
LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Performance Optimization
and Auto-tuning

Samuel Williams1

Jonathan Carter1, Richard Vuduc3, Leonid Oliker1, John Shalf1,
Katherine Yelick1,2, James Demmel1,2

1

 1Lawrence Berkeley National Laboratory

 2University of California Berkeley
 3Georgia Institute of Technology

SWWilliams@lbl.gov

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Outline

  Fundamentals
  Software Solutions to Challenges

  Sequential Programming Model
  Shared Memory World
  Message Passing World

  Optimizing across an evolving hardware base
  Automating Performance Tuning (auto-tuning)
  Example 1: LBMHD
  Example 2: SpMV

  Summary

2

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Fundamentals

3

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Performance Optimization:
Contending Forces

  Contending forces of Efficiency and Computational Complexity
  We improve time to solution by improving throughput (efficiency)

and reducing computational complexity

4

Improve
Efficiency

(Gflop/s, GB/s, etc…)

Reduce
Computational
Complexity
(Flop’s, GB’s, etc…)

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Performance Optimization:
Contending Forces

  Contending forces of Efficiency and Computational Complexity
  We improve time to solution by improving throughput (efficiency)

and reducing computational complexity

  In practice, we’re willing to sacrifice one in order to improve the time
to solution.

5

Restructure
to satisfy

Little’s Law

Implementation &
Algorithmic
Optimization

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Basic Efficiency Quantities

  At all levels of the system (register files through networks), there are
Three Fundamental (efficiency-oriented) Quantities:
  Latency every operation requires time to execute

 (i.e. instruction, memory or network latency)
  Bandwidth # of (parallel) operations completed per cycle

 (i.e. #FPUs, DRAM, Network, etc…)
  Concurrency Total # of operations in flight

6

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Little’s Law

  Little’s Law relates these three:
 Concurrency = Latency * Bandwidth
 - or -
 Effective Throughput = Expressed Concurrency / Latency

  This concurrency must be filled with parallel operations
  Can’t exceed peak throughput with superfluous concurrency.

 (each channel has a maximum throughput)

7

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Computational Complexity
Quantities

  Complexity often expressed in terms of
  #Floating-point operations (FLOPs)
  #Bytes from (registers, cache, DRAM, network)

  Just as channels have throughput limits, kernels and algorithms can
have lower bounds to complexity (traffic).

8

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Architects, Mathematicians,
Programmers

  Architects invent paradigms to improve (peak) throughput (efficiency?)
and facilitate(?) Little’s Law.

  Mathematicians invent new algorithms to improve performance by
reducing (bottleneck) complexity or traffic

  As programmers, we must restructure algorithms and implementations
to these new features.

  Often boils down to several key challenges:
  Management of data/task locality
  Management of data dependencies
  Management of communication
  Management of variable and dynamic parallelism

9

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Software Solutions to
Challenges

10

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Challenges: Sequential

  Even with only one thread, there is parallelism due to pipelining and SIMD

  Data Dependencies:
  HW (despite any out of order execution) manages data dependencies from ILP
  user/compiler manages those from DLP (SIMDize only if possible)

  Data Locality:
  compilers do a pretty good job of register file locality
  For consumer apps, caches hide the complexity of attaining good on-chip locality fairly well
  However, for performance-critical HPC apps, working sets can be so large and

unpredictable, caches do poorly. When coupled with finite memory bandwidth, performance
can suffer.

  cache block (reorder loops) or change data structures/types to improve arithmetic
intensity.

  Communication (limited to processor-DRAM):
  modern architectures predominately used HW stream prefetching to hide latency.

  structure memory access patterns into N unit stride streams
  Variable/Dynamic Parallelism:

  OOO processors can mitigate the complexity of variable parallelism (ILP/DLP) within the
instruction set so long as it occur within a ~few dozen instruction window

11

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 12

Arithmetic Intensity

  True Arithmetic Intensity (AI) ~ Total Flops / Total DRAM Bytes

  Some HPC kernels have an arithmetic intensity that scales with problem
size (increased temporal locality), but remains constant on others

  Arithmetic intensity is ultimately limited by compulsory traffic
  Arithmetic intensity is diminished by conflict or capacity misses.

A r i t h m e t i c I n t e n s i t y

O(N)
O(log(N))

O(1)

SpMV, BLAS1,2

Stencils (PDEs)

Lattice Methods

FFTs
Dense Linear Algebra

(BLAS3)
Particle Methods

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model

13

  Visualizes how bandwidth,
compute, locality, and
optimization bound
performance.

  Based on application
characteristics, one can
infer what needs to be done
to improve performance.

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

w/out SIMD

mul / add imbalance

w/out ILP

Opteron 2356
(Barcelona)

peak DP

only com
pulsory m

iss traffic
+w

rite allocation traffic

+capacity m
iss traffic

+conflict m
iss traffic

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Challenges: Shared Memory

  Multiples threads in a shared memory environment

  Data Dependencies:
  no inherent support for managing data dependencies.

  Bulk Synchronous (barriers), locks/semaphores, atomics
  Data Locality:

  Must manage NUMA and NUCA as well as on-/off-chip locality
  Use Linux affinity routines (parallelize accordingly),
 cache block (reorder loops), or change data structures/types.

  Communication:
  Message aggregation, concurrency, throttling etc…
  Ideally, HW/SW (cache coherency/GASNet) runtime should manage this:

" Use collectives and/or memory copies in UPC
  Variable/Dynamic Parallelism

  variable TLP is a huge challenge
" Task queues (?)

14

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Challenges: Message Passing

  Multiples Processes in a message passing environment

  Data Dependencies:
  no inherent support for managing data dependencies.
  user must express all data dependencies via send/recv/wait

  Data Locality:
  No shared memory, so all communication is via MPI

  User manages partitioning/replication of data at process level
  Communication:

  Message aggregation, concurrency throttling etc…
  ideally, MPI should manage this

" Use collectives, larger messages, limit the number of send/recv’s at a time.
  Variable/Dynamic Parallelism

  no good solution for variable TLP

15

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Coping with Diversity of Hardware

  There are dozens of processor and machine architectures in use
today.

  The best implementation of an algorithm is dependent on:
  machine
  data set
  concurrency
  machine load
  …

  Hand optimizing each architecture/dataset combination is not
feasible

16

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Auto-tuning

17

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Auto-tuning

  Automatic Performance Tuning (Auto-tuning) is an empirical
feedback driven technique designed to automate performance
engineering.

  Our auto-tuning approach finds a good performance solution by a
combination of heuristics and exhaustive search
  Perl script generates many possible kernels
  (Generate SIMD optimized kernels)
  Auto-tuning benchmark examines kernels and reports back with the

best one for the current architecture/dataset/compiler/…
  Performance depends on the optimizations generated
  Heuristics are often desirable when the search space isn’t tractable

  Proven value in Dense Linear Algebra(ATLAS), Spectral
(FFTW,SPIRAL), and Sparse Methods(OSKI)

18

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 19

Auto-tuning

  Provides performance portability across the existing breadth and
evolution of microprocessors

  One time up front productivity cost is amortized by the number of
machines its used on

  Auto-tuning does not invent new optimizations
  Auto-tuning automates the code generation and exploration of

the optimization and parameter space
  Two components:

  parameterized code generator (we wrote ours in Perl)
  Auto-tuning exploration benchmark

 (combination of heuristics and exhaustive search)
  Can be extended with ISA specific optimizations (e.g. DMA, SIMD)

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

  Over the last 15 years, the set of optimizations available to auto-
tuning has grown immensely.

