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NERSC Facility Leads DOE in Scientific 
Computing Productivity  

NERSC computing for science 
•  4000 users, 500 projects 
•  1500 publications per year 
• Outstanding user services, computing 

and data systems 

Systems designed for science 
•  1.3 Petaflop Hopper system 
• Purchased for application 

performance per $ and per Watt 
• Designed for reliability and productivity 
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Exascale: Who Needs It? 

Fusion: Simulations 
of plasma properties 
to ITER scale model 

Combustion: 
complete predictive 
engine simulation 

Astronomy: origins 
of the universe 

Sequestration: 
Understanding fluid 
flow & chemistry 

Materials: solar panels 
to database of 
materials-by-design. 

Climate: Resolve 
clouds (1km scale) & 
model mitigations 

Protein structures: 
From Biofuels to 
Alzheimers 

Every field needs more computing! 

1) To quantify and reduce uncertainty in simulations 
2) Analyze data from experiments and simulations 



Exascale Science: Global Cloud 
Resolving Climate Model 

1km	
  
Cloud	
  resolving	
  models	
  
are	
  a	
  transforma4onal	
  

change	
  

25km	
  
Upper	
  limit	
  of	
  climate	
  
models	
  with	
  cloud	
  
parameteriza4ons	
  

200km	
  
Typical	
  resolu4on	
  

of	
  IPCC	
  AR4	
  
models	
  

Surface Altitude (feet) 



Computational Requirements 
for 1km Climate Model 

Must maintain 1000x faster than real 
time for practical climate simulation 

•  Multiple simulations to improve 
confidence 

•  Requires Exascale computing 
Not just faster computers 
•  New models of how clouds (and ice, 

and…) behave 
•  New algorithms that scale in both 

problem size and parallelism 
•  New software to use new machines 
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Computing Growth is Not Just 
an HPC Problem 
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The Expectation Gap 

Microprocessor Performance “Expectation Gap” over Time 
(1985-2020 projected) 



Expectation Leads to 
Exascale: NERSC Roadmap 

107 

106 

105 

104 

103 

102 

10 

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Franklin (N5) 
19 TF Sustained 
101 TF Peak 

Franklin (N5) +QC 
36 TF Sustained 
352 TF Peak 

Hopper (N6) 
120 TF Sustained, 1.29 PF Peak 

N7 ~3-5 PF in OSF 

N8  50 PF 

N10 
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NERSC performance has traditionally grown at 10x every 3-4 years 

N9  250 PF 



The Exascale Challenge 

Energy Efficiency 
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Energy Cost Challenge for 
Computing Facilities 

At ~$1M per MW, energy costs are substantial 
•  1 petaflop in 2010 will use 3 MW 
•  1 exaflop in 2018 possible in 200 MW with “usual” scaling 
•  1 exaflop in 2018 at 20 MW is DOE target 

goal 

usual 
scaling 

2005                                      2010                                     2015                                      2020 
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PUE of Data Centers 
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New  
Design 

PUE = overhead 
   facility power  .     
computer power 

Current 
Facility 

But is this what we 
want to measure? 



Measuring Efficiency 
•  For Scientific Computing 

centers, the metric should be 
science output per Watt, if 
only we could measure that 

•  If we measure productivity 
by publications… 

•  NERSC in 2010 ran at 450 
publications per MW-year 

•  Next best: application 
performance per Watt 



Reducing power is about 
architecture & process technology 

•  Memory (2x-5x) 
–  New memory interfaces (optimized memory control and xfer) 
–  Extend DRAM with non-volatile memory 

•  Processor (10x-20x) 
–  Reducing data movement (functional reorganization, > 20x) 
–  Domain/Core power gating and aggressive voltage scaling 

•  Interconnect (2x-5x) 
–  More interconnect on package 
–  Replace long haul copper with integrated optics 

•  Data Center Energy Efficiencies (10%-20%) 
–  Higher operating temperature tolerance 
–  480V to the rack and free air/water cooling efficiencies 

Slide source: Mark Seager (LLNL) 



Anticipating and Influencing 
the Future 

Hardware Design 
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New Processor Designs are 
Needed to Save Energy 

