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mNERSC Facility Leads DOE in Scientific
Computing Productivity
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Exascale Science: Global Cloud
Resolving Climate Model

Surface Altitude (feet)
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Typical resolution ~ Upper limit of climate  Cloud resolving models

_~.0of IPCC AR4 models with cloud are a transformational
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m Computational Requirements

for 1km Climate Model

Must maintain 1000x faster than real

time for practical climate simulation

Multiple simulations to improve
confidence

Requires Exascale computing

Not just faster computers

New models of how clouds (and ice,
and...) behave

New algorithms that scale in both
problem size and parallelism , i

New software to use new machines .




Computing Growth is Not Just
an HPC Problem

Microprocessor Performance “Expectation Gap” over Time

(1985-2020 projected)
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Expectation Leads to
Exascale: NERSC Roadmap
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The Exascale Challenge

Energy Efficiency




m Energy Cost Challenge for
Computing Facilities

At ~$1M per MW, energy costs are substantial

« 1 petaflop in 2010 will use 3 MW
« 1 exaflop in 2018 possible in 200 MW with “usual” scaling

1 exaflopin 2018 at 20 MW is DOE target
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NERSC PUE of Data Centers

PUE = overhead Power Utilization Effectiveness

facility power

computer power
3.00

But is this what we

want to measure?
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Measuring Efficiency

* For Scientific Computing =
centers, the metric should be [EESEVSY

PHYSICS

b

science output per Watt, if
only we could measure that

Journal of

Struct| Fluid “nh'.‘.':,'“ —_

* If we measure productivity
by publications...

 NERSC in 2010 ran at 450
p u b I i ca ti on s p er M W'yea r Number of Refereed Publications Using

NERSC Resources
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* Next best: application
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Reducing power is about
architecture & process technology

Memory (2x-5x)
— New memory interfaces (optimized memory control and xfer)
— Extend DRAM with non-volatile memory

Processor (10x-20x)

— Reducing data movement (functional reorganization, > 20x)
— Domain/Core power gating and aggressive voltage scaling

Interconnect (2x-5x)
— More interconnect on package
— Replace long haul copper with integrated optics

Data Center Energy Efficiencies (10%-20%)
— Higher operating temperature tolerance
— 480V to the rack and free air/water cooling efficiencies

Slide source: Mark Seager (LLNL)




Anticipating and Influencing
the Future

Hardware Design
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Cell phone processor
(0.1 Watt, 4 Gflop/s)

Server processor .
(100 Watts, 50 Gflop/s)

* Server processors have been deS|gned for
performance, not energy
— Graphics processors are 10-100x more efficient
— Embedded processors are 100-1000x
— Need manycore chips with thousands of cores

14



The Amdahl Case for
Heterogeneity

F is fraction of time in parallel; 1-F is serial

250
F=0.999
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o Chip with area for 25
3 speedup for
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(256 cores) Size of Fat core in Thin Core units (1 coie)
256 small cores 1 fat core

A Chip with up to 256 “thin” cores and “fat” core that

~. Uuses some of the some of the thin core area ~ .
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New Processors Means New

Software
Interconnect
Memory
Processors
130 Megawatts /75 Megawatts
Server Processors Manycore Processors

Exascale will have chips with thousands of tiny processor
cores, and a few large ones

Architecture is an open question:
— sea of embedded cores with heavyweight “service” nodes
— Lightweight cores are accelerators to CPUs
Autotuning eases code generation for new architectures

16




Memory and Storage
Challenges for Exascale

10000 SMP Intranode
O . 7
Chal!enges. | | 2 1000
Height of the memory wall is growing g 100 On-chi
Off-chip bandwidth, latency, and poor 3 10 ——now
concurrency throttle performance 3] 1 #2018
Per-disk performance not improving o e & £ £ ;g- £
-] 0 o o —_ -
e Approaches: Lo ¢ ¢ & 3§ &
. (o}
New memory and storage technologies a & E E © = §
* Advanced packaging (chip stacking) - © o
* Photonic DRAM interfaces y N
* Optical interconnects / routers B
* Non-volatile memory gap fillers 10 yces
New Storage Approaches Memory, 0(GB)
* Software-managed memory hierarchies ——
* Communications optimal algorithms Latency Gap
* Storage efficient programming models
(Global Address Space) lgigmzf:s
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mValue of Local Store Memory

