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Uncertainties in property models can significantly affect the results obtained from process simulations. If these uncer-
tainties are not quantified, optimal plant designs based on such models can be misleading. With this incentive, a system-
atic, generalized uncertainty quantification (UQ) methodology for property models is developed. Starting with prior
beliefs about parametric uncertainties, a Bayesian method is used to derive informed posteriors using the experimental
data. To reduce the computational expense, surrogate response surface models are developed. For downselecting the
parameter space, a sensitivity matrix-based approach is developed. The methodology is then deployed to the property
models for an MEA-CO2-H2O system. The UQ analysis is found to provide interesting information about uncertainties
in the parameter space. The sensitivity matrix approach is also found to be a valuable tool for reducing computational
expense. Finally, the effect of the estimated parametric uncertainty on CO2 absorption and monoethanolamine (MEA)
regeneration is analyzed. VC 2015 American Institute of Chemical Engineers AIChE J, 61: 1822–1839, 2015
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Introduction

The predictive capability of rigorous process models is
dependent on the accuracy of the underlying physical prop-
erty models; however, even the best models have some
uncertainty. Thus, it is important that these uncertainties be
quantified, so that their effect can be propagated throughout
the overall process model to provide reasonable confidence
bounds on the model predictions. The sources of uncertainty
for property models can be due to the model form and/or the
value of the parameters. In addition, uncertainty exists in the
measured experimental data on which the model is based.
Traditionally, the property models have been developed by
proposing some arbitrary or intelligently guessed functional

form in terms of one or more dependent or independent vari-
ables based on the expected or observed dependencies. The
fields of statistical thermodynamics and molecular dynamics
are instrumental in developing physical property models
from a first principles approach, although some degree of
approximation is required.1,2 For example, the functional
forms of quantities such as intermolecular potential are often
represented by empirical correlations.2 As quite often the
model parameters, which are generally regressed to some
experimental data, have no physical significance, it is diffi-
cult to characterize them or provide a bound on them. There-
fore, the traditional approach to fitting the model and its
parameters can result in uncertainty in the model form and
its parameters. This work is focused on development of an
approach for determining uncertainty in property models and
their parameters using a systematic approach.

The sensitivity of process variables to physical properties
has been shown to be very case dependent, as uncertainties
in some physical properties have a greater effect on the pro-
cess performance prediction as compared to others.3,4 The
uncertainty of the physical properties is often more pro-
nounced at lower design temperatures.4 The high sensitivity
of the process model to the VLE model has been reported.5

Uncertainty analysis is often neglected in many chemical
engineering applications, mainly due to lack of systematic
approaches for uncertainty quantification (UQ) and capabil-
ities to calibrate the initial estimates of uncertainties by
propagating them through the process model and comparing
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them with the observed data. Another major challenge to the
incorporation of UQ in models is the large parameter space
present in complex models, and the frequent lack of data to
adequately characterize the model parameters.6 However,
many commercial process simulators provide options for
Monte-Carlo simulation for use in uncertainty analysis.7–9 A
direct Monte-Carlo simulation-based approach has been
recently applied for uncertainty analysis of coal gasification
kinetics.10 Excellent work on UQ of multiphase CFD models
has been recently published.11,12

In the existing literature, a systematic approach to UQ of
physical properties models is still scarce. In a recent work
on phase equilibria, Mathias has developed an intuitive per-
turbation method to relate uncertainty in equilibrium con-
stants to variability in process design that can easily be
applied to process simulation.8 A systematic approach to UQ
of the thermodynamic models for solid-sorbents for CO2

capture has been presented recently by Mebane et al.13 In
summary, the development of a generalized and systematic
methodology for UQ of property models can be highly bene-
ficial as one is not currently available.

Conversely, with growing concern over global CO2 emis-
sions, it is essential that efficient postcombustion CO2 cap-
ture technologies are developed and deployed. The U.S.
Department of Energy’s Carbon Capture Simulation Initia-
tive (CCSI) is focused on developing computational tools
and models to accelerate the development and commerciali-
zation of CO2 capture technologies.14 The process modeling
team of CCSI is developing high-fidelity process models
which industry can use to more rapidly design and scale up
such processes while also improving their operability. How-
ever, uncertainty in physical and chemical properties can sig-
nificantly affect the predictability of these models. With this
incentive, the UQ methodology is applied to the property
models for monoethanolamine (MEA) systems for CO2 cap-
ture. Complex interactions between ion-ion and ion-
molecular species can lead to uncertainties in the property
models for these electrolyte systems. This, in turn, will help
to obtain uncertainty bounds on the variables of interest for
such solvent-based postcombustion CO2 capture systems. A

precise knowledge of these uncertainty bounds is important
for large-scale deployment of CO2 capture technologies and
for screening potential CO2 capture technologies.

For application of the UQ methodology, we have focused
here on alkanolamines, which are among the most widespread
class of solvents for CO2 capture because of their chemical
structure. The hydroxyl group provides water solubility while
the amino group provides the alkalinity necessary to capture
CO2.15 Specifically, aqueous solutions of approximately 30%
by weight MEA have been the industrial standard since
1970.16 Other solvents, however, have been identified as better
options for CO2 capture than MEA in recent research. For
example, aqueous piperazine has been found to have a greater
rate of CO2 absorption as well as greater CO2 capacity.17 For
minimizing the energy requirements in solvent-based CO2

capture processes, topological and parametric optimization
plays a key role. Uncertainty bounds on process simulation
results are needed to obtain accurate results from the optimiza-
tion studies. Uncertainty bounds can be obtained by consider-
ing uncertainty in the property models, process models and the
kinetic models and then propagating them through the entire
process simulation as shown in Figure 1.