•  Server processors have been designed for 
performance, not energy 
– Graphics processors are 10-100x more efficient 
– Embedded processors are 100-1000x 
– Need manycore chips with thousands of cores 
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Cell phone processor 
(0.1 Watt, 4 Gflop/s) 

Server processor  
(100 Watts, 50 Gflop/s) 



15  6/20/11 

The Amdahl Case for 
Heterogeneity 
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A Chip with up to 256 “thin” cores and “fat” core that 
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256 small cores 1 fat core 

Assumes 
speedup for 
Fat / Thin = 
Sqrt of Area 
advantage 

Heterogeneity Analysis by: Mark Hill, U. Wisc 



New Processors Means New 
Software 

•  Exascale will have chips with thousands of tiny processor 
cores, and a few large ones 

•  Architecture is an open question:  
–  sea of embedded cores with heavyweight “service” nodes 
–  Lightweight cores are accelerators to CPUs 

•  Autotuning eases code generation for new architectures 
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Interconnect 
Memory 
Processors 

Server Processors                   Manycore processors 

130 Megawatts 75 Megawatts 



Memory and Storage 
Challenges for Exascale 

• Challenges: 
•  Height of the memory wall is growing 
•  Off-chip bandwidth, latency, and poor 

concurrency  throttle performance 
•  Per-disk performance not improving 

• Approaches: 
•  New memory and storage technologies 

•  Advanced packaging (chip stacking) 
•  Photonic DRAM interfaces 
•  Optical interconnects / routers 
•  Non-volatile memory gap fillers 

•  New Storage Approaches 
•  Software-managed memory hierarchies 
•  Communications optimal algorithms 
•  Storage efficient programming models 

(Global Address Space) 
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Value of Local Store Memory 

•  Unit stride access is as important as cache utilization on 
processors that rely on hardware prefetch 
–  Tiling in unit stride direction is counter-productive: improves reuse, but 

kills prefetch effectiveness 
•  Software controlled memory gives programmers more control 

–  Spend bandwidth on what you use; bulk moves (DMA) hide latency 

Joint work with Shoaib Kamil, Lenny Oliker, John 
Shalf, Kaushik Datta	





Interconnect 
Memory 
Processors 

New Memory and Network 
Technology to Lower Energy 

•  Memory as important as processors in energy 
–  Latency is physics, bandwidth is money 
–  Software managed memory or cache hybrids 
–  Autotuning has helped with that management 
–  Need to raise level of autotuning to higher level kernels 
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Usual memory + network          New memory + network 

25 Megawatts 75 Megawatts 



Energy Efficiency of 
Applications 

Gainestown 
Barcelona 
Victoria Falls 

Cell Blade 
GTX280 

Cache-based 

GTX280-Host 

Local store-based 

K. Datta, M. Murphy,  
V. Volkov, S. Williams ,  
 J. Carter, L. Oliker. 
 D. Patterson, J. Shalf, 
 K. Yelick, BDK11 book 
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What Heterogeneity Means 
to Me 

•  Case for heterogeneity 
–  Many small cores are needed for energy efficiency and 

power density; could have their own PC or use a wide SIMD 
–  Need one fat core (at least) for running the OS 

•  Local store, explicitly managed memory hierarchy 
–  More efficient (get only what you need) and simpler to 

implement in hardware 
•  Co-Processor interface between CPU and 

Accelerator 
–  Market: GPUs are separate chips for specific domains 
–  Control: Why are the minority CPUs in charge?   
–  Communication: The bus is a significant bottleneck. 
–  Do we really have to do this? Isn’t parallel programming 

hard enough 



The Future of Software Design 
and  

Programming Models 

•  Memory model 
•  Control model 
•  Resilience 
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Memory is Not Keeping 
Pace 

Technology trends against a constant or increasing memory per core 
•  Memory density is doubling every three years; processor logic is every two 
•  Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs 

Source: David Turek, IBM 

Cost of Computation vs. Memory 
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Question: Can you double concurrency without doubling memory? 

Source: IBM 
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What’s Wrong with Flat 
MPI? 

•  We can run 1 MPI process per core 
–  This works now for Quad-Core on Franklin 

•  How long will it continue working?  
–  4 - 8 cores? Probably.  128 - 1024 cores? Probably not. 