5 STriad Bandwidth . o ST Cell STRIAD (64KB concurrency)
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« Unit stride access is as important as cache utilization on
processors that rely on hardware prefetch
— Tiling in unit stride direction is counter-productive: improves reuse, but
kills prefetch effectiveness
« Software controlled memory gives programmers more control
— Spend bandwidth on what you use; bulk moves (DMA) hide latency

Joint work with Shoaib Kamil, Lenny Oliker, John rfr—‘>|
Shalf, Kaushik Datta s
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New Memory and Network
Technology to Lower Energy

Interconnect

Memory
Processors
/5 Megawatts 25 Megawatts
Usual memory + network New memory + network

 Memory as important as processors in energy
— Latency is physics, bandwidth is money
— Software managed memory or cache hybrids
— Autotuning has helped with that management
— Need to raise level of autotuning to higher level kerngls

19



Energy Efficiency of
Applications

K. Datta, M. Murphy,
] ] ] V. Volkov, S. Williams ,
7-point stencil aggressively autotuned J. Carter, L. Oliker.
D. Patterson, J. Shalf,
40 K. Yelick, BDK11 book
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m What Heterogeneity Means
| to Me

« Case for heterogeneity

— Many small cores are needed for energy efficiency and
power density; could have their own PC or use a wide SIMD

— Need one fat core (at least) for running the OS

* Local store, explicitly managed memory hierarchy
— More efficient (get only what you need) and simpler to
implement in hardware
« Co-Processor interface between CPU and
Accelerator
— Market: GPUs are separate chips for specific domains
— Control: Why are the minority CPUs in charge?
— Communication: The bus is a significant bottleneck.

— Do we really have to do this? Isn’t parallel programming
hard enough

~
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The Future of Software Design
and
Programming Models

* Memory model
« Control model
 Resilience

22



m Memory is Not Keeping
Pace

Technology trends against a constant or increasing memory per core
* Memory density is doubling every three years; processor logic is every two
 Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs

Cost of Computation vs. Memory

Evolution of memory density 100

10 s Source: David Turek, IBM

10000 > ¢ 1Mb
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10
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The cost to sense, collect, generate and calculate data is declining
much faster than the cost to access, manage and store it

~

Question: Can you double concurrency without doubling memory?
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m What’s Wrong with Flat
MPI?

 We can run 1 MPI process per core
— This works now for Quad-Core on Franklin

 How long will it continue working?
— 4 - 8 cores? Probably. 128 - 1024 cores? Probably not.

 What is the problem?

— Latency: some copying required by semantics

— Memory utilization: partitioning data for separate address
space requires some replication

* How big is your per core subgrid? At 10x10x10, over 1/2 of the
points are surface points, probably replicated

— Memory bandwidth: extra state means extra bandwidth
— Weak scaling will not save us -- not enough memory per core
— Heterogeneity: MPI per CUDA thread-block?

 This means a “new” model for most NERSC users

~
A
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ETE) What's Wrong with Flat MPI?

PARATEC fVCAM
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Why Use 2 Programming
Models When 1 Will Do?

Global address space: thread may directly read/write
remote data

Partitioned: data is designated as local or global

g 5 -
§ X: 1// x:5 | x: 7
e y: o y: y: 0 \
7 N7/ : !
o
TR
F /
e g: g g /
O

PO p1 pn

Affinity control for shared and distributed memory
No less scalable than message passing
Permits sharing, unlike message passing
One-sided communication: never say “receive”
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[ PMA PGAS Languages for

Manycore

- PGAS memory are a good fit to machines with explicitly
managed memory (local store)

— Global address space implemented as DMA reads/writes
— New “vertical” partition of memory needed for on/off chip, e.g.,
upc_offchip_alloc
— Non-blocking features of UPC put/get are useful
« SPMD execution model needs to be adapted to
heterogeneity

1: m:

Private on-chip

Shared

1 off-chip

DRAM

Network

Computer Node
S
|

CPU Memory

CPU Memory

Computer Node
i
| |
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m Avoiding Synchronization in

Communication
two-sided message host
: CPU
message id data payload —>
] network
one-sided put message T
address data payload —>
memory

« Two-sided message passing (e.g., MPI) requires
matching a send with a receive to identify memory
address to put data

— Wildly popular in HPC, but cumbersome in some applications
— Couples data transfer with synchronization

 Using global address space decouples synchronization
— Pay for what you need!