Algorithmic Parameters
FMM, KSM/Akx, MG V-cycle, …

Advancing the State of the Art in
Optimizations

Parallelism
GTC, LBMHD, Stencils,
PLASMA/MAGMA, etc…

20

Data Structure
Transformations

OSKI, GTC, …

Loop/Code
Transformations
ATLAS, FFTW, SPIRAL,

etc…

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Lattice Boltzmann
Magnetohydrodynamics

(LBMHD)
Samuel Williams, Jonathan Carter, Leonid Oliker, John Shalf, Katherine Yelick, "Extracting
Ultra-Scale Lattice Boltzmann Performance via Hierarchical and Distributed Auto-Tuning",
Supercomputing (SC), 2011.

Samuel Williams, Jonathan Carter, Leonid Oliker, John Shalf, Katherine Yelick, "Lattice
Boltzmann Simulation Optimization on Leading Multicore Platforms", International Parallel &
Distributed Processing Symposium (IPDPS), 2008. Best Paper, Applications Track

21

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 22

LBMHD

  Lattice Boltzmann Magnetohydrodynamics (CFD+Maxwell’s Equations)
  Plasma turbulence simulation via Lattice Boltzmann Method for simulating

astrophysical phenomena and fusion devices
  Three macroscopic quantities:

  Density
  Momentum (vector)
  Magnetic Field (vector)

  Two distributions:
  momentum distribution (27 scalar components)
  magnetic distribution (15 Cartesian vector components)

momentum distribution

14

4

13

16

5

8

9

21

12

+Y

2

25

1

3

24

23

22

26

0

18

6

17

19

7

10

11

20

15
+Z

+X

magnetic distribution

14

13

16

21

12

25

24

23

22

26

18

17

19

20

15

+Y

+Z

+X

macroscopic variables

+Y

+Z

+X

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 23

LBMHD

  Code Structure
  time evolution through a series of collision() and stream() functions

  stream()
  performs a ghost zone exchange of data to facilitate distributed memory

implementations as well as boundary conditions
  should constitute 10% of the runtime

  collision()’s Arithmetic Intensity:
  Must read 73 doubles, and update 79 doubles per lattice update (1216 bytes)
  Requires about 1300 floating point operations per lattice update
  Just over 1.0 flops/byte (ideal architecture)
  Suggests LBMHD is memory-bound on the Cray XT4/XE6.

  Structure-of-arrays layout (component’s are separated) ensures that cache
capacity requirements are independent of problem size

  However, TLB capacity requirement increases to >150 entries

  periodic boundary conditions

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

LBMHD Stencil

  Simplified example reading from 9 arrays and writing to 9 arrays
  Actual LBMHD reads 73, writes 79 arrays

24

x dimension

(b)(a)

write_array[][]

(+1,0)

(0,+1)

(0,-1)

(-1,0) (0,0)

(+1,+1)

(+1,-1)(-1,-1)

(-1,+1)

read_array[][]

?

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

25

Auto-tuning LBMHD
on Multicore SMPs

Samuel Williams, Jonathan Carter, Leonid Oliker, John Shalf, Katherine Yelick, "Lattice
Boltzmann Simulation Optimization on Leading Multicore Platforms", International Parallel &
Distributed Processing Symposium (IPDPS), 2008.

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 26

LBMHD Performance
(reference implementation)

  Generally, scalability looks
good

  Scalability is good
  but is performance good?

*collision() only

Reference+NUMA

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Lattice-Aware Padding

  For a given lattice update, the requisite velocities can be mapped to
a relatively narrow range of cache sets (lines).

  As one streams through the grid, one cannot fully exploit the
capacity of the cache as conflict misses evict entire lines.

  In an structure-of-arrays format, pad each component such that
when referenced with the relevant offsets (±x,±y,±z) they are
uniformly distributed throughout the sets of the cache

  Maximizes cache utilization and minimizes conflict misses.

27

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

LBMHD Performance
(lattice-aware array padding)

28

  LBMHD touches >150
arrays.

  Most caches have limited
associativity

  Conflict misses are likely
  Apply heuristic to pad

arrays

+Padding

Reference+NUMA

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY
(b)

(a)

(d)

(c)

Vectorization

  Two phases with a lattice method’s collision() operator:
  reconstruction of macroscopic variables
  updating discretized velocities

  Normally this is done one point at a time.
  Change to do a vector’s worth at a time (loop interchange + tuning)

29

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 30

LBMHD Performance
(architecture specific optimizations)

  Add unrolling and reordering of
inner loop

  Additionally, it exploits SIMD
where the compiler doesn’t

  Include a SPE/Local Store
optimized version

*collision() only

+Explicit SIMDization

+SW Prefetching

+Unrolling

+Vectorization

+Padding

Reference+NUMA

+small pages

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 31

LBMHD Performance
(architecture specific optimizations)

  Add unrolling and reordering of
inner loop

  Additionally, it exploits SIMD
where the compiler doesn’t

  Include a SPE/Local Store
optimized version

*collision() only

+Explicit SIMDization

+SW Prefetching

+Unrolling

+Vectorization

+Padding

Reference+NUMA

+small pages

1.6x 4x

3x 130x

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Limitations

  Ignored MPP (distributed) world
  Kept problem size fixed and cubical
  When run with only 1 process per SMP, maximizing threads per

process always looked best

32

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

33

Auto-tuning LBMHD
on Multicore MPPs

Samuel Williams, Jonathan Carter, Leonid Oliker, John Shalf, Katherine Yelick, "Extracting Ultra-
Scale Lattice Boltzmann Performance via Hierarchical and Distributed Auto-Tuning",
Supercomputing (SC), 2011.

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

34

MPI+Pthreads and MPI+OpenMP
Implementations

Explored performance on 3 ultrascale machines using 2048 nodes on each and
running a 1GB, 4GB, and if possible 16GB(per node) problem size.

• IBM Blue Gene/P at Argonne (Intrepid) 8,192 cores
• Cray XT4 at NERSC (Franklin) 8,192 cores
• Cray XE6 at NERSC (Hopper) 49,152 cores

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

collision()

pack()

unpack()

MPI()

pack()

pack()

MPI()

MPI()

unpack()

unpack()

collision()

pack()

unpack()

MPI()

pack()

pack()

MPI()

MPI()

unpack()

unpack()

collision()

pack()

unpack()

MPI()

pack()

pack()

MPI()

MPI()

unpack()

unpack()

collision()

pack()

unpack()

MPI()

pack()

pack()

MPI()

MPI()

unpack()

unpack()

process 0 process 1 process 2 process 3
(core 0) (core 1) (core 2) (core 3)

Flat MPI

  In the flat MPI world, there is one
process per core, and only one thread
per process

  All communication is through MPI

35

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

collision() collision() collision() collision()

pack() pack() pack() pack()

unpack() unpack() unpack() unpack()

MPI()

pack() pack() pack() pack()

pack() pack() pack() pack()

MPI()

MPI()

unpack() unpack() unpack() unpack()

unpack() unpack() unpack() unpack()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

MPI()

MPI()

MPI()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

process 0 process 1
thread 0 thread 1 thread 0 thread 1
(core 0) (core 1) (core 2) (core 3)

Hybrid MPI + Pthreads/OpenMP

  As multicore processors already provide cache
coherency for free, we can exploit it to reduce
MPI overhead and traffic.

  We examine using pthreads and OpenMP for
threading (other possibilities exist)

  For correctness in pthreads, we are required to
include a intra-process (thread) barrier between
function calls for correctness.
 (we wrote our own)

  Implicitly, OpenMP will barrier via the #pragma

  We can choose any balance between processes/
node and threads/process

  In both Pthreads and OpenMP, only thread 0
performs MPI calls

36

collision() collision() collision() collision()

pack() pack() pack() pack()

unpack() unpack() unpack() unpack()

MPI()

pack() pack() pack() pack()

pack() pack() pack() pack()

MPI()

MPI()

unpack() unpack() unpack() unpack()

unpack() unpack() unpack() unpack()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

process 0
thread 0 thread 1 thread 2 thread 3
(core 0) (core 1) (core 2) (core 3)

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

The Distributed
Auto-tuning Problem

  We believe that even for relatively large problems, auto-tuning only
the local computation (e.g. IPDPS’08) will deliver sub-optimal MPI
performance.

