource_old.Resource attribute), 220
method), 225 tabular_data (idaes.dmf.resource_old.ResourceTypes at-
set_validation_data_np() (idaes.dmf.surrmod.SurrogateModel tribute), 221
method), 225 TabularData
set_write_callback() (idaes.core.util. model_serializer.StoreSpec idaes_dmf.tabular, 245
method), 161 TabularData (class in idaes.dmf.tabular), 228
setup_mccormick_cuts() (in module TabularDataResource (class in idaes.dmf.resource_old),
idaes.core.util.mccormick), 156 222
setup_multiparametric_disagg() (in module TabularObject (class in idaes.dmf.tabular), 230
idaes.core.util. mpdisagg), 162 tags (idaes.dmf.resource_old.Resource attribute), 220
show() (idaes.vis.plot.Plot method), 140 TempDir (class in idaes.dmf.util), 230
size (idaes.core.util.convergence.mpi_utils.MPIInterface TemperatureChangerData (class in
attribute), 152 idaes.models.temperature_changer), 116

282 Index



IDAES Documentation, Release 0.60

terminate_pid() (in module idaes.dmf.util), 231

tighten_block_bound() (in module idaes.core.util.var),
164

tighten_mc_var() (in module idaes.core.util.var), 164

tighten_var_bound() (in module idaes.core.util.var), 164

TITLE (idaes.dmf.tabular.Fields attribute), 226

title (idaes.dmf.tabular.Metadata attribute), 227

to_json() (in module idaes.core.util.model_serializer),
162

tradeoff() (idaes.vis.plot.Plot class method), 141

TraitContainer (class in idaes.dmf.resource_old), 222

TranslatorData (class in idaes.models.translator), 136

Triple (class in idaes.dmf.resource), 215

Triple (class in idaes.dmf.resource_old), 222

triple_from_resource_relations() (in
idaes.dmf.resource), 216

try_eval() (in module idaes.core.util.concave), 153

try_eval() (in module idaes.core.util.convex), 154

turn_off_grid_and_axes_ticks() (in
idaes.vis.plot_utils), 144

TY_EXPERIMENT (in module idaes.dmf.resource), 215

type (idaes.dmf.resource.Resource attribute), 215

type (idaes.dmf.resource_old.Code attribute), 217

type (idaes.dmf.resource_old.Resource attribute), 221

TYPE_FIELD (idaes.dmf.resource.Resource attribute),
214

TYPE_FIELD (idaes.dmf.resource_old.Resource at-
tribute), 219

type_name (idaes.dmf.propdata.PropertyColumn at-
tribute), 210

type_name (idaes.dmf.propdata.StateColumn attribute),
213

type_name (idaes.dmf.tabular.Column attribute), 226

U

ub() (in module idaes.core.util.var), 164

unfix() (idaes.core.stream.VarDict method), 61, 183

unfix() (idaes.models.feed.FeedData method), 103

unfix_initial_conditions()
(idaes.core.process_base.ProcessBlockData
method), 96, 178

unfix_port() (in module idaes.core.util.misc), 100, 159

unit model, 268

UnitBlock (class in idaes.core.unit_model), 55, 186

UnitBlockData (class in idaes.core.unit_model), 56, 183

unwrap() (in module idaes.core.util.var), 164

update() (idaes.dmf.dmf.DMF method), 206

update() (idaes.dmf.experiment.Experiment method), 209

update() (idaes.dmf.resourcedb.ResourceDB method),
224

uuid (idaes.dmf.resource_old.Resource attribute), 221

Vv

validate() (idaes.dmf.resource.Resource method), 215

module

module

validate() (idaes.dmf.resource_old.DateTime method),

217

validate() (idaes.dmf.resource_old.Identifier method),
218

validate() (idaes.dmf.resource_old.RelationType

method), 219
(idaes.dmf.resource_old.Semantic Version
method), 222
(idaes.dmf.validate.JsonSchemaValidator

method), 233

validate() (in module idaes.vis.plot_utils), 145

validate_elements() (idaes.dmf.resource_old. ValidatingList
method), 223

ValidatingList (class in idaes.dmf.resource_old), 223

VALS (idaes.dmf.tabular.Fields attribute), 226

value() (idaes.core.util.model_serializer.StoreSpec class
method), 161

value_correct() (in module idaes.core.util.var_test), 164

value_isfixed() (idaes.core.util.model_serializer.StoreSpec
class method), 161

value_isfixed_isactive() (idaes.core.util.model_serializer.StoreSpec
class method), 161

values_dataframe() (idaes.dmf.propdata.PropertyData
method), 212

values_dataframe()
method), 229

VarDict (class in idaes.core.stream), 60, 183

Version (class in idaes.dmf.resource_old), 223

version (idaes.dmf.resource_old.Resource attribute), 221

version_list() (in module idaes.dmf.resource), 216

visit()  (idaes.dmf.codesearch.PropertyMetadataVisitor
method), 202

visit() (idaes.dmf.codesearch.Visitor method), 203

validate()

validate()

(idaes.dmf.tabular.TabularData

visit_metadata() (idaes.dmf.codesearch.PrintPropertyMetadataVisitor

method), 202
visit_metadata() (idaes.dmf.codesearch.PropertyMetadataVisitor
method), 202
visit_metadata()
method), 213
Visitor (class in idaes.dmf.codesearch), 203

W

walk()

(idaes.dmf.propindex.DMFVisitor

(idaes.dmf.codesearch.ModuleClassWalker
method), 202
walk() (idaes.dmf.codesearch.Walker method), 203
Walker (class in idaes.dmf.codesearch), 203
Workspace

idaes.dmf.workspace, 191
workspace, 268
Workspace (class in idaes.dmf.workspace), 233
WORKSPACE (idaes.dmf.dmf.DMFConfig attribute),

206

workspace (idaes.dmf.dmf.DMFConfig attribute), 206

Index

283



IDAES Documentation, Release 0.60

WORKSPACE_CONFIG
(idaes.dmf.workspace.Workspace  attribute),
234

workspace_import() (in module idaes.dmf.commands),
203

workspace_info() (in module idaes.dmf.commands), 204

workspace_init() (in module idaes.dmf.commands), 204

WorkspaceConfig (class in idaes.dmf.workspace), 235

WorkspaceConfMissingField, 207

WorkspaceConfNotFoundError, 207

WorkspaceError, 208

WorkspaceNotFoundError, 208

wrap_var() (in module idaes.core.util.var), 164

Wrapper (class in idaes.core.util.var), 163

write() (idaes.dmf.util. CPrint method), 230

write_sample_file() (in module
idaes.core.util.convergence.convergence_base),
152

wsid (idaes.dmf.workspace.Workspace attribute), 235

X

xp (idaes.dmf.resource_old.ResourceTypes attribute), 221

284

Index



	Project Goals
	Collaborating institutions
	Contents
	Indices and tables
	Python Module Index
	Index