— Note: Global Addressing # Cache Coherent Shared memory

~

Joint work with Dan Bonachea, Paul Hargrove, rfr—r>| :
Rajesh Nishtala and rest of UPC group
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One-Sided Communication Avoids

Unnecessary Overheads

Comparison of MPI to GASNet (LBNL/UCB one-sided
communication layer)

Roundtrip Latency (usec)

8'bvt;$°undt"p Laen Flood Bandwidth for 4KB messages
8 ' 100% m MPI
223
B \IP ping-pong 90% - 763 B GASNet
4

L | MOASNet puttsync -

X 70% |
0

ol 145 © ol
S

I 50%
whud
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10 1 8 40% 1
S
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6.6 0 30% -

54 20% -

10%
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Elnd/Aphs  ElandlA6d  Myineth86  1BIG5 Blopteron  SP/Fed EendiApha  EandfAG4  Myrineth®6  BIGS  [Bipteron  SPIFed
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Joint work with Berkeley UPC Group rfrr}|
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GFlops

T

I T T T

| = = = Upper Bound
== UPC Slabs : .
— MPISlabs | S 2 ]
— MPI Packed Slabs : : : ’,’ :

| |
512 1024 2048 4096 8192

Core Count (Problem Size for All Core Counts: 2048 x 1024 x 1024)

Joint work with Rajesh Nishtala, Dan Bonachea,
Paul Hargrove,and rest of UPC group
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EU5E Avoid Synchronization in
Applications
Computations as DAGs

View parallel executions as the directed acyclic graph of the
computation

Cholesky
4 x4

A
Slide source: Jack Dongarra :m' ""I
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Parallel LU Factorization

Completed part of U

Blocks 2D
block-cyclic
distributed

Panel factorizations

involve communication

for pivoting

Matrix-
matrix
multiplication

- / used here.

Can be coalesced

Trailing matrix
to be updated

7 0 ued paje|dwo)

Panel being factored
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m Event Driven Execution of
i LU Factorization

* Ordering needs to be imposed on the schedule

« Critical operation: Panel Factorization
— need to satisfy its dependencies first
— perform trailing matrix updates with low block numbers first
— “memory constrained” lookahead

« General issue: dynamic scheduling in partitioned memory
— Can deadlock memory allocator!

E»-D-D

-

JUNS (O -y e

nEN O .
“mEmE | | OF

L some edges omitted X
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DAG Scheduling Outperforms
Bulk-Synchronous Style

PLASMA on shared memory  UPC on partitioned memory

Cholesky —— octa-socket, dual-core Opteron [ UPC
) x : ; ' ; = .
——PLASMA & ACML BLAS vs
== ACML Cholesky
B ScaLAPACK
——LAPACK & ACML BLAS
50 : I 2 1 , 30 m ScalAPACK
- : ; m UPC
£ 40f
= 60
O 30r 0
=3
2 40
20} [
(L-]
10- 20 4
1900 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 -

problem size

UPC LU factorization code adds cooperative (non-

preemptive) threads for latency hiding
— New problem in partitioned memory: allocator deadlock
— Can run on of memory locally due tounlucky execution order

PLASMA by Dongarra et al; UPC LU joint with rr/r}| .ﬁ
Parray Husbands 34 |
[Berierer Lag
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Resiliency challenges

Chance of component failure grows with

system / job size

Failure and power management -
irregular performance behavior

Hardware / software
Component values should not cause

system-wide or application-wide outages

225

— Jaguar/Catamount XT4 | |
— Jaguar/Catamount XT3
— Franklin/CNL XT4

|
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!
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I
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Hardware and Software Scaling
Require New Resilience Models

Turbo Boost in Core i7-920XM
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Active Cores

Software assumption
that all processors run

at the same speed:
 Clock speed may change due

to temperature and power
* Failures in memory system
may also affect performance




To Virtualize or Not

The fundamental question facing in parallel
programming models is:

What should be virtualized?