In this work, we apply the UQ methodology to the viscosity,
density, and surface tension models for a MEA-H2O-CO2 ter-
nary system. These properties are essential for designing and
evaluating equipment,15 particularly with respect to column
sizing and pressure drop.18 They are also used for calculating
mass-transfer coefficients and interfacial mass-transfer
area.19,20 For these properties, a limited amount of research on
deterministic models and experimental data is available for the
MEA-H2O-CO2 ternary system. Aspen Plus

VR

documentation21

uses data from Weiland22 to validate default models for the
viscosity, density, and surface tension of CO2-loaded aqueous
MEA solutions at 298.15 K. Weiland et al.19 presented empiri-
cal models for viscosity and density of CO2-loaded solutions
of various alkanolamines, including MEA for solutions at
298 K, 10–40 mass% MEA, and 0–0.5 CO2 loading (mol CO2/
mol amine). Amundsen et al.16 expanded on this work by
broadening the temperature range from 298.15 to 353.15 K
and then used the data to validate the correlations of Weiland

Figure 1. A possible approach to obtain uncertainty bounds in variables of interest from process simulations.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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et al. However, these models provide poor fits at lower tem-
peratures and higher amine content. Moreover, the density
model does not account for electrolyte speciation in the MEA-
H2O-CO2 mixture, and its effect on the solution molecular
weight was not considered. Han et al.23 presented density data
for the ternary system in the temperature range of 298.15–
413.15 K for 30–100 mass% MEA. Jayarathna et al.15 pre-
sented data for surface tension and density over a temperature
range of 303.15–333.15 K and MEA mass% range of 20–70%,
and they fit the surface tension data to a model developed by
Connors and Wright.24 Despite accurately representing the
experimental data, the surface tension model presented by
Jayarathna et al. is limited by its applicability to solutions of
discrete amine compositions.

In this work, some of the available models and experimen-
tal data discussed before are used to characterize the viscos-
ity, density, and surface tension of the ternary system of
interest both deterministically and stochastically. For density
and viscosity, the models developed by Weiland et al. are
used as starting points to represent the MEA-H2O-CO2 sys-
tem because these models are specific to CO2-loaded aque-
ous amine solutions and satisfactorily fit the experimental
data available, but modifications in the model forms are con-
sidered to improve the data fit. For the density model, elec-
trolyte speciation in the ternary system is considered as its
effect on solution molecular weight is needed to accurately
characterize the relationship between the solution density
and molar volume. Cross-validation of the density model
with data from various sources15,16,23 is performed. For the
surface tension model, the model given by Jayarathna
et al.15 is modified to represent the surface tension as a con-
tinuous function of MEA composition while maintaining the
accurate fit of the original model.

Overall Approach

For each model, baseline parameter values are first cali-
brated to fit the model to the experimental data. However,
there can be uncertainty in the input variables (input uncer-
tainty), physical property measurements (output uncertainty),
functional form of the physical property models (model
uncertainty), and the parameters used in the models (para-
metric uncertainty). Parametric uncertainties are difficult to
characterize and quantify; however, the best guess for para-

metric uncertainty (priors) can be cast in the framework of a
Bayesian inference methodology to obtain more informed
posterior parameter uncertainty.

The Bayesian inference methodology is implemented as
follows in this work. The model output (u) is a function of a
set of predictor variables (x) and a set of model parameters
(h) as shown below

u5Fðx; hÞ (1)

The objective of the methodology is to compute a set of
values of h (denoted as h�) so that the output of the function
u5Fðx; h�Þ matches with the experimental data (denoted as
Z) within a given tolerance. After the predictor variables and
model parameters for a physical property model have been
identified, the next step is to create a response surface that
maps the model inputs (x; h) to the model output (u). The
reason for this step is that Bayesian inference is computa-
tionally expensive as it requires evaluation of the function F
ðx; hÞ many times, and the use of response surface helps to
reduce the overall computational cost by replacing the actual
functional form with an emulator, given by

u � F�ðx; hÞ (2)

Response surfaces are built by sampling the process vari-
able space with a sufficient number of sample points and fit-
ting them with some curve fitting tools so that the resulting
emulator estimates the true model outputs with sufficient
accuracy. In this work, a popular curve fitting method called
multivariate adaptive regression splines (MARS) developed
by Friedman25 is used to create the response surfaces, and
cross validation is used to assess their quality. The cross val-
idation procedure is necessary because Bayesian inference
may lead to misleading results if performed on response
surfaces that are not reflective of the true model. In this
work, the specific methodology used to create the response
surface is as follows. For a given physical property, a total
of M experimental observations are available, each of which
has a unique set of values of the predictor variables xi and a
value of the output variable Zi xið Þ. For each individual
parameter h, a marginal prior distribution is estimated from
the confidence intervals obtained from a least squares regres-
sion for the parameter of interest. For the joint prior distribu-
tion for the entire set of parameters, all parameters are

Figure 2. Overview of UQ in properties models.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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assumed to be independent. A sample of size N is obtained
from the joint prior distribution. For each sample j51 : N,
the set of parameter values is denoted as hj. The function
representing the physical property is then evaluated for each
set of xi and hj, giving a total of M3N observations that are
used to develop the response surface model.

After the response surfaces have been created and vali-
dated, Bayesian inference is performed, for which the objec-
tive is to compute

pðhjZÞ / P hð ÞLðZjhÞ (3)

where Pðh) represents the prior distributions of the parame-
ters, or the initial distributions assumed to result in a good
match to the data, pðhjZÞ represents the posterior distributions
of the parameters, or the revised distributions based on the
results of comparing against the data, and LðZjhÞ is the likeli-
hood function that measures the goodness of the match. A
popular likelihood function, which is used in this work, is26

LðZjhÞ5exp 20:5
XM

i50

½F�ðxi; hÞ2ZðxiÞ�2

Mr2
i

 !
: (4)

where ri is the standard deviation of the ith experimental
data set. This likelihood function is based on the chi-square
statistic, a popular method for data fitting. It can be

Table 1. Comparison of Original and Calibrated Parameter

Values for the Solution Viscosity Model

Parameter
Weiland

et al. Value
Value Calibrated

from Data

a 0 20.0838
b 0 2.8817
c 21.186 33.651
d 2373 1817
e 0.01015 0.00847
f 0.0093 0.0103
g 22.2589 22.3890

Figure 3. Comparison of models to experimental data for solutions of: (A) WMEA 5 20%; (B) WMEA 5 30%; (C)
WMEA 5 40%.

Stars (*) represent experimental data, with error bars representing three standard deviations, from Amundsen et al., dashed lines

represent model with parameters given by Weiland et al., and solid lines represent model with recalibrated parameters. Color-

coding represents solutions of different temperatures (magenta 5 298.15 K, red 5 313.15 K, green 5 323.15 K, blue 5 343.15 K,

and orange 5 353.15 K). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 4. 10-fold cross validation of solution viscosity
model.