•  What is the problem? 
–  Latency: some copying required by semantics 
– Memory utilization: partitioning data for separate address 

space requires some replication 
•  How big is your per core subgrid?  At 10x10x10, over 1/2 of the 

points are surface points, probably replicated 
– Memory bandwidth: extra state means extra bandwidth 
– Weak scaling will not save us -- not enough memory per core 
–  Heterogeneity: MPI per CUDA thread-block? 

•  This means a “new” model for most NERSC users 
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What’s Wrong with Flat MPI? 

Hybrid Programming is key to saving memory 
(2011) and sometimes improves performance 
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Why Use 2 Programming 
Models When 1 Will Do? 

Global address space: thread may directly read/write 
remote data  

Partitioned: data is designated as local or global 
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y:  

l:  l:  l:  

g:  g:  g:  

x: 5 
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y: 0 

p0" p1" pn"
•  Affinity control for shared and distributed memory 
•  No less scalable than message passing 
•  Permits sharing, unlike message passing 
•  One-sided communication: never say “receive”  



PGAS Languages for 
Manycore 

•  PGAS memory are a good fit to machines with explicitly 
managed memory (local store) 
–  Global address space implemented as DMA reads/writes 
–  New “vertical” partition of memory needed for on/off chip, e.g., 

upc_offchip_alloc  
–  Non-blocking features of UPC put/get are useful 

•  SPMD execution model needs to be adapted to 
heterogeneity 

DMA!
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Avoiding Synchronization in 
Communication 

•  Two-sided message passing (e.g., MPI) requires 
matching a send with a receive to identify memory 
address to put data 
–  Wildly popular in HPC, but cumbersome in some applications 
–  Couples data transfer with synchronization 

•  Using global address space decouples synchronization 
–  Pay for what you need!   
–  Note: Global Addressing ≠ Cache Coherent Shared memory 

address 

message id 

data payload 

data payload 
one-sided put message 

two-sided message 

network 
 interface 

memory 

host 
CPU 

Joint work with Dan Bonachea, Paul Hargrove, 
Rajesh Nishtala and rest of UPC group	





One-Sided Communication Avoids 
Unnecessary Overheads 

Comparison of MPI to GASNet (LBNL/UCB one-sided 
communication layer) 

Joint work with Berkeley UPC Group	





3D FFT on BlueGene/P 

Joint work with Rajesh Nishtala, Dan Bonachea, 
Paul Hargrove,and  rest of UPC group	
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Avoid Synchronization in 
Applications 

Computations as DAGs 
View parallel executions as the directed acyclic graph of the 
computation  

Slide source: Jack Dongarra	





Parallel LU Factorization 
Blocks 2D 
block-cyclic 
distributed 

Panel factorizations 
involve communication 
for pivoting Matrix-

matrix
multiplication
used here.
Can be coalesced

C
om

pleted part of L 

A(i,j)‏ A(i,k)  ‏

A(j,i)‏ A(j,k)  ‏

Trailing matrix 
to be updated 

Panel being factored 

Completed part of U 



Event Driven Execution of 
LU Factorization 

•  Ordering needs to be imposed on the schedule 
•  Critical operation: Panel Factorization 

–  need to satisfy its dependencies first 
–  perform trailing matrix updates with low block numbers first 
–  “memory constrained” lookahead 

•  General issue: dynamic scheduling in partitioned memory 
–  Can deadlock memory allocator! 

some edges omitted 



34 

        DAG Scheduling Outperforms 
Bulk-Synchronous Style 

UPC LU factorization code adds cooperative (non-
preemptive) threads for latency hiding 
–  New problem in partitioned memory: allocator deadlock 
–  Can run on of memory locally due tounlucky execution order 

PLASMA on shared memory UPC on partitioned memory 

PLASMA by Dongarra et al; UPC LU joint with 
Parray Husbands	





Hardware and Software Scaling 
Require New Resilience Models 

•  Resiliency challenges 
–  Chance of component failure grows with 

system / job size 
–  Failure and power management  

irregular performance behavior 
•  Hardware / software 

–  Component values should not cause 
system-wide or application-wide outages 

Software assumption 
that all processors run 
at the same speed:  
• Clock speed may change due 

to temperature and power 
•  Failures in memory system 

may also affect performance 

60 %
 



To Virtualize or Not 

•  The fundamental question facing in parallel 
programming models is: 