Hardware has finite resources
— Processor count, number of registers, caches size, are finite

— Hide this from programmer (express all parallelism and
locality) or expose it (express what is important)

Locality vs Load balance is fundamental trade-off:

— Most successful examples of locality-important applications/
machines use static scheduling

— Unless they have a dynamic task graph so it is impossible

Two extremes are well-studied
— Dynamic parallelism without locality
— Static parallelism (with threads = processors) with locality

~
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Hierarchical Partitioned Global

shidnded  Address Space Programming

Memory \

- e ————————————— -

Memory Memory

ﬂﬂﬂ

« Partitioned Global Address Space languages
— Ability to control data location and movement through partitioning
— Ability to move data without synchronizing

« Challenges for future systems
— Heterogeneity: fine and coarse-grained parallelism

— Data parallel (efficiency & simplicity) and task parallel (generality)
— More than one level of partitioning

-]
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m Hierarchical Pointers in a
PGAS Memory Model

« A global address space for hierarchical machines may have multiple
kinds of pointers

« These can be encode by programmers in type system or hidden,
e.g., all global or only local/global

« This partitioning is about pointer span, not control / parallelism

pan 1

(core local)

pan 2

(chip local)
evel 3

(node local)

avel 4
(global world)




__ — Global locations can be anywhere

Type Systems Help:
Hierarchical Pointer Analysis

Demonstrated in Titanium (Java-based PGAS)
Statically determines what pointer reach

Allocation sites approximated as absftract
locations (alocs)

All explicit and implicit program variables have
points-to sets
— The set of alocs that the variable may reference

Abstract locations have reach or “span”
— Thread local locations created by local thread

— Process local locations reside in same memory
space
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m Autotuning: Write Code
i Generators

« Autotuners are code generators plus search
algorithms to find best code

« Avoids compiler problems of dependence analysis
and approximate performance models

< Functional portability
from C

+ Performance portability
from search at install time

BLAS

Library

80

701

BLAS = Basic Linear Algebra Subroutine:

Performance of Autotuned Matrix Multiply

/~ L~
- VW

HP 712/ 80i

, —PHPAC_

\

Vendor DGEMM

"~ FORTRAN, 3 nested loops

50

matrix multiply, etc. /\| i

100 150 200 250 300
Square matrix sizes
~
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m Autotuners for Input-
i Dependence Optimizations

STRIN 0 Xeon X5550
TR 9 1 |(auto-tuned Pthreads)
Protein FEM / FEM/ m 8 ]
spheres Cantilever ~ 7 — _ O Auto-
fWA%gﬁyf'ﬁf' j% g e S g tuned
e 5N w = L
Acgjgﬂrz:tor Circuit webbase u 3
. 2 o
« Sparse Matrix 1 °

— Significant index meta data 0
— Irregular memory accesses
— Memory bound

* Autotuning
— Tune over data structures (add 0s)
— Delayed tuning decisions until runtime

— Still use significant install-time tuning (dense matrix in
sparse format) with online specialization based on matrix _

structure
See theses from Im, Vuduc, Williams, and Jain

Dense
Protein
Spheres
Cantilever
WindTunnel
Harbor
QCD

Ship

LP

Webbase ||

Economics

{

{

(

(

{

(

(

{
(
Epidemiology |t
{
Circuit |t

Accelerator
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m Recent Past Autotuners:

Sparse Matrices
« OSKI: Optimized Sparse Kernel Interface

« Optimized for: size, machine, and matrix structure
* Functional portability from C (except for Cell/GPUs)

< Performance portability 8 Performance on Median Matrix of Suite
from install time search and autotuned (1A specf

7 | | auto-tuned (portable C)

model evaluation at runtime ‘ reference C code

w

< Later tuning, less opaque
interface

GFLOP/s
(&%) B

Xeon E5345  Opteron 2214  Opteron 2356 T2+ 75140  QS20 Cell Blade
(Clovertown)  (SantaRosa)  (Barcelona)  (Victoria Falls)

See theses from Im, Vuduc, Williams, and Jain rr/r—r>| ?
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* Ruby class

encapsulates SG
pattern

— body of anonymous
lambda specifies filter
function

- Code generator
produces OpenMP

— ~1000-2000x faster than
Ruby

— Minimal per-call runtime

overhead Joint with Shoaib Kamil,
Armando Fox, John Shalf.