Straight line represents perfect fit of model value to

data value. Stars represent experimental data and model

comparison.
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considered as a weighted least-squares method that gives
more weight to more accurate data. It also assumes that there
is no correlation between experiments and that variation of
data from their true value follows a normal distribution. The
posterior distribution is computed by the Markov Chain
Monte Carlo (MCMC) method for which the likelihood func-
tion is evaluated many times in traversing the parameter space
of h, and at each evaluation the response surface is also eval-
uated once.27 In the MCMC algorithm used in this work, the
Gibbs sampling method is used to perform the search and has
been determined to be adequate. At the end of the inference,
an instantiation of the posterior distributions of the parameters
is obtained in the form of a collection of sample points. The
methodology used in developing the response surfaces and
performing Bayesian inference is illustrated in Figure 2.

Even after using surrogate response surface models, the
Bayesian inference approach can still be computationally
prohibitive if the parameter space is too large. In addition,
there are parameters for which the uncertainty estimate is
not improved with additional data, as their posterior distribu-
tions are approximately identical to the assumed prior distri-
butions. The response surface corresponding to each
parameter for each process variable can be visually exam-
ined to determine whether or not it can be excluded from
UQ analysis. This approach can be very expensive for sys-
tems with a large number of parameters. For downselecting
the parameter space, we utilize a sensitivity matrix approach
where the candidate parameters for UQ analysis can be auto-
matically selected by constructing a matrix of partial deriva-
tives of the property model with respect to the parameter
value. The sensitivity matrix S for a property is of dimension
p 3 q where a single element is given by

Sij5 max
xj2 xL

j ;x
U
j½ �

����� @u

@ĥi

� �
xq 6¼j5x�q

����� (5)

where u denotes the property being considered, p and q cor-
respond to the number of parameters and variables, respec-
tively, in the model and xj refers to a specific variable
and ĥi is a parameter deviation term defined by

hi5�hiĥi (6)

where hi refers to a specific model parameter �hi and refers
to the baseline value of the given parameter as obtained

from deterministic regression. Also in Eq. 5, the terms xL
j

and xU
j represent the lower and upper limits of the variable

value, determined by the ranges of the data used to develop
the model, and x�q represents the average of these two values
for any given variable. The normalized version of this matrix
(N) is defined for a single element as

Nij5
Sij

max i�½1;p�;j�½1;q� Sij
(7)

For a given parameter hk, if Nkj � 1 8j 2 ½1; q�, then the
parameter hk can be excluded from the UQ analysis as the
prior belief of this parameter is unlikely to improve due to
Bayesian inference. This methodology is validated for all the
property models examined here. This procedure may be used
to reduce the computational cost when dealing with more
complicated models with larger numbers of parameters. This
procedure is validated qualitatively by comparing the calcu-
lated derivatives with response surfaces generated using
MARS.

Viscosity Model

Deterministic model

The model developed by Weiland et al. for the viscosity
of the H2O-MEA-CO2 system (lslnÞ is of the form

lsln5lH2Oexp

ð aWMEA1bð ÞT1cWMEA1dÞða eWMEA1fT1gð Þ11ÞWMEA

T2

� �
(8)

where WMEA is the mass percent of MEA in solution on a
CO2-free basis, a is CO2 loading (mol CO2/mol MEA), T is
temperature (K), and a-g are model parameters. The viscos-
ity of pure water (lH2O) in mPa s is given as a function of
temperature28

lH2O51:002�10
1:3272ð293:152T20:001053 T2293:15ð Þ2Þ

T2168:15 (9)

Experimental data from Amundsen et al. with the variable
ranges of WMEA � [20–40], a � [0–0.5], and T � [298.15–
353.15 K] are used to calibrate the parameters of Eq. 8. The
values of the calibrated parameters are compared with the
values given by Weiland et al. in Table 1.

Figure 5. Response surfaces for viscosity model representing: (A) lsln5 lslnðf ; aÞ; (B) lsln5 lslnðc; aÞ; (C) lsln5 lslnðe; aÞ.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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The viscosity model with both sets of parameters is com-
pared to the experimental data in Figure 3.

It is shown in Figure 3 that re-regressing the model
parameters resulted in an improved fit at relatively low tem-
peratures and high amine concentrations, particularly for
WMEA 5 40 and T 5 298.15 K. Although parameters a and b
are assumed to be negligible in the works of Weiland et al.
and Amundsen et al. for the MEA solvent, their inclusion in
the model helps capture the effects of temperature and com-
position on the solution viscosity model more precisely. For
higher temperatures (343.15–353.15 K) and lower MEA con-
tent, there is little difference between the fit given by the
original parameters and the new parameters. Overall, the
absolute average relative deviation (AARD) of the fit of the
viscosity model to the data was decreased from 4.87 to
2.69% by adding the two additional parameters to the model
and recalibrating. The model given in Eq. 8 is also tested
with a 10-fold cross validation, and the results are shown in
Figure 4.

As most of the model predictions lie around the 45� line,
the model form appears to sufficiently represent the solution
viscosity of the H2O-MEA-CO2 system. The calculated cross
validation AARD is 2.78%.

Parameter screening

Before proceeding with UQ for the viscosity model, the
sensitivity matrix method is used to determine the relative
importance of the model parameters in an attempt to elimi-
nate some of them from the Bayesian inference procedure.
The derivatives given in Eq. 5 are evaluated for the viscosity
model over the conditions

20 � WMEA � 40

298:15 � T � 353:15

0 � a � 0:5

where the limits on the model variables are decided based
on the ranges of the data for which the model is developed.
The normalized sensitivity matrix is calculated as

N5max

����� @l
@â

� �
WMEA;a

�����
����� @l
@â

� �
T;a

�����
����� @l
@â

� �
T;WMEA

�����
2222 222 222

2222 222 222����� @l
@ĝ

� �
WMEA;a

�����
����� @l
@ĝ

� �
T;a

�����
����� @l
@ĝ

� �
T;WMEA

�����

2
666666666664

3
777777777775

5

0:3383 0:4601 0:2667

0:3877 0:3955 0:3057

0:4556 0:5673 0:3289

0:8200 0:7658 0:5919

0:0682 0:0811 0:0757

0:8244 0:8023 1:0000

0:6413 0:5714 0:7122

2
666666666666666664

3
777777777777777775

(10)

Equation 10 shows the normalized sensitivity of the vis-
cosity model to its parameters, evaluated over the range of
interest for each variable. The model is clearly most sensi-
tive to parameter f, as the corresponding row of the matrix
has the highest value for all three columns, and least sensi-
tive to parameter e.

