

Performance Analysis of Flash Storage Devices and their Application in High Performance Computing

Nicholas J. Wright

With contributions from

R. Shane Canon, Neal M. Master, Matthew Andrews, and Jason Hick

Outline

- Why look at flash memory ?
- Performance evaluation of individual flash devices
- What applications is flash going to be good for?
- Flash in a parallel filesystem
- Summary

Data Driven Science

- Ability to generate data is challenging our ability to store, analyze, & archive it.
 - Some observational devices grow in capability with Moore's Law.
 - Data sets are growing exponentially.
- Petabyte (PB) data sets soon will be common:
 - Climate: next IPCC estimates 10s of PBs
 - Genome: JGI alone will have .5 PB this year and double each year
 - Particle physics: LHC projects 16 PB / yr
 - Astrophysics: LSST, others, estimate 5 PB / yr
- Redefine the way science is done?
 - One group generates data, different group analyzes
 - 1st Climate 100 paper from a different group than the one collected the data

Data Trends at NERSC

I/O Performance Challenges

Performance Crisis #1

- Disks are outpaced by compute speed.
- To achieve reasonable aggregate bandwidth many spindles needed - 10^3 spindles = 1PB but only ~0.1 TB/s!

Performance Crisis #2

Data Motion on an Exascale Machine

Memory Capacity Trends

Technology trends:

- Memory density 2X every 3 yrs; processor logic every 2
- Storage costs (\$/MB) drops more gradually than logic costs

The cost to sense, collect, generate and calculate data is declining much faster than the cost to access, manage and store it

Hardware Trends are exacerbating the issue

- Data volumes exploding!
- Memory Capacity per Flop decreasing
- I/O Bandwidths not keeping pace
- Data movement is expensive
- Will NVRAM save the day?
 - Let's evaluate Flash Storage!

Flash Memory - Ubiquitous

Flash – What is it good for?

- Read Word level ~20 us
- Write Erase/Write block level ~200 us
- \$/GB
- Finite Number of Erase Cycles
- Lots of open Q's:
 - PCI vs SATA vs?
 - SLC vs MLC
 - Write requires block erase performance dependent upon previous IO pattern
 - Correct algorithm in software at all levels

—

Registers, O(kB)
1 cycle

Cache, O(MB) 10 cycles

Memory, O(GB) 100 cycles

Latency Gap

Disk, *O(TB)* 10,000 cycles

Devices Evaluated

- 3 PCI-e SLC
 - Virident tachIOn 400GB 8x
 - FusionIO ioDrive Duo 2x160GB 4x
 - Texas Memory Systems
 RamSan-20 450GB 4x
- 2 SATA MLC
 - Intel X-25M 160GB
 - OCZ Colossus 250GB

Performance Analysis of Commodity and Enterprise Class Flash Devices.

Neal M. Master, Matthew Andrews, Jason Hick, Shane Canon & Nicholas J. Wright

PDSI Workshop, Supercomputing 2010, New Orleans.

IOZone Experiments

Bandwidth

- Vary block size: 2ⁿ KB, n =2-8
- Vary concurrency: 2ⁿ threads, n=0-7 (1-128)
- Vary IO Patterns: Sequential Write/Re-write,
 Sequential Read/Re-read, Random Write,
 Mixed Random Write/Read, Random Read

IOPS

- 4KB block size
- Vary concurrency: 2ⁿ threads, n=0-7 (1-128)

PCI-Bandwidths

Bandwidth Summary

IOPS - READ

—Fusion IO ioDrive Duo (Single Slot, 160GB) —Intel X-25M (160GB)

OCZ Colossus (250 GB)

IOPS - Write

Virident tachIOn (400GB) —TMS RamSan 20 (450GB) —Fusion IO ioDrive Duo (Single Slot, 160GB) —Intel X-25M (160GB) —OCZ Colossus (250 GB) IO/s (thousands) **Number of Threads** Office of Science **Lawrence Berkeley National Laboratory**

NERSC Flash Device Evaluation - IOPS

Degradation Experiment

- Create a file using
 - Cat /dev/urandom | dd
 - that fills X% of the drive X=30,50,70,90
- Using FIO randomly write to the file
 - Using 4KB blocks IOPS
 - Using 128KB blocks BW