  Want to explore MPI/Hybrid decomposition as well
  We have a combinatoric explosion in the search space coupled with

a large problem size (number of nodes)

  To remedy this, we employ a greedy search approach that
  determines the best single core implementation (on a single node) ~

IPDPS work
  explores the best parallel MPI decomposition among nodes and the

best on-node programming model (8-64 nodes)
  Evaluates performance at scale (2048 nodes = 49,152 cores)

37

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Stage 2

38

  In stage 2, we prune the MPI space.
  Given a fixed memory footprint per node, explore the different ways

of partitioning it among processes and threads.

“Flat MPI”
4 Processes per node

(no threading)

“Hybrid”
2 Processes per node,
2 threads per process

“Hybrid”
1 Processes per node,
4 threads per process

process 0
process 1

process 2
process 3

thread 0

thread 1

thread 0

thread 1

thread 0

thread 1

thread 0

thread 1

thread 0

thread 1

thread 2

thread 3

thread 0

thread 1

p
ro

c
e
s
s
 0

p
ro

c
e
s
s
 1

p
ro

c
e
s
s
 2

p
ro

c
e
s
s
 3

process 0

process 1

process 2

process 3

p
ro

c
e
s
s
 0

p
ro

c
e
s
s
 1

process
0

process
2

process
1

process
3

p
ro

c
e
s
s
 0

p
ro

c
e
s
s
 1

process 0

process 1

p
ro

c
e
s
s
 0

process 0

process 1

process 3

p
ro

c
e
s
s
 3

p
ro

c
e
s
s
 0

p
ro

c
e
s
s
 1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

G
F

lo
p

/s
 p

e
r

C
o

re

Flat MPI MPI+OpenMP MPI+Pthreads

Intrepid Franklin Hopper
1
G

B

1
G

B

4
G

B

1
G

B

4
G

B

1
6
G

B

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Stage 2

  Hybrid Auto-tuning requires we mimic the SPMD
environment

  Suppose we wish to explore this color-coded
optimization space.

  In the serial world (or fully threaded nodes),
 the tuning is easily run

  However, in the MPI or hybrid world a problem
arises as processes are not guaranteed to be
synchronized.

  As such, one process may execute some
optimizations faster than others simply due to
fortuitous scheduling with another processes’ trials

  Solution: add an MPI_barrier() around each trial
 (a configuration with 100’s of iterations)

39
tim

e

process0 process1
.
.
.
.

process0 process1
.
.
.
.

one node

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

40

Results

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Performance Results
(using 2048 nodes on each machine)

  We present the best data for
progressively more aggressive auto-
tuning efforts

  Remember, Hopper has 6x as many
cores per node as Intrepid or Franklin.
So performance per node is far greater.

  auto-tuning can improve performance
  ISA-specific optimizations (e.g. SIMD

intrinsics) help more
  Overall, we see speedups of up to 3.4x

  As problem size increased, so to does
performance. However, the value of
threading is diminished.

41

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

1
G

B

1
G

B

4
G

B

1
G

B

4
G

B

1
6
G

B

Intrepid Franklin Hopper

G
F

lo
p

/s
 p

e
r

C
o

re

threading of stream()

threading of collision()

auto-tuned (ISA-specific)

auto-tuned (portable C)

reference

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Performance Results
(using 2048 nodes on each machine)

  We present the best data for
progressively more aggressive auto-
tuning efforts

  Remember, Hopper has 6x as many
cores per node as Intrepid or Franklin.
So performance per node is far greater.

  auto-tuning can improve performance
  ISA-specific optimizations (e.g. SIMD

intrinsics) help more
  As problem size increased, so to does

performance. However, the value of
threading is diminished.

  For small problems, MPI time can
dominate runtime on Hopper

  Threading mitigates this

42

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
fe

re
n
c
e

O
p
ti
m

iz
e
d

T
h
re

a
d
e
d

R
e
fe

re
n
c
e

O
p
ti
m

iz
e
d

T
h
re

a
d
e
d

R
e
fe

re
n
c
e

O
p
ti
m

iz
e
d

T
h
re

a
d
e
d

Intrepid

(1GB)

Franklin

(1GB)

Hopper

(1GB)

T
im

e
 R

e
la

ti
v
e
 t

o
 R

e
fe

r
e
n

c
e
 collision()

stream()

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Performance Results
(using 2048 nodes on each machine)

  We present the best data for
progressively more aggressive auto-
tuning efforts

  Remember, Hopper has 6x as many
cores per node as Intrepid or Franklin.
So performance per node is far greater.

  auto-tuning can improve performance
  ISA-specific optimizations (e.g. SIMD

intrinsics) help more
  As problem size increased, so to does

performance. However, the value of
threading is diminished.

  For large problems, MPI time
remains a small fraction of overall
time

43

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
fe

re
n
c
e

O
p
ti
m

iz
e
d

T
h
re

a
d
e
d

R
e
fe

re
n
c
e

O
p
ti
m

iz
e
d

T
h
re

a
d
e
d

R
e
fe

re
n
c
e

O
p
ti
m

iz
e
d

T
h
re

a
d
e
d

Intrepid

(1GB)

Franklin

(4GB)

Hopper

(16GB)

T
im

e
 R

e
la

ti
v
e
 t

o
 R

e
fe

r
e
n

c
e
 collision()

stream()

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Energy Results
(using 2048 nodes on each machine)

  Ultimately, energy is becoming the
great equalizer among machines.

  Hoper has 6x the cores, but burns
15x the power of Intrepid.

  To visualize this, we explore
energy efficiency (Mflop/s per Watt)

  Clearly, despite the performance
differences, energy efficiency is
remarkably similar.

44

0

10

20

30

40

50

60

70

80

90

100

1
G

B

1
G

B

4
G

B

1
G

B

4
G

B

1
6
G

B

Intrepid Franklin Hopper

M
F

lo
p

/s
 p

e
r

W
a
tt

fully optimized

reference

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Sparse Matrix Vector Multiplication
(SpMV)

45

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

46

Auto-tuning Sparse Matrix-
Vector Multiplication (SpMV)

Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick,
James Demmel, "Optimization of Sparse Matrix-Vector Multiplication on Emerging
Multicore Platforms", Supercomputing (SC), 2007.

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 47

Sparse Matrix
Vector Multiplication

  What’s a Sparse Matrix ?
  Most entries are 0.0
  Performance advantage in only storing/operating on the nonzeros
  Requires significant meta data to record the matrix structure

  What’s SpMV ?
  Evaluate y=Ax
  A is a sparse matrix, x & y are dense vectors

  Challenges
  Very memory-intensive (often <0.166 flops/byte)
  Difficult to exploit ILP (bad for pipelined or superscalar),
  Difficult to exploit DLP (bad for SIMD)

(a)
algebra conceptualization

(c)
CSR reference code

for (r=0; r<A.rows; r++) {
 double y0 = 0.0;
 for (i=A.rowStart[r]; i<A.rowStart[r+1]; i++){

 y0 += A.val[i] * x[A.col[i]];
 }
 y[r] = y0;
}

A x y

(b)
CSR data structure

A.val[]

A.rowStart[]

...

...

A.col[]
...