To confirm the validity of these results, a response surface
is generated using MARS with a sample size of 4000 with
variable and parameter inputs sampled from a Monte Carlo

Table 2. Calculated 95% Confidence Intervals for

Parameters in Viscosity Model

Parameter Baseline Value Confidence Interval

a 20.0838 [20.2341, 0.0666]
b 2.8817 [23.1179, 8.8814]
c 33.651 [213.6178, 80.9212]
d 1817 [266.8772, 3701.13]
f 0.0103 [0.0071, 0.0135]
g 22.3890 [23.4216, 21.3565]

Figure 6. Approximations of (A) cumulative distribution functions and (B) probability distribution functions for vis-
cosity model parameters determined from confidence intervals in the deterministic regression results.
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simulation with uniform distributions (ranges from 610% of
the baseline values for parameters and WMEA 2 ½20240�,
T 2 ½298:152333:15 K�, a 2 ½020:5�, and viscosity output
calculated from Eq. 8. Figure 5 shows three-dimensional pro-
jections from this response surface representing viscosity as
a function of CO2 loading and one of the model parameters.
All plots are generated at T5325:65 K and WMEA530 (the
average values over the variable ranges of interest) and at
baseline parameter values given in Table 1, except for the
parameter of interest for a given plot.

The relatively high sensitivity of the viscosity model with
respect to parameter f is confirmed by the shape of the curve
in Figure 5A, which depicts large deviation in the viscosity
prediction, particularly at high loading values, as a result of
a small perturbation in the value of the parameter. There is
clearly little sensitivity of the viscosity model to parameter e
(Figure 5C), as the curve representing viscosity as a function
of loading changes negligibly with the parameter value. It
can be noted that Nej � 1 8j 2 ½1; 3�. The parameter c is
considered as an intermediate case (noting Nea<Nca<Nfa as
given by Eq. 6, and the response surface of viscosity to this
parameter (Figure 5B) is shown to be more subtly peaked
than that of parameter f. The study shows that the sensitivity
matrix approach can be effectively used to avoid unneces-
sary UQ analysis for parameters without examining the
response surfaces visually. For this work, parameters with
sensitivity matrix values less than 0.1 for all variables will
be omitted from the stochastic model. Based on the specific
results obtained for the viscosity model, parameter e is not
considered further for UQ.

Stochastic model

The prior distributions of the model parameters that are
used for Bayesian inference are determined by estimating
confidence intervals for the parameters based on the results
of the deterministic regression. The 95% confidence intervals
for the parameters, noting that e has been eliminated as a
result of the sensitivity matrix calculation, are given in
Table 2.

For this work, parameters which have the value 0 con-
tained in their respective confidence intervals are not consid-
ered for UQ. Therefore, the stochastic model for viscosity
only considers uncertainty in parameters f and g. The prior
distributions of these parameters are determined by estimat-
ing their probability density functions (PDF) from a series of
confidence intervals. A confidence interval of significance
level c for the parameter h may be expressed as

P hL
c � h � hU

c

� �
512c (11)

where hL
c and hU

c are the lower and upper limits of the
parameter for a confidence interval of 100 12cð Þ%. From the
confidence interval, the cumulative distribution function
(CDF) of the parameter may be determined by

Fh hL
c

� �
5

c
2

(12a)

Fh hU
c

� �
512

c
2

(12b)

An estimate of the entire CDF of each parameter is
obtained by calculating all confidence intervals for levels

Figure 7. Posterior distributions for viscosity model parameters obtained from Bayesian inference.

(A) Histograms representing marginal distributions of the parameters; (B) contour plot representing joint distribution. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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c50:0120:99 at increments of 0.01. The PDF of each
parameter is determined from a numerical approximation of
the derivative

fh hð Þ5 dFh hð Þ
dh

(13)

The estimated CDFs and PDFs of the two parameters f
and g are given in Figure 6.

The marginal prior distributions of the model parameters
are taken as the PDFs given in Figure 6, and the joint prior
distribution is determined by assuming independence of the
parameters. For UQ of the viscosity model, a sample of 100
parameter sets is obtained from the PDFs. These sets are
combined with each of 90 data points that correspond to dif-
ferent experimental conditions (combination of T, WMEA, a).
Therefore, a total of 9000 data points are used to develop
the response surface used for Bayesian inference. This
response surface is validated by a 10-fold cross validation
procedure, which results in a coefficient of determi-
nation R250:9403. The posterior distributions are obtained
from Bayesian inference as a set of sample points. Figure 7
shows the posterior distributions in terms of marginal PDFs
in histogram form and a contour plot that represents the joint
probability distribution of the two parameters.

By comparing the marginal posterior distributions in Fig-
ure 7A with the marginal prior distributions in Figure 6A,
the reduction in parameter space as a result of Bayesian
inference is not apparent. The contour plot in Figure 7B rep-
resenting joint distribution ff ;gðf ; gÞ, however, does clearly
demonstrate that the prior distribution assumption that the
parameters are independent random variables does not hold
in the posterior distribution. Accordingly, the feasible param-
eter space in the joint distribution gets reduced while per-
forming Bayesian inference.

Figure 8 shows the stochastic model for 30% MEA as a
function of CO2 loading and temperature separately with
prior distributions and posterior distributions. All compari-
sons are made by drawing a sample size of 50 from the
parameter distributions of interest. All parameters not
included in UQ are treated as the constant values given in
Table 1.

In Figure 8, it is shown that the viscosity ranges predicted
using the prior distributions are excessively large, and the
ranges are reduced considerably as a result of Bayesian
inference. Furthermore, it is clear that the two parameter sto-
chastic model is adequate for characterizing the uncertainty
of the model.