             What should be virtualized? 
•  Hardware has finite resources 

–  Processor count, number of registers, caches size, are finite 
–  Hide this from programmer (express all parallelism and 

locality) or expose it (express what is important) 
•  Locality vs Load balance is fundamental trade-off: 

–  Most successful examples of locality-important applications/
machines use static scheduling 

–  Unless they have a dynamic task graph so it is impossible 
•  Two extremes are well-studied 

–  Dynamic parallelism without locality 
–  Static parallelism (with threads = processors) with locality 



Hierarchical Partitioned Global 
Address Space Programming 

•  Partitioned Global Address Space languages 
–  Ability to control data location and movement through partitioning 
–  Ability to move data without synchronizing  

•  Challenges for future systems 
–  Heterogeneity: fine and coarse-grained parallelism 
–  Data parallel (efficiency & simplicity) and task parallel (generality) 
–  More than one level of partitioning 

Memory 

Memory 

Memory 

Proc Mem Proc Mem 
• • • 

Proc Mem Proc Mem 
• • • 

Echelon ProgSys Team: Michael Garland, Alex Aiken, Brad 
Chamberlain, Mary Hall, Greg Titus, Kathy Yelick 



Hierarchical Pointers in a 
PGAS Memory Model 

•  A global address space for hierarchical machines may have multiple 
kinds of pointers 

•  These can be encode by programmers in type system or hidden, 
e.g., all global or only local/global 

•  This partitioning is about pointer span, not control / parallelism 

B 

span 1 
(core local) 

span 2 
(chip local) 

level 3 
(node local) 

level 4 
(global world) 
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•  Demonstrated in Titanium (Java-based PGAS) 
•  Statically determines what pointer reach 
•  Allocation sites approximated as abstract 

locations (alocs) 
•  All explicit and implicit program variables have 

points-to sets 
–  The set of alocs that the variable may reference 

•  Abstract locations have reach or “span” 
–  Thread local locations created by local thread 
–  Process local locations reside in same memory 

space 
–  Global locations can be anywhere 

Type Systems Help: 
Hierarchical Pointer Analysis 
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Autotuning: Write Code 
Generators 

•  Autotuners are code generators plus search 
algorithms to find best code 

•  Avoids compiler problems of dependence analysis 
and approximate performance models 

  Functional portability 
from C 

  Performance portability 
from search at install time 

Matrix 
Vector Mul 
specialized 

to n,m 

Triangular 
Solve 

specialized 
to n,m 

Matrix 
Multiply 

specialized 
to n,m 

BLAS = Basic Linear Algebra Subroutine: matrix multiply, etc. 

BLAS 
Library 

Atlas 
Autotuner: 
code generator 
+search 

Performance of Autotuned Matrix Multiply 
HP 712 / 80i 



Autotuners for Input-
Dependence Optimizations 

•  Sparse Matrix 
–  Significant index meta data 
–  Irregular memory accesses 
–  Memory bound 

•  Autotuning  
–  Tune over data structures (add 0s) 
–  Delayed tuning decisions until runtime  
–  Still use significant install-time tuning (dense matrix in 

sparse format) with online specialization based on matrix 
structure 

Protein FEM / 
Spheres 

FEM / 
Cantilever 

FEM / 
Accelerator Circuit webbase 
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Recent Past Autotuners: 
Sparse Matrices 

•  OSKI: Optimized Sparse Kernel Interface 
•  Optimized for: size, machine, and matrix structure 
•  Functional portability from C (except for Cell/GPUs) 
  Performance portability 

from install time search and 
model evaluation at runtime 

  Later tuning, less opaque 
interface 

Matrix 
Vector Mul 
specialized 

to n,m 

Triangular 
Solve 

specialized 
to n,m 

Matrix 
Vector Mul 
specialized 

to n,m, 
structure 

See theses from Im, Vuduc, Williams, and Jain  

OSKI 
Library 

OSKI 
Autotuner: 
code generator 
+search 

Performance on Median Matrix of Suite 



Future: Improving Support for 
Writing Autotuners!

•  Ruby class 
encapsulates SG 
pattern!
–  body of anonymous 

lambda specifies filter 
function!