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 48

The Dataset (matrices)

  Unlike DGEMV, performance is dictated by sparsity
  Suite of 14 matrices
  All bigger than the caches of our SMPs
  We’ll also include a median performance number

Dense

Protein FEM /
Spheres

FEM /
Cantilever

Wind
Tunnel

FEM /
Harbor QCD FEM /

Ship Economics Epidemiology

FEM /
Accelerator Circuit webbase

LP

2K x 2K Dense matrix
stored in sparse format

Well Structured
(sorted by nonzeros/row)

Poorly Structured
hodgepodge

Extreme Aspect Ratio
(linear programming)

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

SpMV Parallelization

  How do we parallelize a matrix-vector multiplication ?

49

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

SpMV Parallelization

  How do we parallelize a matrix-vector multiplication ?
  We could parallelize by columns (sparse matrix time dense sub vector)

and in the worst case simplify the random access challenge but:
  each thread would need to store a temporary partial sum
  and we would need to perform a reduction (inter-thread data dependency)

50

thread 0 thread 1 thread 2 thread 3

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

SpMV Parallelization

  How do we parallelize a matrix-vector multiplication ?
  We could parallelize by columns (sparse matrix time dense sub vector)

and in the worst case simplify the random access challenge but:
  each thread would need to store a temporary partial sum
  and we would need to perform a reduction (inter-thread data dependency)

51

thread 0 thread 1 thread 2 thread 3

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

SpMV Parallelization

  How do we parallelize a matrix-vector multiplication ?
  Alternately, we could parallelize by rows.
  Clearly, there are now no inter-thread data dependencies, but, in the

worst case, one must still deal with challenging random access

52

th
re

ad
 0

th

re
ad

 1

th
re

ad
 2

th

re
ad

 3

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 53

SpMV Performance
(simple parallelization)

  Out-of-the box SpMV
performance on a suite of
14 matrices

  Simplest solution =
parallelization by rows
(solves data dependency
challenge)

  Scalability isn’t great
  Is this performance

good?

Naïve Pthreads

Naïve

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

667MHz DDR2 DIMMs

10.66GB/s

2x64b controllers

H
y
p

e
rT

ra
n

s
p

o
rt

O
p

te
ro

n

O
p

te
ro

n

O
p

te
ro

n

O
p

te
ro

n

5
1

2
K

5
1

2
K

5
1

2
K

5
1

2
K

2MB victim

SRI / xbar

667MHz DDR2 DIMMs

10.66GB/s

2x64b controllers

H
y
p

e
rT

ra
n

s
p

o
rt

O
p

te
ro

n

O
p

te
ro

n

O
p

te
ro

n

O
p

te
ro

n

5
1

2
K

5
1

2
K

5
1

2
K

5
1

2
K

2MB victim

SRI / xbar

4
G

B
/s

(e

a
c
h

 d
ir
e

c
ti
o

n
)

NUMA
(Data Locality for Matrices)

  On NUMA architectures, all large arrays should be partitioned either
  explicitly (multiple malloc()’s + affinity)
  implicitly (parallelize initialization and rely on first touch)

  You cannot partition on granularities less than the page size
  512 elements on x86
  2M elements on Niagara

  For SpMV, partition the matrix and
 perform multiple malloc()’s

  Pin submatrices so they are
 co-located with the cores tasked
 to process them

54

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

667MHz DDR2 DIMMs

10.66GB/s

2x64b controllers

H
y
p
e
rT

ra
n
s
p
o
rt

O
p
te

ro
n

O
p
te

ro
n

O
p
te

ro
n

O
p
te

ro
n

5
1
2
K

5
1
2
K

5
1
2
K

5
1
2
K

2MB victim

SRI / xbar

667MHz DDR2 DIMMs

10.66GB/s

2x64b controllers

H
y
p
e
rT

ra
n
s
p
o
rt

O
p
te

ro
n

O
p
te

ro
n

O
p
te

ro
n

O
p
te

ro
n

5
1
2
K

5
1
2
K

5
1
2
K

5
1
2
K

2MB victim

SRI / xbar

4
G

B
/s

(e

a
c
h

 d
ir
e

c
ti
o

n
)

NUMA
(Data Locality for Matrices)

55

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Prefetch for SpMV

  SW prefetch injects more MLP into the
memory subsystem.

  (attempts to supplement HW
prefetchers in their attempt to satisfy
Little’s Law)

  Can try to prefetch the
  values
  indices
  source vector
  or any combination thereof

  In general, should only insert one
prefetch per cache line (works best on
unrolled code)

56

for(all rows){

 y0 = 0.0;

 y1 = 0.0;

 y2 = 0.0;

 y3 = 0.0;

 for(all tiles in this row){

 PREFETCH(V+i+PFDistance);

 y0+=V[i]*X[C[i]]

 y1+=V[i+1]*X[C[i]]

 y2+=V[i+2]*X[C[i]]

 y3+=V[i+3]*X[C[i]]

 }

 y[r+0] = y0;

 y[r+1] = y1;

 y[r+2] = y2;

 y[r+3] = y3;

}

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

SpMV Performance
(NUMA and Software Prefetching)

57

  NUMA-aware allocation is
essential on memory-
bound NUMA SMPs.

  Explicit software
prefetching can boost
bandwidth and change
cache replacement
policies

  Cell PPEs are likely
latency-limited.

  used exhaustive search

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

ILP/DLP vs Bandwidth

  In the multicore era, which is the bigger issue?
  a lack of ILP/DLP (a major advantage of BCSR)
  insufficient memory bandwidth per core

  There are many architectures that when running low arithmetic
intensity kernels, there is so little available memory bandwidth per
core that you won’t notice a complete lack of ILP

  Perhaps we should concentrate on minimizing memory traffic
rather than maximizing ILP/DLP

  Rather than benchmarking every combination, just
 Select the register blocking that minimizes the matrix foot print.

58

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

A00

A10A11

A22

A32A33

A44

A55

A66

A77

A54

A66

A24

A02

A46

0.0

0.0

0.0

0.0

0.0

0.0

0.0

A00

A10A11

A22

A32A33

A44

A55

A66

A77

A54

A66

A24

A02

A46

A00

A10A11

A22

A32A33

A44

A55

A66

A77

A54

A66

A24

A02

A46

A00

A10A11

A22

A32A33

A44

A55

A66

A77

A54

A66

A24

A02

A46

1x1 1x2 2x22x1

(a) (b) (c) (d)

Matrix Compression Strategies

  Register blocking creates small dense tiles
  better ILP/DLP
  reduced overhead per nonzero

  Let each thread select a unique register blocking
  In this work,

  we only considered power-of-two register blocks
  select the register blocking that minimizes memory traffic

59

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

A00

A10A11

A22

A32A33

A44

A55

A66

A77

A54

A66

A24

A02

A46

0.0

0.0

0.0

0.0

0.0

0.0

0.0

A00

A10A11

A22

A32A33

A44

A55

A66

A77

A54

A66

A24

A02

A46

A00

A10A11

A22

A32A33

A44

A55

A66

A77

A54

A66

A24

A02

A46

A00

A10A11

A22

A32A33

A44

A55

A66

A77

A54

A66

A24

A02

A46

1x1 1x2 2x22x1

(a) (b) (c) (d)

Matrix Compression Strategies

  Where possible we may encode indices with less than 32 bits
  We may also select different matrix formats

  In this work,
  we considered 16-bit and 32-bit indices (relative to thread’s start)
  we explored BCSR/BCOO (GCSR in book chapter)

60

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

SpMV Performance
(Matrix Compression)

61

  After maximizing memory
bandwidth, the only hope
is to minimize memory
traffic.

  exploit:

  register blocking
  other formats
  smaller indices

  Use a traffic minimization
heuristic rather than
search

  Benefit is clearly
 matrix-dependent.