Density Model

Deterministic model: Existing model

The model for the density of the H2O-MEA-CO2 system
(qslnÞ given by Weiland et al. is shown below

qsln5
MWsln

Vsln

(14)

Vsln5XMEAVMEA1XH2OVH2O1XCO2
VCO2

1XMEAXH2OV�

1XMEAXCO2
V��

(15)

VMEA5
MWMEA

aT21bT1c
(16)

V��5d1eXMEA (17)

where MWsln is the average of the molecular weights of the
individual components. The solution molar volume (Vsln), as
calculated by Eq. 15, consists of partial molar volume terms
for the three components as well as terms that account for
the interaction between species. The terms Xi and Vi, where
i represents one of the three species, are the mole fraction
and molar volume, respectively, of the individual species.

Figure 8. Stochastic viscosity model for WMEA 5 30% considering (A) prior parameter distribution and (B) posterior
parameter distribution.

Experimental data represented by (*) and taken from Amundsen et al. Error bars represent three standard deviations. Color-

coding represents solutions of different temperatures (magenta 5 298.15 K, red 5 313.15 K, green 5 323.15 K, blue 5 343.15 K, and

orange 5 353.15 K). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table 3. Parameter Values for Weiland et al. Solution

Density Model

Parameter Value

a 25.35162 3 1027

b 24.51417 3 1024

c 1.19451
d 0
e 0
VCO2

(mL/mol) 0.04747
V* (mL/mol) 21.8218
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VMEA and VH2O are pure component molar volume values,
while VCO2

represents the dissolved molar volume of CO2,
which is a constant value and unrelated to the pure compo-
nent value. The molar volume of MEA is calculated by Eq.
16 as a function of temperature. The molar volume associ-
ated with the interaction between H2O and MEA is given by
V*, a constant, and the molar volume associated with the
interaction between MEA and CO2 is given by V**, which
is dependent on the solution MEA concentration. The values
of all constants used in this model are given in Table 3.

Deterministic model: A new model

The original model does not explicitly account for the
presence of the ionic species in the H2O-MEA-CO2 solution,
which can be represented by the reversible reactions29,30

2MEA1CO2$MEA11MEACOO2 (18)

MEA1CO21H2O$MEA11HCO3
2 (19)

This reaction set represents a simplification of the solution
chemistry that was developed by Hilliard30 for typical CO2

capture process conditions where concentrations of other
ions (H3O1, OH2, CO22

3 ) are negligibly low. The kinetics
for these reactions are given in the work of Plaza.29

It is proposed that the model for the density of the solu-
tion should take the ionic speciation into account to more
accurately represent the solution’s molecular weight, as
opposed to just calculating the molecular weight based on
the apparent mole fractions of the molecular species. For the
new model, the molecular weight is calculated as

MWsln5
X6

i51

MWi
�Xi (20)

where MWi represents the molecular weight of a specific
component i (from Eqs. 18 and 19) and X˚

i is the true species
mole fraction. The true species mole fractions can be deter-
mined from experimental data given in terms of solution
temperature, CO2 loading (a), and MEA weight fraction on a
CO2-free basis (r). From this data, the apparent species mole
fractions (Xi) can be calculated by

XMEA5 11a1
MWMEA

MWH2O

� �
12r

r

� �� �21

(21)

XCO2
5aXMEA (22)

XH2O512XMEA2XCO2
(23)

The new model proposed for the solution density is given by

qsln5
MWsln

XMEAVMEA1XH2OVH2O1aXCO2
1ðb1cXMEAÞXMEAXH2O1ðd1eXMEAÞXMEAXCO2

(24)

The major differences between this model and the original
model (Eqs. 14–17 and 24) are that both interaction terms
(V� and V��) are now assumed to be linear functions of the
apparent mole fraction of MEA and that the V�� is not
assumed to be equal to zero. Only five parameters (a–e) are
considered for the deterministic model, because they are
related to the nonideality of the electrolytic solution mixture.
As the method of calculation of the solution molecular
weight was changed, the parameters require recalibration. It
is assumed that the molar volumes of H2O and MEA can be
calculated with relatively high precision and certainty. The
molar volume of MEA is calculated from Eq. 16, with coef-
ficients given in Table 3. The molar volume of H2O is calcu-
lated similarly, from the equation

VH2O5
MWH2O

2 3:2484 3 1026
� �

T2 1 0:00165T10:793
(25)

where the coefficients were regressed from data given in
Liley et al.31

Three sources of data for the H2O-MEA-CO2 solution
density are identified. The ranges of essential solution prop-
erties and number of data points that are considered for each
data source are summarized in Table 4.

The model parameters are calibrated using all data observa-
tions from the three sources, as listed in Table 4, with equal
weighting. The calibrated parameters are shown in Table 5.

Table 6 shows the values of the AARD for each model
with respect to the data from the individual sources and
overall. The original and new density models are compared
to the experimental data in Figure 9. Model predictions are

Table 4. Summary of Density Data Used for Model Calibration

Data Source Temperature (K) CO2 Loading r Number of Observations

Amundsen et al. 298.15–353.15 0–0.5 0.2–0.4 83
Jayarathna et al. 303.15–333.15 0–0.5 0.2–0.4 72
Han et al. 298.15–353.15 0.1–0.56 0.2–0.4 54

Table 5. Calibrated Parameter Values from Density Model

Given in Eq. 24

Parameter Value

a 10.2074
b 22.2642
c 3.0059
d 207
e 2563.3701

Table 6. Values of AARD for Original and New Density

Models

Data Source

Original Model A

ARD (%)

New Model

AARD (%)

Amundsen et al. 0.24 0.27
Jayarathna et al. 0.37 0.09
Han et al. 0.71 0.28
All Data 0.41 0.20
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shown only for temperatures of 298.15, 323.15, and
353.15 K to enhance the clarity of the graphs.

For solutions of r 5 0.2, the density data available for
both sources are in agreement with each other, and both the
model by Weiland et al. and the new model both provide
satisfactory fit to the data; however, for solutions of r 5 0.3
and r 5 0.4, there is significant discrepancy between the data
given by different sources. As an example, Figure 9B shows
that the density of solutions with r 5 0.3 appears to decrease
with increased CO2 loading at relatively low temperatures
(298.15–313.15 K) for a > 0:5, despite the otherwise evi-
dent trend that solution density increases with loading. This
is more likely attributed to measurement inconsistency from
different experiments rather than an actual physical phenom-
enon. In the same graph, a pronounced decrease in the slope

Figure 9. Comparison of models to experimental data for solutions of: (A) r 5 0.2; (B) r 5 0.3; (C) r 5 0.4.