•  Code generator 
produces OpenMP !
–   ~1000-2000x faster than 

Ruby!
–  Minimal per-call runtime 

overhead!

class LaplacianKernel < Kernel 
 def kernel(in_grid, out_grid) 
  in_grid.each_interior do |point| 
   in_grid.neighbors(point,1).each  
      do |x| 
     out_grid[point] += 0.2*x.val 
   end 
 end 
end 

VALUE kern_par(int argc, VALUE* argv, VALUE 
self) { 
unpack_arrays into in_grid and out_grid; 

#pragma omp parallel for default(shared)  
private (t_6,t_7,t_8) 
for (t_8=1; t_8<256-1; t_8++) { 
 for (t_7=1; t_7<256-1; t_7++) { 
  for (t_6=1; t_6<256-1; t_6++) { 
   int center = INDEX(t_6,t_7,t_8); 
   out_grid[center] = (out_grid[center] 
      +(0.2*in_grid[INDEX(t_6-1,t_7,t_8)])); 
   ... 
   out_grid[center] = (out_grid[center] 
      +(0.2*in_grid[INDEX(t_6,t_7,t_8+1)])); 
;}}} 
return Qtrue;} 

Joint with Shoaib Kamil, 
Armando Fox, John Shalf. 
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Autotuning Gets Kernel 
Performance Near Optimal 

• Roofline model captures bandwidth and computation limits 
• Autotuning gets kernels near the roof 

See Sam Williams PhD Thesis & papers for Roofline 
Tuning results by large number of Berkeley / LBNL folks 



Algorithms to Optimize for 
Communication 

46 
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Choose Scalable 
Algorithms 

• Algorithmic gains in last decade have                                                             
far outstripped Moore’s Law 

– Adaptive meshes 
    rather than uniform 
– Sparse matrices  
   rather than dense 
– Reformulation of  
  problem back to basics 

• Two kinds of scalability 
– In problem side (n) 
– In machine size (p) 

• Example of canonical “Poisson” problem on n points: 
– Dense LU: most general, but O(n3) flops on O(n2) data 
– Multigrid: fastest/smallest, O(n) flops on O(n) data 

Performance results: John Bell et al	





Communication-Avoiding 
Algorithms 

•  Sparse Iterative (Krylov Subpace) Methods 
–  Nearest neighbor communication on a mesh 
–  Dominated by time to read matrix (edges) from DRAM 
–  And (small) communication and global 

synchronization events at each step 
•  Can we lower data movement costs? 

–  Take k steps with one matrix read from 
DRAM and one communication phase 

•  Serial: O(1) moves of data  moves vs. O(k) 
•  Parallel: O(log p) messages vs.  O(k log p)  

•  Can we make communication provably optimal? 
–  Communication both to DRAM and between cores 
–  Minimize independent accesses (‘latency’) 
–  Minimize data volume (‘bandwidth’) 

Joint work with Jim 
Demmel, Mark 
Hoemman, Marghoob 
Mohiyuddin 



Bigger Kernel (Akx) Runs at Faster 
Speed than Simpler (Ax)    

Speedups on Intel Clovertown (8 core) 

Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick  
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  converge	
  



Communication-Avoiding  
Krylov Method (GMRES) 

Performance on 8 core Clovertown 



Communication-Avoiding 
Dense Linear Algebra 

•  Well known why BLAS3 beats BLAS1/2: Minimizes 
communication = data movement 
–  Attains lower bound Ω (n3 / cache_size1/2 ) words moved in 

sequential case; parallel case analogous 
•  Same lower bound applies to all linear algebra 

–  BLAS, LU, Cholesky, QR, eig, svd, compositions…  
–  Sequential or parallel 
–  Dense or sparse (n3 ⇒ #flops in lower bound) 

•  Conventional algs (Sca/LAPACK) do much more 
•  We have new algorithms that meet lower bounds 

–  Good speed ups in prototypes (including on cloud) 
–  Lots more algorithms, implementations to develop 

53 

Research by Demmel, Anderson, Ballard, Carson, Dumitriu, Grigori, Hoemmen, 
Holtz, Keutzer, Knight, Langou, Mohiyuddin, Schwartz, Solomonik, Williams, 
Xiang,Yelick 