  Register blocking enables
efficient software
prefetching (one per
cache line)

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Cache blocking for SpMV
(Data Locality for Vectors)

  Cache-blocking sparse matrices is very different than cache-
blocking dense matrices.

  Rather than changing loop bounds, store entire submatrices
contiguously.

  The columns spanned by each cache
 block are selected so that all submatrices
 place the same pressure on the cache

 i.e. touch the same number of unique
 source vector cache lines

  TLB blocking is a similar concept but
 instead of on 8 byte granularities,
 it uses 4KB granularities

62

th
re

ad
 0

th

re
ad

 1

th
re

ad
 2

th

re
ad

 3

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Cache blocking for SpMV
(Data Locality for Vectors)

  Cache-blocking sparse matrices is very different than cache-
blocking dense matrices.

  Rather than changing loop bounds, store entire submatrices
contiguously.

  The columns spanned by each cache
 block are selected so that all submatrices
 place the same pressure on the cache

 i.e. touch the same number of unique
 source vector cache lines

  TLB blocking is a similar concept but
 instead of on 64 byte granularities,
 it uses 4KB granularities

63

th
re

ad
 0

th

re
ad

 1

th
re

ad
 2

th

re
ad

 3

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 64

Auto-tuned SpMV Performance
(cache and TLB blocking)

  Fully auto-tuned SpMV
performance across the suite
of matrices

  Why do some optimizations
work better on some
architectures?

  matrices with naturally small
working sets

  architectures with giant
caches

+Cache/LS/TLB Blocking

+Matrix Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 65

Auto-tuned SpMV Performance
(architecture specific optimizations)

  Fully auto-tuned SpMV
performance across the suite
of matrices

  Included SPE/local store
optimized version

  Why do some optimizations
work better on some
architectures?

+Cache/LS/TLB Blocking

+Matrix Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 66

Auto-tuned SpMV Performance
(max speedup)

  Fully auto-tuned SpMV
performance across the suite
of matrices

  Included SPE/local store
optimized version

  Why do some optimizations
work better on some
architectures?

+Cache/LS/TLB Blocking

+Matrix Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve

2.7x 4.0x

2.9x 35x

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Summary

67

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Summary

  There is a continual struggle between computer architects,
mathematicians, and computer scientists.
  architects will increase peak performance
  architects may attempt to facilitate satisfying Little’s Law
  mathematicians create new, more efficient algorithms

  In order to minimize time to solution, we often must simultaneously
satisfy Little’s Law and minimize computation/communication.
  Even if we satisfy little’s Law, applications may be severely bottlenecked

by computation/communication

  Perennially, we must manage:
  data/task locality
  data dependencies
  communication
  variable and dynamic parallelism

68

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Summary (2)

  When optimizing code, the ideal solution for one machine is often
found to be deficient on another.

  To that end, we are faced with the prospect of optimizing key
computations for every architecture-input combination.

  Automatic Performance Tuning (auto-tuning) has been shown to
mitigate these challenges by parameterizing some of the
optimizations.

  Unfortunately, the more diverse the architectures the more we must
rely on radically different implementations and algorithms to improve
time to solution.

69

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Questions?

Acknowledgments
Research supported by DOE Office of Science under contract number DE-
AC02-05CH11231. All XT4/XE6 simulations were performed on the XT4 (Franklin)
and XE6 (Hopper) at the National Energy Research Scientific Computing Center
(NERSC). This research used resources of the Argonne Leadership Computing
Facility at Argonne National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.
2005. George Vahala and his research group provided the original (FORTRAN)
version of the LBMHD code. Jonathan Carter provided the optimized (FORTRAN)
implementation that served as a basis for the LBMHD portion of this talk.

70

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

BACKUP SLIDES

71

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Evolution of
Computer Architecture

and Little’s Law

72

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Yesterday’s Constraint:
Instruction Latency & Parallelism

73

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Single-issue, non-pipelined

  Consider a single issue, non-
pipelined processor

  Little’s Law
  Bandwidth = issue width = 1
  Latency = 1
  Concurrency = 1

  Very easy to get good
performance even if all
instructions are dependent

74

Issue width

In flight

completed

Future instructions

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Pipelined

  By pipelining, we can increase the
processor frequency.

  However, we must ensure the
pipeline remains filled to achieve
better performance.

  Little’s Law
  Bandwidth = issue width = 1
  Latency = 3
  Concurrency = 3

  Performance may drop to 1/3 of
peak

75

Issue width

In flight

completed

Future instructions

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Pipelined
(w/unrolling, reordering)

  There may be inherent and
untapped parallelism in the
code

  Compilers/programmers must
find parallelism, and unroll/
reorder the code to keep the
pipeline full

76

Issue width

In flight

completed

Future instructions

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Out-of-order

  Alternately, the hardware can
try to find instruction level
parallelism (ILP)

  Instructions are:
  Queued up
  Executed out-of-order
  Reordered
  Committed in-order

  Useful when parallelism or
latency cannot be determined
at compile time.

77

Issue width

Out-of-order
execution

completed

Future instructions

1

Reorder buffer

Reservation Stations

2
3 5

6
4
7

8 9
10
11

6 4 7 8 9

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Superscalar

  Increase throughput, by
executing multiple instructions
in parallel

  Usually separate pipelines for
different instruction types:
 FP, integer, memory

  Significantly complicates
 out-of-order execution

78

Issue width

Out-of-order
execution

completed

Future instructions

1

Reorder buffer

Reservation Stations

2

4 6

7
9

10
12
14

7 5 8 9 10

5
8

11
13

3

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Instruction-Level Parallelism

  On modern pipelined architectures, operations (like floating-point
addition) have a latency of 4-6 cycles (until the result is ready).

  However, independent adds can be pipelined one after another.
  Although this increases the peak flop rate,

  one can only achieve peak flops on the condition that on any given
cycle the program has >4 independent adds ready to execute.

  failing to do so will result in a >4x drop in performance.
  The problem is exacerbated by superscalar or VLIW architectures

like POWER or Itanium.

  One must often reorganize kernels to express more instruction-
level parallelism

79

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

1x1 Register Block

ILP Example (1x1 BCSR)

for(all rows){

 y0 = 0.0;

 for(all tiles in this row){

 y0+=V[i]*X[C[i]]

 }

 y[r] = y0;

}

  Consider the core of SpMV
  No ILP in the inner loop
  OOO can’t accelerate serial FMAs

FMA

tim
e

=
0

FMA

tim
e

=
4

FMA

tim
e

=
8

FMA

tim
e

=
12

FMA

tim
e

=
16

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

ILP Example (1x4 BCSR)

for(all rows){

 y0 = 0.0;

 for(all tiles in this row){

 y0+=V[i]*X[C[i]]

 y0+=V[i+1]*X[C[i]+1]

 y0+=V[i+2]*X[C[i]+2]

 y0+=V[i+3]*X[C[i]+3]

 }

 y[r] = y0;

}

  What about 1x4 BCSR ?
  Still no ILP in the inner loop
  FMAs are still dependent on each other

FMA

tim
e

=
0

FMA

tim
e

=
4

FMA

tim
e

=
8

FMA

tim
e

=
12

1x4 Register Block

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

ILP Example (4x1 BCSR)

for(all rows){

 y0 = 0.0;y1 = 0.0;

 y2 = 0.0;y3 = 0.0;

 for(all tiles in this row){

 y0+=V[i]*X[C[i]]

 y1+=V[i+1]*X[C[i]]

 y2+=V[i+2]*X[C[i]]

 y3+=V[i+3]*X[C[i]]

 }

 y[r+0] = y0; y[r+1] = y1;

 y[r+2] = y2; y[r+3] = y3;

}

  What about 4x1 BCSR ?
  Updating 4 different rows
  The 4 FMAs are independent
  Thus they can be pipelined.