Degradation - IOPS

Degradation – IOPS Summary

Degradation - Bandwidth

Degradation BW Summary

Parallel Filesystems

GPFS Flash Filesystem

- 8 Virident Devices
 - 2 per node dual socket Nehalem 2.67 GHz 24 GB QBR-IB
 - v.1.0 Virident Driver Software
- GPFS v 3.2
 - 4 NSD servers 2 cards per server
 - 256K block size (default)
 - Metadata stored with data
 - Scatter block assignment algorithm
- All measurements made with IOR

NERSC GPFS: Bandwidth Measurements

GPFS: IOPS Measurements

NERSC GPFS block size variation: Read

NERSC GPFS block size variation: write

Performance for Two Devices Simultaneously

Nersc GPFS Unaligned I/O Performance

Lustre - GPFS Comparison

Applications for Flash?

Device	Price in \$	Capacity in GB	Bandwidth / GB/s	IOPS	\$/GB	\$/GB/s	\$/IOP
SATA MLC FLASH	120	64	0.2	8600	\$1.88	\$600	\$0.01
SATA SLC FLASH	740	64	0.2	5000	\$11.56	\$3,700	\$0.15
PCI SLC FLASH	11500	640	1.2	140000	\$17.97	\$9,583	\$0.08
SATA HDD	80	2000	0.07	90	\$0.04	\$1,143	\$0.89
High-Perf Array	250000	240000	5	100000	\$1.04	\$50,000	\$2.50

Graph500: Traversing massive graphs with NAND Flash

Roger Pearce¹² Maya Gokhale¹ Nancy M. Amato²

¹Center for Applied Scientific Computing Lawrence Livermore National Laboratory

²Department of Computer Science and Engineering Texas A&M University

June 2011

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore

National Laboratory under Contract DE- AC52-07NA27344. LLNL-PRES-487136.

Graph500 Implementation

Semi-External

- ightharpoonup O(|V|) data can fit into main memory, G = (V, E)
- Read-only from NAND Flash, output and algorithm data kept in-memory
- e.g. store graph in external memory, keep BFS data in memory

Asynchronous Traversal Technique [SC 2010]

- Exploit fine-grained path parallelism
- Tolerate data latencies to graph storage (NAND Flash)
- Re-order vertex visitation to improve page-level locality
- Allow over-subscription of thread-level parallelism (256 threads) to maximize NAND Flash IOPS
- Graph stored as CSR on Flash device; read-only

Experimental Setup

Kraken's hardware:

- single node, 32-core Opteron(tm) Processor 6128 @ 2.0Ghz
- 512 GB DRAM
- 4x 640GB Fusion-io MLC; Software RAID0
- Red Hat Enterprise Linux 5.6
- Approximate system cost \$71K
 - \$25K for base system
 - \$46K for 2.56TB of Fusion-io NAND Flash

Result:

Using Fusion-io: 8x larger with 50% performance loss over DRAM only

DRAM + Fusion-io: Scale 34, 55.6 MTEPS DRAM Only: Scale 31, 104.6 MTEPS

Summary

- Bandwidths per device are impressive
 - But cf. RAID'd set of regular HDD's
- IOP's numbers are very impressive
 - 100x HDD RAID'ing won't help here
 - Large numbers of threads needed to saturate (Pearce, Gokhale & Amato SC10)
- Previous I/O pattern can effect performance
- Parallel Filesystem Software needs Tweaking to use with Flash
 - Read BW OK
 - Read IOPS 18% 'peak'
- Write BW 40% 'peak'
- Write IOPS 13% 'peak'

National Laboratory

Going Forward...

- 'When you've got a hammer in your hand, everything looks like a nail.'
- THE FIRST Law of Technology says we invariably overestimate the short-term impact of new technologies while underestimating their longer-term effects - Dr. Francis Collins

Flash Going Forward

- \$/GB unlikely to match regular disk
- \$/IOP already significantly better
- Energy costs will be less that a regular HDD
- Usefulness with depend upon the data access pattern

Reliability – Too Few Electrons Per Gate

Source: *The Inevitable Rise of NVM in Computing*, Jim Handy, Nonvolatile Memory Seminar, Hot Chips Conference August 22, 2010 Memorial Auditorium Stanford University

Flash Technology Trends

Source: Ed Doller V.P. Chief Memory Systems Architect, Non-Volatile Memory Seminar Hot Chips Conference August 22, 2010 Memorial Auditorium Stanford University