Challenges to Exascale 

1)  System power is the primary constraint 
2)  Concurrency (1000x today) 
3)  Memory bandwidth and capacity are not keeping pace 
4)  Processor architecture is open, but likely heterogeneous 
5)  Programming model heroic compilers will not hide this 
6)  Algorithms need to minimize data movement, not flops 
7)  I/O bandwidth unlikely to keep pace with machine speed  
8)  Reliability and resiliency will be critical at this scale 
9)  Bisection bandwidth limited by cost and energy 

Unlike the last 20 years most of these (1-7) are equally 
important across scales, e.g., 1000 1-PF machines 

Performance Growth 



General Lessons 

•  Early intervention with hardware designs 
•  Optimize for what is important:  
           energy  data movement  
•  Anticipating and changing the future 

–  Influence hardware designs 
–  Use languages that reflect abstract machine 
–  Write code generators / autotuners  
–  Redesign algorithms to avoid communication 

•  These problems are essential for computing 
performance in general 
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A Brief History of 
Languages 

•  When vector machines were king 
–  Parallel “languages” were loop annotations (IVDEP)  
–  Performance was fragile, but there was good user support 

•  When SIMD machines were king 
–  Data parallel languages popular and successful (CMF, *Lisp, C*, …) 
–  Quite powerful: can handle irregular data (sparse mat-vec multiply) 
–  Irregular computation is less clear (multi-physics, adaptive meshes, 

backtracking search, sparse matrix factorization) 

•  When shared memory machines (SMPs) were king 
–  Shared memory models, e.g., OpenMP, Posix Threads, are popular 

•  When clusters took over 
–  Message Passing (MPI) became dominant 

Are we still at the mercy of hardware with multicore? 



Thank You! 
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Fault Resilience 
Chip with FIT rate 1000 fails once 

every 16 years 

A room full of them will fail every 
few minutes 
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Industry Trends in Fault 
Resilience 

•  Industry must maintain 
constant FIT rate per node 
–  ~10^3 failures in 10^9 hours 

•  Moore’s law gets us 100x 
improvement 
–  Cores are increased, but 

FITs per chip ~constant 
–  But still have to increase 

node count by 10x 
•   10x worse FIT rate 

–  MTTI 1 week to 1 day 
–  MTTI 1 day to 1 hour 

•  Localized checkpointing 
–  LLNL SCR to node-local NVRAM 
–  More user-assistance in identifying what data to checkpoint 



Fault Tolerance/Resilience 
•  Hard Errors: proportional to component count 

–  Spare cores in design (Cisco Metro) 
–  SoC design (fewer components and fewer sockets) 
–  Use solder (not sockets) 
–  Fewer sockets (pushes us to 10TF chip to keep # sockets const.) 

•  Soft Errors: cosmic rays randomly flip bits 
–  Simpler low-power cores expose less surface area 
–  ECC for memory and caches 
–  On-board NVRAM controller for localized checkpoint 
–  Checkpoint to neighbor for rollback (LLNL SCR) 

•  Silent errors: Sometimes RAID & ECC are not enough 
–  End-to-End protection schemes (ZFS) 
–  Byzantine Fault Tolerance (BFT) 
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Abstract Machine Model 

•  Programming models have traditionally 
reflected the underlying hardware 
– SIMD hardware  Data parallel  
– Shared memory  OpenMP / threads 
– Distributed memory  MPI 

•  Need a portable abstract machine 
model for future architectures 



Architecture Paths to 
Exascale 

•  Leading Technology Paths (Swim Lanes) 
–  Multicore: Replicate traditional cores (x86 and Power7) 
–  Manycore/Embedded: Use many simpler, low power 

cores from embedded space (BlueGene) 
–  GPU/Accelerator: Use highly specialized processors 

from gaming space (NVidia Fermi, Cell) 
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Exascale Basic Arithmetic 
•  Exascale Options (“Swim Lanes”) 

– 1 GHz proc 109 

– 1 K to 10K FPUs / socket (103 to 104)   
– 1 M sockets / system (106 to 105) 

•  Constraints 
– Higher clock speeds the system will melt 
– More sockets the system will never stay up 

•  And more money in the interconnect  
– More FPUs / chip: insufficient memory bw 

•  4-8 way SIMD/VLIW? Enough fine-grained 
parallelism? 
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