FMA

tim
e

=
0

FMA

tim
e

=
1

FMA

tim
e

=
2

FMA

tim
e

=
3

4x1 Register Block
FMA

tim
e

=
4

FMA

tim
e

=
5

FMA

tim
e

=
6

FMA

tim
e

=
7

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

SIMD

  Many codes perform the same operations on different pieces of data
 (Data level parallelism = DLP)

  SIMD : Single Instruction Multiple Data

  Register sizes are increased.
  Instead of each register being a 64b FP #,

 each register holds 2 or 4 FP#’s

  Much more efficient solution than superscalar on data parallel
codes

83

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Data-level Parallelism

  DLP = apply the same operation to multiple independent operands.

  Today, rather than relying on superscalar issue, many architectures have
adopted SIMD as an efficient means of boosting peak performance. (SSE,
Double Hummer, AltiVec, Cell, GPUs, etc…)

  Typically these instructions operate on four single precision
 (or two double precision) numbers at a time.

  However, some are more GPUs(32), Larrabee(16), and AVX(8)
  Failing to use these instructions may cause a 2-32x drop in

performance
  Unfortunately, most compilers utterly fail to generate these

instructions.
84

+ + + +

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Memory-Level Parallelism (1)

  Although caches may filter many memory requests, in HPC many
memory references will still go all the way to DRAM.

  Memory latency (as measured in core cycles) grew by an order of
magnitude in the 90’s

  Today, the latency of a memory operation can exceed 200
cycles (1 double every 80ns is unacceptably slow).

  Like ILP, we wish to pipeline requests to DRAM
  Several solutions exist today

  HW stream prefetchers
  HW Multithreading (e.g. hyperthreading)
  SW line prefetch
  DMA

85

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Memory-Level Parallelism (2)

  HW stream prefetchers are by far the easiest to implement and
exploit.

  They detect a series of consecutive cache misses and speculate
that the next addresses in the series will be needed. They then
prefetch that data into the cache or a dedicated buffer.

  To effectively exploit a HW prefetcher, ensure your array references
accesses 100’s of consecutive addresses.

  e.g. read A[i]…A[i+255] without any jumps or discontinuities

  This force limits the effectiveness (shape) of the cache blocking you
implemented in HW1 as you accessed:
 A[(j+0)*N+i]…A[(j+0)*N+i+B], jump

 A[(j+1)*N+i]…A[(j+1)*N+i+B], jump

 A[(j+2)*N+i]…A[(j+2)*N+i+B], jump

 …

86

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Multithreaded

  Superscalars fail when there is no ILP or DLP
  However, there are many codes with

 thread-level parallelism (TLP)
  Consider architectures that are virtualized to appear as N cores.
  In reality, there is one core maintaining multiple contexts and

dynamically switching between them
  There are 3 main types of multithread architectures:

  Coarse-grained multithreading (CGMT)
  Fine-grained multithreading (FGMT) , aka Vertical Multithreading
  Simultaneous multithreading (SMT)

87

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Coarse-grained Multithreading

  Maintain multiple contexts
  On a long latency instruction:

  dispatch instruction
  Switch to a ready thread
  Hide latency with multiple

ready threads
  Eventually switch back to

original

88

In flight

completed

Ready instructions

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Fine-grained Multithreading

  Maintain multiple contexts
  On every cycle choose a ready

thread
  May now satisfy Little’s Law

through multithreading:
 threads ~ latency * bandwidth

89

In flight

completed

Ready instructions

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Simultaneous Multithreading

  Maintain multiple contexts
  On every cycle choose as

many ready instructions from
the thread pool as possible

  Can be applied to both in-order
and out-of-order architectures

90

In flight

completed

Ready instructions

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Today’s Constraint:
The Memory Wall

91

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Abstract Machine Model
(as seen in programming model)

  In the abstract, processor architectures appear to have just
memory, and functional units.

  On early HPC machines, reading from memory required just one
cycle.

92

DRAM
float y[N];!

Cores
z=0;!

z+=x[i]*y[i];!

i++;!

float x[N];!

int i;!float z;!

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Abstract Machine Model
(as seen in programming model)

  In the abstract, processor architectures appear to have just
memory, and functional units.

  On early HPC machines, reading from memory required just one
cycle.

93

DRAM
float y[N];!

Cores
z=0;!

z+=x[i]*y[i];!

i++;!

float x[N];!

int i;!float z;!

  Unfortunately, as processors developed, DRAM latencies (in
terms of core cycles) dramatically increased.

  Eventually a small memory (the register file) was added so that
one could hide this latency (by keeping data in the RF)

  The programming model and compiler evolved to hide the fact
the management of data locality in the RF.

Register Files

  Unfortunately, today, latency to DRAM can be 1000x that to the
register file.

  As the RF is too small for today’s problems, architects inserted
another memory (cache) between the register file and the DRAM.

  Data is transparently copied into the cache for future reference.
  This memory is entirely invisible to the programmer and the

compiler, but still has latency 10x higher than the register file.

Cache

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Abstract Machine Model
(as seen in programming model)

  Not only are the differences in latencies substantial,
so to are the bandwidths

  Once a link has been saturated (Little’s law is
satisfied), it acts as a bottleneck against increased
performance.

  The only solution is to reduce the volume of traffic
across that link

94

DRAM
float y[N];!

Cores
z=0;!

z+=x[i]*y[i];!

i++;!

float x[N];!

int i;!float z;!

Register Files

Cache

<50 GB/s

<1000 GB/s

<6000 GB/s

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Impact on Little’s Law ?

  Today, utilizing the full DRAM bandwidth and
 minimizing memory traffic are paramount.

  DRAM latency can exceed 1000 cpu cycles.
  Impact on Little’s Law (200ns * 20GB/s):

 4KB of data in flight

  How did architects solve this?

95

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

out-of-order ?

  Out-of-order machines can only scale to ~100 instructions in flight
 of which only ~40 can be loads

  This is ~10% of what Little’s Law requires

  Out-of-order execution can now only hide cache latency, not DRAM
latency

96

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Software prefetch ?

  A software prefetch is an instruction similar to a load
  However,

  It does not write to a register
  Its execution is decoupled from the core
  It is designed to bring data into the cache before it is needed
  It must be scheduled by software early enough to hide DRAM latency

  Limited applicability
  work best on patterns for which many addresses are known well in advance.
  must be inserted by hand with the distance tuned for

97

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Hardware Stream Prefetchers ?

  Hardware examines the cache miss pattern
  Detects unit-stride (now strided) miss patterns, and begins to

prefetch data before the next miss occurs.

  Summary
  Only works for simple memory access patterns
  Can be tripped up if there are too many streams (>8)
  Cannot prefetch beyond TLB page boundaries

98

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Local Store + DMA

  Create an on-chip memory(Local Store) disjoint from the cache/
TLB-heirarchy

  Use DMA to transfer data from DRAM to local store
  Basic operation: specify a long contiguous transfer (unit stride)
  Can be extended to specifying a list of transfers (random access)
  DMA is decoupled from execution (poll to check for completion)

  Allows one to efficiently satisfy the concurrency from Little’s Law:
  Concurrency = #DMAs * DMA length

  #DMAs * DMA length

  #DMAs * DMA length

  Requires major software effort

99

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Multithreading

  Another approach to satisfying Little’s law
  But more threads/core -> less cache(& associativity) per thread

  Allow one cache miss per thread
  #threads * 1 cacheline vs. Latency * Bandwidth
  #threads = Latency*Bandwidth / cacheline ~ 64

  64 threads/core is unrealistically high

100

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Roofline Model

101

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model
Basic Concept

102

  Synthesize communication, computation, and locality into a single
visually-intuitive performance figure using bound and bottleneck
analysis.

  where optimization i can be SIMDize, or unroll, or SW prefetch, …
  Given a kernel’s arithmetic intensity (based on DRAM traffic after

being filtered by the cache), programmers can inspect the figure,
and bound performance.