Future: Improving Support for
Writing Autotuners

class LaplacianKernel < Kernel
def kernel(in_grid, out_grid)
in_grid.each_interior do |point|

in_grid.neighbors(point,1).each
do | x|
out_grid[point] += 0.2*x.val
end

end
end

VALUE kern_par(int argc, VALUE* argv, VALUE
self) {

unpack_arrays into in_grid and out_grid;
#pragma omp parallel for default(shared)

for (t_8=1; t_8<256-1; t_8++) {
for (t_7=1; t_7<256-1; t_7++) {
for (t_6=1; t_6<256-1; t_6++) {
out_grid[center] = (Bué_gr%dfcenter]
+(0.2*%in_grid[INDEX(t_6-1,t_7,t_8)1));

6ﬁ£_grid[center] = (out_grid[center]
+(0.2*%in_grid[INDEX(t_6,t_7,t_8+1)]1));
;11}

return Qtrue;}




Autotuning Gets Kernel
Performance Near Optimal

* Roofline model captures bandwidth and computation limits
 Autotuning gets kernels near the roof

Xeon X5550 (Nehalem)
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256 single-grecision peak
128 | A double-grecisiogn peak
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Algorithms to Optimize for
Communication

46



“Moore’s Law’” for combustion
simulations

Combustion: “Effective speed” increases came from
both faster hardware and improved algorithms.

10
9
ARK integrator If e
8 complex chem ' ' Higher
| | AMR

v

5 | r///'
Autocode
Low Mach
4 ow Mac //////i::t,/v o

Log Effective GigaFLOPS
(o))

‘V /
3
NERSC
High Order E/ / RS/6000
2

NERSC

SP3

1980 1990 2000 2010

Calendar Year

~

A
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s igure from “SCaleS report,” Volume 2
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Choose Scalable
Algorithms

*Algorithmic gains in last decade have
far OUtStripped Moore,s Law Problem Solution Time -- Combustion

N\

R

—Adaptive meshes ; T r 1 T ] x l

TTT

rather than uniform
—Sparse matrices
rather than dense
—Reformulation of
problem back to basics

— Non-Adaptive, Compressible
e Cray XT4
— Cray XT4 ideal scaling

i
|

0.01 |- -

Normalize Problem Solution Time

*Two kinds of scalability = | :
—In problem side (n) S S S—

64 256 1024 4096

—I n maCh i ne s ize (p) Number of Processors

Example of canonical “Poisson” problem on n points:
—Dense LU: most general, but O(n3) flops on O(n?) data
—Multigrid: fastest/smallest, O(n) flops on O(n) data

~

A
reeocoeoerc| |
Performance results: John Bell et al /\l |




m Communication-Avoiding
Algorithms
« Sparse lterative (Krylov Subpace) Methods

— Nearest neighbor communication on a mesh

— Dominated by time to read matrix (edges) from DRAM

— And (small) communication and global ST
synchronization events at each step |

« Can we lower data movement costs?-

— Take k steps with one matrix read from

DRAM and one communication phase
« Serial: O(1) moves of data moves vs. O(k)
« Parallel: O(log p) messages vs. O(k log p)

« Can we make communication provably optimal?
— Communication both to DRAM and between cores
~. — Minimize independent accesses (‘latency’) pon woriainim

Demmel, Mark

Hoemman, Marghoob

{{./) — Minimize data volume (‘bandwidth’) Mohiyuddin




Bigger Kernel (A*x) Runs at Faster
Speed than Slmpler (AX)
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Matrix diag-cond-1.000000e-11: rel. 2-nrm resid.

Log10 of 2-norm relative residual
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Communication-Avoiding
Krylov Method (GMRES)

Performance on 8 core Clovertown
Runtime per kernel, relative to CA-GMRES(k,t), for all test matrices,
using 8 threads and restart length 60
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m Communication-Avoiding
Dense Linear Algebra

 Well known why BLAS3 beats BLAS1/2: Minimizes
communication = data movement

— Attains lower bound Q (n3/ cache_size'? ) words moved in
sequential case; parallel case analogous

« Same lower bound applies to all linear algebra
— BLAS, LU, Cholesky, QR, eig, svd, compositions...
— Sequential or paraliel
— Dense or sparse (n® = #flops in lower bound)

« Conventional algs (Sca/LAPACK) do much more

 We have new algorithms that meet lower bounds
— Good speed ups in prototypes (including on cloud)
— Lots more algorithms, implementations to develop

Research by Demmel, Anderson, Ballard, Carson, Dumitriu, Grigori, Hoemmen,
Holtz, Keutzer, Knight, Langou, Mohiyuddin, Schwartz, Solomonik, Williams, > \
Xiang, Yelick LY ‘"'|
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Challenges to EXagcale

