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Trends

Scientific Data Deluge

LSST 0.5 PB/month
JGI 5TB/yr "
LOFAR 500 GB/s

SKA 100 x LOFAR

Energy Efficiency

Exascale will need
1000x Performance
enhancement with 10x
energy consumption

Flops/watt
" Jeff Broughton (NERSC) and JGI
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Developments

Industry

Emergence of more cores on single chips

Number of cores per chip double every two years

Systems with millions of concurrent threads

Systems with inter and intra-chip parallelism

Architectural designs driven by reduction in Energy Consumption

New Parallel Programming models, languages, frameworks, ...

Academia

Graphical Processing Units (GPUs) are adopted as co-processors for
high performance computing
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Architectural Differences
CPU GPU
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Less than 20 cores 512 cores
1-2 threads per core 10s to 100s of threads per core
Latency is hidden by large cache Latency is hidden by fast context

switching

GPUs don’t run without CPUs
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Results Large scale Cosmological Simulations with GAMER

Spatial resolution 32,768° Spatial resolution 4,096°
5000 ' - ' - ' — 250
- Hydrodynamics Solver
4500 - Poisson-Gravity Solver
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N-body with SCDM

X-ray computed EoR with diesel powered
radio interferometry

tomography

Lincoln Greenh'ill et al.

512 antennas, correlated visibilities for
130,000 baseline pairs, each with 768

_ . channels and 4 polarizations ~ 20
Alain Bonissent et al.  Tfiops. Power budget 20 kW.

Total volume INTEL Core2 Quad 2.66GHz = 1121 ms

560 x 560 x 960 pixels  NVIDIA GPU C1060 =103.4 ms K_Nitadori et al.
360 projections

Speed up = 110x

4.5 giga-particles, R = 630 Mpc
2000x more volume than Kawai et al.
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GPU
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GPU H/W Example

16 Stream Multiprocessors (SM)
512 CUDA cores (32/SM)

NVIDIA FERMI IEEE 754-2008 floating point (DP and SP)
6 GB GDDR5 DRAM (Global Memory)

SM ECC Memory support
Two DMA interface

DRAMIF
diAYY¥A

. CTEEE Reconfigurable L1
Cache and Shared

. O
,E );g L1
3 2 Shared Memory Memory
 p—— e e . 48 KB/ 16 KB
"3 i L2 L2 Cache 768 KB
e e g
T CUDA Core
Dispatch Port
3 ope*ra"d C°"e;t°r Load/Store address
= width 64 bits. Can
1T T 1 T I T T T 1T T 1T T 171 RS
m m calculate addresses of
Result Queue 16 threads per clock.
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Programming Models

CUDA (Compute Unified Device Architecture)
OpenCL
Microsoft's DirectCompute

Third party wrappers are also available for Python, Perl, Fortran,
Java, Ruby, Lua, MATLAB and IDL, and Mathematica

Compilers from PGI, RCC, HMPP, Copperhead

~

A -
W/ rr/f—f>| i Office of Introduction to CUDA Programming - Hemant Shukla
NERSC N8 Shicnce gramming
[BerkeELEY LaS] U.S. DEPARTMENT OF ENERGY

BERKELEY LAB M




CUDA

CUDA Device Driver
CUDA Toolkit (compiler, debugger, profiler, lib)

CUDA SDK (examples)
Windows, Mac OS, Linux

Parallel Computing Architecture

Application

nvcc C/C++ Compiler
C/C++ DX OpenCL | FORTRAN v
Compute Python
NVIDIA Assembly Host Assembly
NVIDIA CUDA Compatible GPU
CUDA Runtime and Device Driver

Libraries — FFT, Sparse Matrix, BLAS, RNG, CUSP, Thrust...
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Dataflow

Host (CPU)
Host launches

kernel on the
device Device (GPU)

The kernel is
executed by
multiple threads
concurrently

T PCle

> Device Memory e

Data is copied The data within
The results are moved

from the host back he devi the device is
memory to the ack to the dewce accessed by
device memory memory and are threads through

transferred back to the
host via PCle bus

via PCle Bus memory hierarchy
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S/W Abstraction c¢<———————

% o EuE

512-1024 threads / block

2/

Kernel is executed by threads Maximum 8 blocks per SM One grid per kernel with
processed by CUDA Core 32 parallel threads are multiple concurrent kernels
executed at the same time in
a WARP

SM
1

DRAMIF
dIAvda

CUDA Core
1 Dispatch Port

Operand Collector

o
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>
=
3

WY¥a

4/l

i

Result Queue

DRAMIF
diIAvda
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Memory Hierarchy

Registers

Private memory % Thread < > Local_llyrllemry per
. . rea
Visible only to the thread Block

> Shared Memory

Shared memory per Block

Visible to all the threads in a block

Global memory
Visible to all the threads
Visible to host
Accessible to multiple kernels
Data is stored in row major order

i

Grid 0

Global Memory

Constant memory (Read Only)
Visible to all the threads in a block

Constant Memory

T
T e

Grid 1
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CUDA APl Examples
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Which GPU do | have?