  Moreover, provides insights as to which optimizations will potentially
be beneficial.

Attainable
Performanceij

= min
FLOP/s with Optimizations1-i

AI * Bandwidth with Optimizations1-j

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model
Basic Concept

103

  Plot on log-log scale
  Given AI, we can easily

bound performance
  But architectures are much

more complicated

  We will bound performance
as we eliminate specific
forms of in-core parallelism

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

Opteron 2356
(Barcelona)

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

peak DP

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model
computational ceilings

104

  Opterons have dedicated
multipliers and adders.

  If the code is dominated by
adds, then attainable
performance is half of peak.

  We call these Ceilings
  They act like constraints on

performance

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

Opteron 2356
(Barcelona)

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

peak DP

mul / add imbalance

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model
computational ceilings

105

  Opterons have 128-bit
datapaths.

  If instructions aren’t
SIMDized, attainable
performance will be halved

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

Opteron 2356
(Barcelona)

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

peak DP

mul / add imbalance

w/out SIMD

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model
computational ceilings

106

  On Opterons, floating-point
instructions have a 4 cycle
latency.

  If we don’t express 4-way
ILP, performance will drop
by as much as 4x

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

Opteron 2356
(Barcelona)

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

w/out SIMD

w/out ILP

peak DP

mul / add imbalance

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model
communication ceilings

107

  We can perform a similar
exercise taking away
parallelism from the
memory subsystem

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

Opteron 2356
(Barcelona)

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

peak DP

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model
communication ceilings

108

  Explicit software prefetch
instructions are required to
achieve peak bandwidth

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

Opteron 2356
(Barcelona)

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

peak DP

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model
communication ceilings

109

  Opterons are NUMA
  As such memory traffic

must be correctly balanced
among the two sockets to
achieve good Stream
bandwidth.

  We could continue this by
examining strided or
random memory access
patterns

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

Opteron 2356
(Barcelona)

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

peak DP

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model
computation + communication ceilings

110

  We may bound
performance based on the
combination of expressed
in-core parallelism and
attained bandwidth.

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

Opteron 2356
(Barcelona)

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

w/out SIMD

peak DP

mul / add imbalance

w/out ILP

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model
locality walls

111

  Remember, memory traffic
includes more than just
compulsory misses.

  As such, actual arithmetic
intensity may be
substantially lower.

  Walls are unique to the
architecture-kernel
combination

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

w/out SIMD

mul / add imbalance

w/out ILP

Opteron 2356
(Barcelona)

peak DP

only com
pulsory m

iss traffic

FLOPs
Compulsory Misses

AI =

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model
locality walls

112

  Remember, memory traffic
includes more than just
compulsory misses.

  As such, actual arithmetic
intensity may be
substantially lower.

  Walls are unique to the
architecture-kernel
combination

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

w/out SIMD

mul / add imbalance

w/out ILP

Opteron 2356
(Barcelona)

peak DP

only com
pulsory m

iss traffic
+w

rite allocation traffic

FLOPs
Allocations + Compulsory Misses

AI =

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model
locality walls

113

  Remember, memory traffic
includes more than just
compulsory misses.

  As such, actual arithmetic
intensity may be
substantially lower.

  Walls are unique to the
architecture-kernel
combination

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

w/out SIMD

mul / add imbalance

w/out ILP

Opteron 2356
(Barcelona)

peak DP

only com
pulsory m

iss traffic
+w

rite allocation traffic

+capacity m
iss traffic

FLOPs
Capacity + Allocations + Compulsory

AI =

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model
locality walls

114

  Remember, memory traffic
includes more than just
compulsory misses.

  As such, actual arithmetic
intensity may be
substantially lower.

  Walls are unique to the
architecture-kernel
combination

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

w/out SIMD

mul / add imbalance

w/out ILP

Opteron 2356
(Barcelona)

peak DP

only com
pulsory m

iss traffic
+w

rite allocation traffic

+capacity m
iss traffic

+conflict m
iss traffic

FLOPs
Conflict + Capacity + Allocations + Compulsory

AI =

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 115

Optimization Categorization

Maximizing (attained)
In-core Performance

Minimizing (total)
Memory Traffic

Maximizing (attained)
Memory Bandwidth

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 116

Optimization Categorization

Minimizing
Memory Traffic

Maximizing
Memory Bandwidth

Maximizing
In-core Performance
• Exploit in-core parallelism
 (ILP, DLP, etc…)

• Good (enough)
 floating-point balance

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 117

Optimization Categorization

Minimizing
Memory Traffic

Maximizing
Memory Bandwidth

Maximizing
In-core Performance
• Exploit in-core parallelism
 (ILP, DLP, etc…)

• Good (enough)
 floating-point balance

?

?

?

?
unroll &

jam
explicit
SIMD

reorder
eliminate
branches

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

?

?

?

?
unroll &

jam
explicit
SIMD

reorder
eliminate
branches

118

Optimization Categorization

Maximizing
In-core Performance

Minimizing
Memory Traffic

• Exploit in-core parallelism
 (ILP, DLP, etc…)

• Good (enough)
 floating-point balance

Maximizing
Memory Bandwidth
• Exploit NUMA

• Hide memory latency

• Satisfy Little’s Law

?
memory
affinity ?

SW
prefetch

?
DMA
lists

?
unit-stride

streams

?
TLB

blocking

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

?
memory
affinity ?

SW
prefetch

?
DMA
lists

?
unit-stride

streams

?
TLB

blocking

?

?

?

?
unroll &

jam
explicit
SIMD

reorder
eliminate
branches

119

Optimization Categorization

Maximizing
In-core Performance

Maximizing
Memory Bandwidth

• Exploit in-core parallelism
 (ILP, DLP, etc…)

• Good (enough)
 floating-point balance

• Exploit NUMA

• Hide memory latency

• Satisfy Little’s Law

Minimizing
Memory Traffic

Eliminate:
• Capacity misses
• Conflict misses
• Compulsory misses
• Write allocate behavior

?
?

? ?

cache
blocking array

padding
compress

data

streaming
stores

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 120

Optimization Categorization

Maximizing
In-core Performance

Minimizing
Memory Traffic

Maximizing
Memory Bandwidth

• Exploit in-core parallelism
 (ILP, DLP, etc…)

• Good (enough)
 floating-point balance

• Exploit NUMA

• Hide memory latency

• Satisfy Little’s Law

?
memory
affinity ?

SW
prefetch

?
DMA
lists

?
unit-stride

streams

?
TLB

blocking

Eliminate:
• Capacity misses
• Conflict misses
• Compulsory misses
• Write allocate behavior

?
?

? ?

cache
blocking array

padding
compress

data

streaming
stores ?

?

?

?
unroll &

jam
explicit
SIMD

reorder
eliminate
branches

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model
locality walls

121

  Optimizations remove
these walls and ceilings
which act to constrain
performance.

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

w/out SIMD

mul / add imbalance

w/out ILP

Opteron 2356
(Barcelona)

peak DP

only com
pulsory m

iss traffic
+w

rite allocation traffic

+capacity m
iss traffic

+conflict m
iss traffic

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model
locality walls

122

  Optimizations remove
these walls and ceilings
which act to constrain
performance.

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

w/out SIMD

mul / add imbalance

w/out ILP

Opteron 2356
(Barcelona)

peak DP

only com
pulsory m

iss traffic

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model
locality walls

123

  Optimizations remove
these walls and ceilings
which act to constrain
performance.