Stars (*) represent experimental data from Jayarathna et al., x’s (x) represent experimental data from Amundsen et al., pluses (1)

represent experimental data from Han et al., and all data are given to three standard deviations. Dashed lines represent density as

calculated from the original model and solid lines represent density as calculated from the new model. Color-coding represents sol-

utions of different temperatures (magenta 5 298.15 K, red 5 303.15 K, green 5 313.15 K, blue 5 323.15 K, orange 5 333.15 K,

cyan 5 343.15 K, and purple 5 353.15 K). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.

com.]

Figure 10. 11-Fold cross validation of solution density
model.

Straight line represents perfect fit of model value to

data value. Stars represent experimental data and

model comparison.

Table 7. Calculated 95% Confidence Intervals for

Parameters in Density Model

Parameter Baseline Value Confidence Interval

a 10.2074 [4.6508, 15.764]
b 22.2642 [23.0579, 21.4704]
d 207 [115.1532, 298.8448]
e 2563.3701 [2941.8307, 2184.9095]
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of the new model for T 5 353.15 K and r 5 0.3 occurs at a5

0:4 in order to more correctly match the only data point
given above this value, at a50:56. This trend is not observed
for curves for lower temperatures (T � 333:15 K) because
data are also given at a50:5 for which the fit must be opti-
mized. An overall trend is that the data from Amundsen
et al. most accurately fits the original model in comparison
to data from the other sources probably because these data
were originally presented as validation data for the model by
Weiland et al. As the overall effect of the modification of
this model and the recalibration of the parameters is to mini-
mize the discrepancy between the model and the aggregate
data, the AARD of the model compared with the Amundsen
et al. data increases, as shown in Table 6. This demonstrates
the inherent inability of deterministic models to represent a
system for which precise values of a physical property are
unknown due to inconsistent data, and implies the need for a
stochastic model to effectively incorporate all of these data
into the model prediction. The new model is tested using an
11-fold cross validation procedure, and the result is shown in
Figure 10.

The cross validation plot shows that the model can accu-
rately predict solution density at relatively low CO2 loading
values; however, the model appears to be more uncertain at
higher density. This can be partly attributed to the contradic-
tory data for solutions of higher CO2 loading from the differ-
ent data sources. The calculated cross validation AARD for
the density model is 0.22%.

Parameter screening

The sensitivity matrix is calculated for the density model
with the same procedure used for the viscosity model. The
parametric sensitivity, however, is calculated with respect to
the molar volume model (the denominator of Eq. 24)
because these derivatives can be calculated analytically. As
the density model is dependent on the solution molecular
weight, which is calculated based on the electrolytic specia-
tion of the system, its derivatives cannot be obtained analyti-
cally. As the molecular weight calculation is completely
independent of the parameter values, the relative importance
of its parameters can be determined by examining the sensi-

tivity of either the density or molar volume models to the
parameters. The calculated sensitivity matrix is given by

N5max
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(26)

Similar to the viscosity model, these derivatives are eval-
uated over the variable ranges used to develop the determin-
istic models. Based on the relative values of the matrix
elements, the parameter to which the model is most sensitive
is d. Parameter c is excluded from Bayesian inference
because all elements in the respective row are sufficiently
close to zero.

Stochastic model

As with the viscosity model, the parameters to be included
in the stochastic density model are determined by calculating
the 95% confidence intervals, which are shown in Table 7.

Since none of the four parameters contain 0 in their confi-
dence intervals, all are considered for the stochastic model.
The marginal prior distributions are determined in the same
manner as for the viscosity model, and the CDFs and PDFs
are given in Figure 11.

The marginal prior distributions of the model parameters
are taken as the PDFs given in Figure 11, and the joint prior
distribution is determined by assuming independence of the

Figure 11. Approximations of (A) cumulative distribution functions and (B) probability distribution functions for
density model parameters determined from the confidence intervals in the deterministic regression
results.
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parameters. A sample of 100 parameter sets is obtained from
a numerical approximation of the PDFs. These sets are com-
bined with each of 209 data points that correspond to differ-
ent experimental conditions, and a total of 20,900 data
points are used to develop the response surface model. This
model is validated by a 10-fold cross validation procedure
with R250:9999. Figure 12 shows a representation of the
posterior distribution in terms of histograms for all single
parameter marginal distributions and contour plots for
selected two parameter marginal distributions.

As the parameter space of the density model has four
dimensions, it cannot be visualized directly as with the vis-
cosity model. The histograms in Figure 12A represent the
marginal distributions of single parameters, and it should be
noted that the major change that occurs as a result of Bayes-
ian inference is that the probability mass density of parame-

ters a and d is shifted toward the upper boundary of the 95%
confidence interval.

Surface Tension Model

Deterministic model: Existing model

The model for surface tension of the H2O-MEA-CO2 sys-
tem (rslnÞ developed by Jayarathna et al. is given by

rsln5r21
X
i51;3

11
biXi

ð12aiÞð11
X

j51;3

aj

12aj

� �XjÞ

0
BB@

1
CCAðXi ri2r2ð ÞÞ

(27)

where subscripts 1–3 represent CO2, H2O, and MEA, respec-
tively. The surface tension of component i is denoted by ri.
The apparent mole fraction of species i in the solution is
denoted by Xi. The parameters ai and bi are dependent on
the mass fraction of MEA in the solution. The values of the
parameters reported by Jayarathna et al. are shown in Table
8, where r is defined as the mass fraction of MEA in solu-
tion on a CO2-free basis.

Because carbon dioxide does not exist as a liquid in the
temperature range considered for this analysis, the surface
tension associated with this component is only considered as
a fitting parameter in the model.15 This parameter is given
as15

Figure 12. Posterior distributions for density model parameters obtained from Bayesian inference.