#include <stdio.h> Use
}[”t main() cudaGetDeviceCount
int noOfDevices; cudaGetDeviceProperties

/* get no. of device */

cudaGetDeviceCount (&noOfDevice); L
Compilation
cudaDeviceProp prop;

- - - ) ) > nvcc whatDevice.cu —o whatDevice
for (int 1 = @; 1 < noOfDevices; 1i++)

{ Output
/*get device properties */ Device Name: Tesla C2050
cudaGetDeviceProperties (&prop, 1 ); Total global memory: 2817720320
. . . . 0 N . No. of SMs: 14
pr}ntf ("Device Name:\t %s\n", prop.name); Shared memory / SM: 49152
printf ("Total global memory:\t %ld\n", Registers / SM: 32768

prop.totalGlobalMem);
printf ("No. of SMs:\t %d\n",
prop.multiProcessorCount);
printf ("Shared memory / SM:\t %ld\n", -
prop.sharedMemPerBlock); For more properties see .
printf("Registers / SM:\t %d\n", struct cudaDeviceProp
prop.regsPerBlock);

}

return 1;
} For details see CUDA Reference Manual
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Timing with CUDA Event API

int main O

1 CUDA Event API Timer are,

cudaEvent_t start, stop;
float time;

- OS independent
cudaEventCreate (&start);

cudaEventCreate (&stop); - High resolution
- Useful for timing asynchronous calls

cudaEventRecord (start, 0);
someKernel <<<grids, blocks, 0, 0>>> (...);

cudaEventRecord (;top, ?); )
cudakventSynchronize (stop); «— | Ensures kernel execution has completed

cudaEventElapsedTime (&time, start, stop);

cudaEventDestroy (start);
cudaEventDestroy (stop);

printf ("Elapsed time %f sec\n", time*.001);

1 return 13 Standard CPU timers will not measure the

timing information of the device.
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Memory Allocations / Copies

int main O

{

float host_signal[N]; host_result[N];

float *device. signal, *device result. H10Stand device have separate physical memory

//allocate memory on the device (GPU)
cudaMalloc ((void**) &device_signal, N * sizeof(float));
cudaMalloc ((void**) &device_result, N * sizeof(float));

. Get data for the host_signal array

// copy host_signal array to the device
cudaMemcpy (device_signal, host_signal , N * sizeof(float),
cudaMemcpyHostToDevice);

someKernel <<<< >>> (...);

//copy the result back from device to the host
cudaMemcpy (host_result, device_result, N * sizeof(float),
cudaMemcpyDeviceToHost);

Cannot dereference host

pointers on device and

éﬁ&aFree (device_signal); cudaFree (device_result) ; vice versa
}
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Basic Memory Methods

cudaError_t cudaMalloc (void ** devPtr, size_t size)

Allocates size bytes of linear memory on the device and returns in *devPtr a pointer to the
allocated memory. In case of failure cudaMalloc() returns cudaErrorMemoryAllocation.

Blocking call

cudaError_t cudaMemcpy (void * dst, const void * src, size_t count, enum
cudaMemcpyKind kind)

Copies count bytes from the memory area pointed to by src to the memory area pointed to by
dst. The argument kind is one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice, and specifies the direction of the

copy.

Non-Blocking call

cudaError_t cudaMemcpyAsync (void * dst, const void * src, size_t count,
enum cudaMemcpyKind kind, cudaStream_t stream)

cudaMemcpyAsync() is asynchronous with respect to the host. The call may return before the copy
is complete. It only works on page-locked host memory and returns an error if a pointer to pageable
memory is passed as input.