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

Opteron 2356
(Barcelona)

peak DP

only com
pulsory m

iss traffic

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model
locality walls

124

  Optimizations remove
these walls and ceilings
which act to constrain
performance.

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

Opteron 2356
(Barcelona)

peak DP

only com
pulsory m

iss traffic

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

?
memory
affinity ?

SW
prefetch

?
DMA
lists

?
unit-stride

streams

?
TLB

blocking

?
?

? ?

cache
blocking array

padding
compress

data

streaming
stores ?

?

?

?
unroll &

jam
explicit
SIMD

reorder
eliminate
branches

125

Optimization Categorization

Maximizing
In-core Performance

Minimizing
Memory Traffic

Maximizing
Memory Bandwidth

• Exploit in-core parallelism
 (ILP, DLP, etc…)

• Good (enough)
 floating-point balance

• Exploit NUMA

• Hide memory latency

• Satisfy Little’s Law

Eliminate:
• Capacity misses
• Conflict misses
• Compulsory misses
• Write allocate behavior Each optimization has

a large parameter space

What are the optimal parameters?

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 126

Auto-tuning?

  Provides performance portability across the existing breadth and
evolution of microprocessors

  One time up front productivity cost is amortized by the number of
machines its used on

  Auto-tuning does not invent new optimizations
  Auto-tuning automates the code generation and exploration of

the optimization and parameter space
  Two components:

  parameterized code generator (we wrote ours in Perl)
  Auto-tuning exploration benchmark

 (combination of heuristics and exhaustive search)
  Can be extended with ISA specific optimizations (e.g. DMA, SIMD)

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Multicore:
Architectures & Challenges

127

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Options:

  Moore’s law continues to double the transistors, what do we do with
them ?
  More out-of-order (prohibited by complexity, performance, power)
  More threading (asymptotic performance)
  More DLP/SIMD (limited applications, compilers?)
  Bigger caches (doesn’t address compulsory misses, asymptotic perf.)
  Place a SMP on a chip = ‘multicore’

128

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

What are SMPs? What is multicore ?
What are multicore SMPs ?

129

  SMP = shared memory parallel
  In the past, it meant multiple chips (typically < 32) could address any location in a

large shared memory through a network or bus

  Today, multiple cores are integrated on the same chip
  Almost universally this is done in a SMP fashion
  For “convince”, programming multicore SMPs is indistinguishable from programming

multi-socket SMPs. (easy transition)

  Multiple cores can share:
  memory controllers
  caches
  occasionally FPUs

  Although there was a graceful transition from multiple sockets to multiple
cores from the point of view of correctness, achieving good performance can
be incredibly challenging.

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Multicore & SMP Comparison

  Advances in Moore’s Law allows for increased integration on-chip.
  Nevertheless, the basic architecture and programming model

remained the same:
  Physically partitioned, logically shared caches and DRAM

130

Core

DRAM

Cache

Core

DRAM

Cache

Core

DRAM

Cache

Core

DRAM

Cache

Core

DRAM

Cache

Core Core

DRAM

Cache

Core Core

DRAM

Cache

Core Core Core

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

NUMA vs NUCA

  When physically partitioned, cache or memory access is non
uniform (latency and bandwidth to memory/cache addresses varies)

  UCA & UMA architecture:

131

Core

DRAM

Cache

Core Core Core

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

NUMA vs NUCA

  When physically partitioned, cache or memory access is non
uniform (latency and bandwidth to memory/cache addresses varies)

  UCA & UMA architecture:

132

Core

DRAM

Cache

Core Core Core

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

NUMA vs NUCA

  When physically partitioned, cache or memory access is non
uniform (latency and bandwidth to memory/cache addresses varies)

  UCA & UMA architecture:

133

Core

DRAM

Cache

Core Core Core

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

NUMA vs NUCA

  When physically partitioned, cache or memory access is non
uniform (latency and bandwidth to memory/cache addresses varies)

  UCA & UMA architecture:

134

Core

DRAM

Cache

Core Core Core

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

NUMA vs NUCA

  When physically partitioned, cache or memory access is non
uniform (latency and bandwidth to memory/cache addresses varies)

  UCA & UMA architecture:

135

Core

DRAM

Cache

Core Core Core

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

NUMA vs NUCA

  When physically partitioned, cache or memory access is non
uniform (latency and bandwidth to memory/cache addresses varies)

  NUCA & UMA architecture:

136

Core

Cache

Core Core Core

Cache Cache Cache

Memory Controller Hub

DRAM

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

NUMA vs NUCA

  When physically partitioned, cache or memory access is non
uniform (latency and bandwidth to memory/cache addresses varies)

  NUCA & UMA architecture:

137

Core

Cache

Core Core Core

Cache Cache Cache

Memory Controller Hub

DRAM

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

NUMA vs NUCA

  When physically partitioned, cache or memory access is non
uniform (latency and bandwidth to memory/cache addresses varies)

  NUCA & UMA architecture:

138

Core

Cache

Core Core Core

Cache Cache Cache

Memory Controller Hub

DRAM

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

NUMA vs NUCA

  When physically partitioned, cache or memory access is non
uniform (latency and bandwidth to memory/cache addresses varies)

  NUCA & UMA architecture:

139

Core

Cache

Core Core Core

Cache Cache Cache

Memory Controller Hub

DRAM

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

NUMA vs NUCA

  When physically partitioned, cache or memory access is non
uniform (latency and bandwidth to memory/cache addresses varies)

  NUCA & UMA architecture:

140

Core

Cache

Core Core Core

Cache Cache Cache

Memory Controller Hub

DRAM

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

NUMA vs NUCA

  When physically partitioned, cache or memory access is non
uniform (latency and bandwidth to memory/cache addresses varies)

  NUCA & UMA architecture:

141

Core

Cache

Core Core Core

Cache Cache Cache

Memory Controller Hub

DRAM

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

NUMA vs NUCA

  When physically partitioned, cache or memory access is non
uniform (latency and bandwidth to memory/cache addresses varies)

  NUCA & NUMA architecture:

142

Core

Cache

Core Core Core

Cache Cache Cache

DRAM DRAM

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

NUMA vs NUCA

  When physically partitioned, cache or memory access is non
uniform (latency and bandwidth to memory/cache addresses varies)

  NUCA & NUMA architecture:

143

Core

Cache

Core Core Core

Cache Cache Cache

DRAM DRAM

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

NUMA vs NUCA

  When physically partitioned, cache or memory access is non
uniform (latency and bandwidth to memory/cache addresses varies)

  NUCA & NUMA architecture:

144

Core

Cache

Core Core Core

Cache Cache Cache

DRAM DRAM

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

NUMA vs NUCA

  Proper cache locality

145

Core

Cache

Core Core Core

Cache Cache Cache

DRAM DRAM

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

NUMA vs NUCA

  Proper DRAM locality

146

Core

Cache

Core Core Core

Cache Cache Cache

DRAM DRAM

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Multicore and Little’s Law?

  Like MT, for codes with enough TLP, multicore helps in satisfying
Little’s Law

  Combination of multicore and multithreading also works

Concurrency per chip =
 Concurrency per thread * threads per core * cores per chip =

latency * bandwidth

147

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Best Architecture?

  Short answer: there’s not one

  Architectures have diversified into different markets
 (different balance between design options)

  Architectures are constrained by a company’s manpower, money,
target price, volume, as well as a new Power Wall

  As a result, architectures are becoming simpler:
  shallower pipelines (hard to increase frequency)
  narrower superscalar or in-order

  But there are
  more cores (6 minimum)
  more threads per core (2-4)

148