(A) Histograms representing single parameter marginal distributions of the parameters; (B) contour plots representing two

parameter marginal distributions. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table 8. MEA Composition Dependent Parameters

for Surface Tension Model15

r 5 0.2 r 5 0.3 r 5 0.4

CO2 (i 5 1)
ai 0.3073 0.09409 0.1478
bi 20.8574 20.7392 20.8982
MEA (i 5 3)
ai 1.067 1.114 1.157
bi 0.1701 0.1757 0.3062

Table 9. MEA Composition Dependent

Parameters for rCO2

15

r 5 0.2 r 5 0.3 r 5 0.4

S1 0.08286 0.1605 0.1184
S2 4.309 3 1024 1.316 3 1024 1.954 3 1024

Table 10. Parameters for Pure Component Surface

Tension Model32

c1 c2 c3 c4 Tc (K)

H2O 0.18548 2.717 23.554 2.047 647.13
MEA 0.09945 1.067 0 0 614.45
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rCO2
5S11S2�TðKÞ (28)

where S1 and S2 are parameters that depend on the MEA
content of the mixture, which are shown in Table 9.

The pure component surface tension values for H2O and
MEA were calculated using the model proposed by Asp-
rion32 with the equation

ri5c1 12
T

Tc

� � c21c3ðT=TcÞ1c4ðT=TcÞ2

(29)

where ri is the pure component surface tension in N/m, Tc is
the pure component critical temperature, and coefficients
c124 are species specific. The values of these model parame-
ters are presented in Table 10.

Deterministic model: A new model

Although this model was shown to accurately represent
the available data, it has a major shortcoming in that it is
only applicable to solutions with discrete values of MEA
composition (r 5 0.2–0.7 in increments of 0.1) in its original
form. Therefore, the model is updated to allow for represen-
tation of solution surface tension for a continuous range of
compositions. The range r 2 [0.2,0.4] is considered for this
work to allow for consistency with the models previously
developed for viscosity and density. For the updated surface
tension model, Eq. 28 is replaced by

rCO2
5S1�r21S2�r1S31TðS4�r21S5�r1S6Þ (30)

so that this fitting parameter may be represented in the
model as a continuous function of r. The coefficient values
are regressed to give the best fit between the values of rCO2

calculated by Eqs. 28 and 30. In dealing with the MEA

Table 11. Parameters for Updated rCO2
Model

S1 25.987
S2 3.7699
S3 20.43164
S4 0.018155
S5 20.01207
S6 0.002119

Table 12. Regressed Parameter Values for New rsin Model

Parameter Value Parameter Value

a 2.4558 f 2.3122
b 21.5311 g 4.5608
c 3.4994 h 22.3924
d 25.6398 i 5.3324
e 10.2109 j 212.0494

Figure 13. Comparison of models to experimental data for solutions of: (A) r 5 0.2; (B) r 5 0.3; (C) r 5 0.4.

Stars (*) represent experimental data, with error bars representing one standard deviation, from Jayarathna et al., dashed lines

represent original model, and solid lines represent new model. Color-coding represents solutions of different temperatures

(magenta 5 303.15 K, red 5 313.15 K, green 5 323.15 K, and blue 5 333.15 K). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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concentration-dependent parameters in Eq. 27, a new model
form is proposed that is functionally similar to Eq. 27

rsln5rH2O1 rCO22rH2Oð Þf r; að ÞXCO2
1ðrMEA2rH2OÞgðr; aÞXMEA

(31)

f r; að Þ5a1ba1ca21dr1er2 (32)

g r; að Þ5f 1ga1ha21ir1jr2 (33)

The variables a and r can be related to apparent species
mole fractions by Eqs. 21–23. Model parameters (a–j) are
regressed with the experimental data from Jayarathna et al.
The regressed values of the parameters of Eqs. 30 and 32–33
are given in Tables 11 and 12, respectively.

The fit of the experimental data to the new and original
surface tension models is compared in Figure 13.

The fit of the new model to the data is similar to the
model by Jayarathna et al., but, as mentioned earlier, the
model by Jayarathna et al. is valid only for discrete values
of r. The new model can be used to calculate solution sur-
face tension over relevant ranges of solution conditions, spe-
cifically temperature and composition making it especially
valuable for process simulation. The calculated values of
AARD are 0.38 and 0.35% for the original and new models,
respectively. The new model is tested with a 9-fold cross
validation as shown in Figure 14, and the cross validation
AARD is 0.43%.

Parameter screening

The sensitivity matrix for the surface tension model is
evaluated using the same criteria as for the viscosity and
density models. It is calculated as
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(34)

Given the results of the sensitivity matrix, the only param-
eter than can obviously be eliminated before Bayesian infer-

ence is h because all elements in the corresponding row are
close to zero.

Stochastic model

The 95% confidence intervals for the parameters in the
surface tension model, excluding parameter h, are given in
Table 13.

Parameters b and i are omitted from the stochastic model
as the value 0 is included in their 95% confidence intervals.
The prior distributions of the remaining seven parameters are
estimated using the same methodology employed for the vis-
cosity and density models, and the marginal PDFs and CDFs
are given in Figure 15.

The marginal prior distributions are taken as the PDFs
given in Figure 15, and the joint prior distribution is deter-
mined by assuming independence of the parameters. For UQ
of the surface tension model, a sample of 100 parameter sets
is obtained from a numerical approximation of the PDFs. A
sample size of 72 experimental observations is available so
that 7200 model observations are used for to generate the
response surface model, which is validated by a 10-fold
cross validation procedure with R250:9710. Figure 16 shows
a representation of the posterior distribution in terms of his-
tograms for all single parameter marginal distributions and
contour plots for selected two parameter marginal distribu-
tions. As with the density model, the entire joint posterior
distribution cannot be visualized directly.

Figure 14. 9-fold cross validation of solution surface
tension model.

Straight line represents perfect fit of model value to

data value. Stars represent experimental data com-

pared to model values.

Table 13. Calculated 95% Confidence Intervals for

Parameters in Surface Tension Model

Parameter Baseline Value Confidence Interval

a 2.4558 [1.5100, 3.4015]
b 21.5311 [23.4461, 0.3840]
c 3.4994 [1.9749, 5.0239]
d 25.6398 [29.7085, 21.5711]
e 10.2109 [3.5877, 16.8341]
f 2.3122 [1.2025, 3.4219]
g 4.5608 [0.7945, 8.3271]
i 5.3324 [21.9564, 12.6211]
j 212.0494 [223.5634, 20.5355]
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Effect of Physical Properties Uncertainty on the
Process Model Outputs

The objective of this work is to estimate the effect of the

parametric uncertainty of the viscosity, density, and surface

tension models on the results of Aspen Plus
VR

simulations.