See also, cudaMemset, cudaFree,
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Kernel
The CUDA kernel is,

Run on device
Defined by __global__ qualifier and does not return anything
__global

Executed asynchronously by the host with <<< >>> qualifier, for example,

void someKernel ();

someKernel <<<nGrid, nBlocks, sharedMemory, streams>>> (...)
someKernel <<<nGrid, nBlocks>>> (...)

The kernel launches a 1- or 2-D grid of 1-, 2- or 3-D blocks of threads
Each thread executes the same kernel in parallel (SIMT)
Threads within blocks can communicate via shared memory

Threads within blocks can be synchronized
Grids and blocks are of type struct dim3

Built-in variables gridDim, blockDim, threadIdx, blockIdx are used to
traverse across the device memory space with multi-dimensional indexing
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Grids, Blocks and Threads

Grid
Block someKernel<<< 1, 1 >>> ();
% gridDim.x =1
Thread blockDim.x =1
blockIdx.x = 0
threadIldx.x = 0
dim3 blocks (2,1,1);
%%ﬁ%% block (0, 0) someKernel<<< (blocks, 4) >>> ();
gridDim.x = 2;
blockDim.x = 4;
%% %% block (1, 0) blockIdx.x = 0,1;
threadldx.x =0,1,2,3,0,1,2,3

<<< number of blocks in a grid, number of threads per block >>>

Useful for multidimensional indexing and creating unique thread IDs

int index = threadIdx.x + blockDim.x * blockIdx.x;
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Example - Inner Product

Matrix-multiplication

Each element of product matrix C is generated by row column multiplication and
reduction of matrices A and B. This operation is similar to inner product of the
vector multiplication kind also known as vector dot product.

A B C
_ - _ - _ _ _
g
EEEEEEEEEEE = u
X = =
]
]
]
L N L ] N L N
N by N N by N N by N

For size N x N matrices the matrix-multiplication C = A - B will be equivalent to
N2 independent (hence parallel) inner products.
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Example

Serial representation
double ¢ = 0.0;

C = Eaibi for (int 1 = @; 1 < SIZE; 1i++)
; c += a[i] * b[i];

Simple parallelization strategy

!!FF!! Multiplications are done in parallel
ENEEEE
| |

+

i

C

Q

S %

Summation is sequential
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Example

CUDA Kernel

__global__ void innerProduct (int *a, int *b, int *c)

{
int product[SIZE];

int i = threadIdx.x: __global__ void innerProduct (...)
X {
if (i < SIZE)
product[i] = a[i] * b[i]; ¥
int main O
{

innerProduct<<<grid, block>>> (...);

) Called in the host code
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Example

runs the kernel code in parallel.

__global__ void innerProduct (int *a, int *b, int *c)
{
int product[SIZE]; Qualifier __global__ encapsulates
] ] _ device specific code that runs on the
int 1 = threadldx.x; device and is called by the host
|
if (1 < SIZE) .
: . . Other qualifiers are
— %k . ’
product[i] = a[1i] b[i]; __device__, _ host__,
host__and__device
threadIdx is a built in iterator for
threads. It has 3 dimensions x, y and
Z.
1 Each thread with a unique threadIdx. x
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Example

__global__
{
int product[SIZE];
int 1 = threadldx.x;
if (i < SIZE)
product[i] = a[i] * b[i];
int sum = 0;
for (int k = 0; k < N; k++)
sum += product[k];
*C = sum;
¥

volid innerProduct (int *a, int *b, int *c)

Now we can sum the all the products to get
the scalar ¢

Unfortunately this won’t work for following reasons,

- product[1i] is local to each thread
- Threads are not visible to each other

~
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Example

{

__global

__sShared__ int product[SIZE];
int 1 = threadldx.x;

if (i < SIZBE)
product[i] = a[i] * b[i];

__syncthreads();

if (threadIdx.x == 0)
{

int sum = 0;

for (int k = 0; k < SIZE; k++)

sum += product[k];
*C = sum;

__ void innerProduct (int *a, int *b, int *c)

First we make the product[1] visible to all the
threads by copying it to shared memory

Next we make sure that all the threads are
synchronized. In other words each thread has
finished its workload before we move ahead. We do
this by calling __syncthreads()

Finally we assign summation to one thread
(extremely inefficient reduction)

Aside: cudaThreadSynchronize() is used

~

on the host side to synchronize host and device
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Example

{

__global__ void innerProduct (int *a, int *b, int *c)

__sShared__ int product[SIZE];
int 1 = threadldx.x;

if (i < SIZBE)
product[i] = a[i] * b[i];