Performance Growth
1) System power is the primary constraint

2) Concurrency (1000x today)

3) Memory bandwidth and capacity are not keeping pace
4) Processor architecture is open, but likely heterogeneous
5) Programming model heroic compilers will not hide this
6) Algorithms need to minimize data movement, not flops
7) 110 bandwidth unlikely to keep pace with machine speed
8) Reliability and resiliency will be critical at this scale

9) Bisection bandwidth limited by cost and energy

Unlike the last 20 years most of these (1-7) are equally




performance in general

General Lessons

Early intervention with hardware designs
Optimize for what is important:
energy - data movement

Anticipating and changing the future

— Influence hardware designs
— Use languages that reflect abstract machine

— Write code generators / autotuners
— Redesign algorithms to avoid communication

These problems are essential for computing
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A Brief History of
Languages

When vector machines were king
— Parallel “languages” were loop annotations (IVDEP)
— Performance was fragile, but there was good user support

When SIMD machines were king
— Data parallel languages popular and successful (CMF, *Lisp, C*, ...)
— Quite powerful: can handle irregular data (sparse mat-vec multiply)

— Irregular computation is less clear (multi-physics, adaptive meshes,
backtracking search, sparse matrix factorization)

When shared memory machines (SMPs) were king
— Shared memory models, e.g., OpenMP, Posix Threads, are popular

When clusters took over
— Message Passing (MPIl) became dominant

Are we still at the mercy of hardware with multicore?—

frreeerer
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Thank You!
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Fault Resilience

Chip with FIT rate 1000 fails once
every 16 years

A room full of them will fail every
few minutes
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Industry Trends in Fault
Resilience

Industry must maintain
constant FIT rate per node

— ~1043 failures in 1029 hours e

Moore’s law gets us 100x g o
improvement 100,000

— Cores are increased, but 10,000
FITs per chip ~constant

— But still have to increase
node count by 10x

- 10x worse FIT rate

@ Windows OS ® Hard drive 0O CPU O Memory

1,000 = =

FIT (per 10° hours)

100

10

— MTTI 1 week to 1 day 1998 (Win98) 1999 (Win NT) 2000 (Win 2000) 2001 (Win XP)
— MTTI1 day to 1 hour Figure 2. Failures in billions of hours of operation.2*
Localized checkpointing

— LLNL SCR to node-local NVRAM

— More user-assistance in identifying what data to checkpoint

frreeerer
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m Fault Tolerance/Resilience

 Hard Errors: proportional to component count
— Spare cores in design (Cisco Metro)
— SoC design (fewer components and fewer sockets)
— Use solder (not sockets)
— Fewer sockets (pushes us to 10TF chip to keep # sockets const.)

« Soft Errors: cosmic rays randomly flip bits
— Simpler low-power cores expose less surface area
— ECC for memory and caches
— On-board NVRAM controller for localized checkpoint
— Checkpoint to neighbor for rollback (LLNL SCR)

« Silent errors: Sometimes RAID & ECC are not enough
— End-to-End protection schemes (ZFS)
— Byzantine Fault Tolerance (BFT)
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m Abstract Machine Model

 Programming models have traditionally
reflected the underlying hardware
— SIMD hardware - Data parallel
— Shared memory - OpenMP / threads
— Distributed memory - MPI

* Need a portable abstract machine
model for future architectures




m Architecture Paths to

Exascale

140

120 +

100 -

80

60

40 -

20 -

Megawatts for 1 Exaflop machine

O -
Fulll cores Manycore

« Leading Technology Paths (Swim Lanes)

— Manycore/Embedded: Use many simpler, low power

® Interconnect
® Memory
mFPU

Opt Topology

cores from embedded space (BlueGene)
— GPU/Accelerator: Use highly specialized processors
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from gaming space (NVidia Fermi, Cell)

Advanced Mem




m Exascale Basic Arithmetic

« Exascale Options (“Swim Lanes”)
—1 GHz proc 10°
—1 Kto 10K FPUs / socket (103 to 104) = 1018
—1 M sockets / system (10° to 10°)

* Constraints
— Higher clock speeds the system will melt

— More sockets the system will never stay up
 And more money in the interconnect

— More FPUs / chip: insufficient memory bw

- 4-8 way SIMD/VLIW? Enough fine-grained
parallelism?
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