The Aspen Plus
VR

model of the MEA-H2O-CO2 system that

includes the absorber and the regenerator is the Phoenix

model that has been developed at the University of Texas at
Austin.29 For the model parameters determined to be impor-
tant for UQ in this work, a sample size of 200 is drawn
from the PDF derived from Bayesian inference. All parame-
ters included in the deterministic models but not in the sto-
chastic models are treated as constants. Absorber and
regenerator models are considered separately, and one oper-
ating condition is examined for each. For the absorber

Figure 15. Approximations of (A) cumulative distribution functions and (B) probability distribution functions for sur-
face tension model parameters determined from the confidence intervals in the deterministic regression
results.

Figure 16. Posterior distributions for surface tension model parameters obtained from Bayesian inference.

(A) Histograms representing single parameter marginal distributions of the parameters; (B) contour plots representing two

parameter marginal distributions. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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simulation, the outlet variable of interest is percent CO2 cap-
ture, calculated as

%CO2; cap5
_mCO2;FGin2 _mCO2;FGout

_mCO2;FGin

� �
�100% (35)

where _mCO2;FGin and _mCO2;FGout are the mass flow rates of
CO2 in the absorber inlet and outlet gas streams, respec-
tively. Essential input variables for the absorber simulation
are shown in Table 14.

The effect of parametric uncertainty in the three models
on the uncertainty of the absorber model performance is esti-
mated by simulating the model highlighted in Table 14 a
total of 200 times, each representing a different set of the
parameters, which were sampled from their respective poste-
rior distributions. The results of this procedure are given in
Table 15. The output variables considered are the percentage
of CO2 capture and the values of the physical properties in
the inlet lean solvent stream of the absorber, and the ranges,
averages, and standard deviations that result from propagat-
ing the parametric uncertainty is reported. The uncertainty in
the percent of CO2 capture that results from the propagation

of the prior and posterior distributions through the process
model is given in the form of histograms in Figure 17.

In the MEA regenerator simulation, the reboiler duty ( _Q)
required to reduce the lean solvent loading to a given value
(a 5 0.3) is the major output variable of interest, and the physi-
cal properties of the inlet rich solvent are also considered. The
simulation input variables are given in Table 16, and the distri-
butions in the output variables are given in Table 17.

As shown in Table 17, the uncertainty in the reboiler duty
that results from propagating the parametric uncertainty
(even while using the prior) through the regenerator model is
negligible. A likely reason that this parametric uncertainty
has less effect on the regenerator model in comparison to the
absorber model is that the value of viscosity is much less in
the regenerator model, and the CO2 capture process is more
sensitive to viscosity at higher values. It should be noted that
all three models are extrapolated to the operating tempera-
ture of the regenerator, as no data are yet available to vali-
date the models at temperatures at this range.

Although accuracy of viscosity, density, and surface ten-
sion models has high impact on the key outputs of an MEA-
H2O-CO2 system, the results show that the small magnitude

Table 14. Key Input Variables for Absorber Simulation

Inlet lean solvent mass flow rate (kg/h) 3000
L/G (inlet liquid:gas mass ratio) 4.42
Inlet lean solvent temperature (�C) 40
Inlet lean solvent pressure (kPa) 101.3
Inlet lean solvent loading (mol CO2/mol MEA) 0.35
Inlet lean solvent WMEA (%) 35.4

Table 15. Results of Propagating Prior and Posterior Distributions of Physical Property Models Through Absorber Simulation

Prior Distributions Posterior Distributions

Range Average Standard Deviation Range Average Standard Deviation

%CO2;cap
82.97–85.09 84.05 0.46 83.53–84.48 83.97 0.19

llean (mPa s) 1.95–5.11 2.95 0.70 2.53–3.31 2.89 0.16
qlean (g/cm3) 1.052–1.113 1.083 0.012 1.048–1.106 1.072 0.012
rlean (N/m) 0.0553–0.0786 0.0670 0.0051 0.051–0.0776 0.0664 0.0048

Figure 17. Histograms of percent CO2 capture resulting from absorber model simulation with (A) prior distributions
in model parameters and (B) posterior distributions in model parameters.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table 16. Key Input Variables for Regenerator Simulation

Inlet rich solvent mass flow rate (kg/h) 3100
Inlet rich solvent temperature (�C) 106.5
Inlet rich solvent pressure (kPa) 230.4
Inlet rich solvent loading (mol CO2/mol MEA) 0.5
Inlet rich solvent XMEA (%) 35.4
Outlet lean solvent loading (mol CO2/mol MEA) 0.3
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of parametric uncertainty (due to highly accurate determinis-
tic models) does not affect the key outputs appreciably. It
should be noted that the effect of the complete physical
properties model uncertainty on the integrated plant model
and on the dynamic simulation has yet to be studied.

Conclusions

A generalized approach to quantifying the uncertainty of
property models is presented here. The Bayesian inference
methodology deployed for this purpose seeks to update prior
beliefs of parametric uncertainties with due consideration of
the experimental data. To reduce the computational cost,
response surfaces are used as surrogate models for Bayesian
inference using the MCMC method with Gibbs sampling. For
downselecting the parameter space, a sensitivity matrix
approach based on computing analytical derivatives of physi-
cal property models with respect to parameters is developed.
The methodology is demonstrated on the viscosity, density,
and surface tension models of a MEA-CO2-H2O system. To
this end, first deterministic models are evaluated over ranges
of 0–0.5 mol CO2/mol MEA, 0.2–0.4 g MEA/g MEA 1 H2O,
and 298.15–353.15 K for viscosity and density and 303.15–
333.15 K for surface tension. The optimal baseline model
parameters have been determined for each correlation by mini-
mizing SSE and the model forms have been evaluated using
cross validation. The sensitivity matrix approach is found to
work effectively for all the models tested and can be used as a
tool for downselecting the parameter space. It was observed
that the parametric uncertainty in the current models for vis-
cosity, density, and surface tension affects the key outputs of
the MEA-based CO2 capture system insignificantly. In the
future, we will employ similar methodologies to complete
other physical property models required for MEA systems.
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