__syncthreads();
// Efficient reduction call

*c = someEfficientLibrary_reduce (product);
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Performance Considerations
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Memory Bandwidth

Memory bandwidth — rate at which the data is transferred — is a valuable
metric to gauge the performance of an application

Theoretical Bandwidth
Memory bandwidth (GB/s) = Memory clock rate (Hz) x interface width (bytes) / 10°

Real Bandwidth (Effective Bandwidth)
Bandwidth (GB/s) = [(bytes read + bytes written) / 10°]/ execution time
If real bandwidth is much lower than the theoretical then code may need review

Optimize on Real Bandwidth

May also use profilers to estimate bandwidth and bottlenecks
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Arithmetic Intensity

Memory access bandwidth of GPUs is limited compared to the peak compute
throughput

High arithmetic intensity (arithmetic operations per memory access) algorithms
perform well on such architectures

Example

Fermi peak throughput for SP is 1 TFLOP/s and DP is 0.5 TFLOP/s
Global memory (off-chip) bandwidth is 144 GB/s

For every 4 byte single precision floating point operand bandwidth is 36 GB/s and 18
GB/s for double precision

To obtain peak throughout will require 1000/36 ~ 28 SP (14 DP) arithmetic operations

A -
S e~ L i Office of Introduction to CUDA Programming - Hemant Shukla 30
NEeRSC ’\l' Science € &
U.S. DEPARTMENT OF ENERGY



Example revisited

{
__shared__ int product[SIZE];

int 1 = threadldx.x;

if (i < SIZBE)
product[i] = a[i] * b[i];

__global__ void innerProduct (int *a, int *b, int *c)

__syncthreads();

if (threadIdx.x == 0)

{
int sum = 0;
for (int k = 0; k < SIZE; k++)

sum += product[k];

*C = sum;

by

Contrast this with inner product example where for
every 2 memory (data a; and b;) accesses only two
operations (multiplication and add) are performed.
That is ratio of 1 as opposed to 28 that is required for
peak throughput.

Room for algorithm improvement!

~

Aside: Not all performance will be peak performance
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Benchmarks

Relative Performance of Algorithms

Xeon X5550 (Nehalem) | NVIDIA C2050 (Fermi) _

1024 ' 1024
512 | ! ! ! | ! ! ! | ! 512 ! ! ! ! | | publoEeCiSion pean
2% . I ‘ I A |[rg e l;'!fl_ 5 Y [ :-;. 256 [ | %M_s_ﬁ_
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o ' 2 TMiwave eqn. + - G= ] 7pt Stencil
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o ’ d TC/pushi
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Arithmetic Intensity Courtesy - Sam Williams
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Optimization Strategies

Coalesced memory data accesses (use faster memories like shared memory)
Minimize data transfer over PCle (~ 5 GB/s)
Overlap data transfers and computations with asynchronous calls

Use fast page-locked memory (pinned memory — host memory guaranteed to device)

Judiciously

Threads in a block should be multiples of 32 (warp size). Experiment with your device

Smaller thread-blocks better than large many threads blocks when resource limited

Fast libraries (cuBLAS, Thrust, CUSP, cuFFT,...)

Built-in arithmetic instructions

A -
W/ rr/f—f>| i Office of Introduction to CUDA Programming - Hemant Shukla
NERsC ] Science gramming

BERKELEY LAB

33



CUDA Streams

Stream is defined as sequence of device operations executed in order

Stream 1

Do memCopy Start timer || Launch kernel Stop timer

cudaStream_t stream@, streaml;
cudaStreamCreate (&streamd);

cudaMemCopyAsync (..., stream@); someKernel<<<..., stream@>>>();
cudaMemCopyAsync (..., streaml); someKernel<<<..., streaml>>>();
cudaStreamSynchronize (stream@);

N streams performing Ker (2) o o e Ker (N-1) Ker (N)
3 tasks
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Conclusion

If you have parallel code you may benefit from GPUs

In some cases algorithms written on sequential machines may not migrate
efficiently and require reexamination and rewrite

If you have short-term goal(s) it may be worthwhile looking into CUDA etc
CUDA provides better performance over OpenCL (Depends)

Most efficient codes optimally use the entire system and not just parts
Heterogeneous computing and parallel programming are here to stay

Number one 2-PetaFlop/s HPC machine in the world (Tianhe-1 in China) is a
heterogeneous cluster with 7k+ NVIDIA GPUs and 14k Intel CPUs
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