
Exascale Computing:
Opportunities and Challenges

Kathy Yelick
Associate Laboratory Director for Computing Sciences

and NERSC Center Director
Lawrence Berkeley National Laboratory

EECS Professor, UC Berkeley

NERSC Facility Leads DOE in Scientific
Computing Productivity

NERSC computing for science
•  4000 users, 500 projects
•  1500 publications per year
• Outstanding user services, computing

and data systems

Systems designed for science
•  1.3 Petaflop Hopper system
• Purchased for application

performance per $ and per Watt
• Designed for reliability and productivity

2	

Exascale: Who Needs It?

Fusion: Simulations
of plasma properties
to ITER scale model

Combustion:
complete predictive
engine simulation

Astronomy: origins
of the universe

Sequestration:
Understanding fluid
flow & chemistry

Materials: solar panels
to database of
materials-by-design.

Climate: Resolve
clouds (1km scale) &
model mitigations

Protein structures:
From Biofuels to
Alzheimers

Every field needs more computing!

1) To quantify and reduce uncertainty in simulations
2) Analyze data from experiments and simulations

Exascale Science: Global Cloud
Resolving Climate Model

1km	

Cloud	
 resolving	
 models	

are	
 a	
 transforma4onal	

change	

25km	

Upper	
 limit	
 of	
 climate	

models	
 with	
 cloud	

parameteriza4ons	

200km	

Typical	
 resolu4on	

of	
 IPCC	
 AR4	

models	

Surface Altitude (feet)

Computational Requirements
for 1km Climate Model

Must maintain 1000x faster than real
time for practical climate simulation

•  Multiple simulations to improve
confidence

•  Requires Exascale computing
Not just faster computers
•  New models of how clouds (and ice,

and…) behave
•  New algorithms that scale in both

problem size and parallelism
•  New software to use new machines

fvCAM	

Icosahedral	

Computing Growth is Not Just
an HPC Problem

6

The Expectation Gap

Microprocessor Performance “Expectation Gap” over Time
(1985-2020 projected)

Expectation Leads to
Exascale: NERSC Roadmap

107

106

105

104

103

102

10

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Franklin (N5)
19 TF Sustained
101 TF Peak

Franklin (N5) +QC
36 TF Sustained
352 TF Peak

Hopper (N6)
120 TF Sustained, 1.29 PF Peak

N7 ~3-5 PF in OSF

N8 50 PF

N10
1 EF

P
ea

k
Te

ra
flo

p/
s

7

NERSC performance has traditionally grown at 10x every 3-4 years

N9 250 PF

The Exascale Challenge

Energy Efficiency

8 8

Energy Cost Challenge for
Computing Facilities

At ~$1M per MW, energy costs are substantial
•  1 petaflop in 2010 will use 3 MW
•  1 exaflop in 2018 possible in 200 MW with “usual” scaling
•  1 exaflop in 2018 at 20 MW is DOE target

goal

usual
scaling

2005 2010 2015 2020

9

PUE of Data Centers

10

New
Design

PUE = overhead
 facility power .
computer power

Current
Facility

But is this what we
want to measure?

Measuring Efficiency
•  For Scientific Computing

centers, the metric should be
science output per Watt, if
only we could measure that

•  If we measure productivity
by publications…

•  NERSC in 2010 ran at 450
publications per MW-year

•  Next best: application
performance per Watt

Reducing power is about
architecture & process technology

•  Memory (2x-5x)
–  New memory interfaces (optimized memory control and xfer)
–  Extend DRAM with non-volatile memory

•  Processor (10x-20x)
–  Reducing data movement (functional reorganization, > 20x)
–  Domain/Core power gating and aggressive voltage scaling

•  Interconnect (2x-5x)
–  More interconnect on package
–  Replace long haul copper with integrated optics

•  Data Center Energy Efficiencies (10%-20%)
–  Higher operating temperature tolerance
–  480V to the rack and free air/water cooling efficiencies

Slide source: Mark Seager (LLNL)

Anticipating and Influencing
the Future

Hardware Design

13 13

New Processor Designs are
Needed to Save Energy

•  Server processors have been designed for
performance, not energy
– Graphics processors are 10-100x more efficient
– Embedded processors are 100-1000x
– Need manycore chips with thousands of cores

14

Cell phone processor
(0.1 Watt, 4 Gflop/s)

Server processor
(100 Watts, 50 Gflop/s)

15 6/20/11

The Amdahl Case for
Heterogeneity

0	

50	

100	

150	

200	

250	

1	
 2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	

A
sy
m
m
et
ri
c	

Sp
ee
du

p	

Size	
 of	
 Fat	
 core	
 in	
 Thin	
 Core	
 units	

F=0.999	

F=0.99	

F=0.975	

F=0.9	

F=0.5	

(256 cores)
(193 cores)

(1 core)

F is fraction of time in parallel; 1-F is serial

Chip with area for 256 thin cores

A Chip with up to 256 “thin” cores and “fat” core that
uses some of the some of the thin core area

256 small cores 1 fat core

Assumes
speedup for
Fat / Thin =
Sqrt of Area
advantage

Heterogeneity Analysis by: Mark Hill, U. Wisc

New Processors Means New
Software

•  Exascale will have chips with thousands of tiny processor
cores, and a few large ones

•  Architecture is an open question:
–  sea of embedded cores with heavyweight “service” nodes
–  Lightweight cores are accelerators to CPUs

•  Autotuning eases code generation for new architectures

16

Interconnect
Memory
Processors

Server Processors Manycore processors

130 Megawatts 75 Megawatts

Memory and Storage
Challenges for Exascale

• Challenges:
•  Height of the memory wall is growing
•  Off-chip bandwidth, latency, and poor

concurrency throttle performance
•  Per-disk performance not improving

• Approaches:
•  New memory and storage technologies

•  Advanced packaging (chip stacking)
•  Photonic DRAM interfaces
•  Optical interconnects / routers
•  Non-volatile memory gap fillers

•  New Storage Approaches
•  Software-managed memory hierarchies
•  Communications optimal algorithms
•  Storage efficient programming models

(Global Address Space)

1
10

100
1000

10000

D
P

FL
O

P

R
eg

is
te

r

1m
m

 o
n-

ch
ip

5m
m

 o
n-

ch
ip

O
ff-

ch
ip

/

lo
ca

l

C
ro

ss
 s

ys
te

m
 Pi
co

Jo
ul

es

now
2018

Intranode

On-chip / n

SMP

Value of Local Store Memory

•  Unit stride access is as important as cache utilization on
processors that rely on hardware prefetch
–  Tiling in unit stride direction is counter-productive: improves reuse, but

kills prefetch effectiveness
•  Software controlled memory gives programmers more control

–  Spend bandwidth on what you use; bulk moves (DMA) hide latency

Joint work with Shoaib Kamil, Lenny Oliker, John
Shalf, Kaushik Datta	

Interconnect
Memory
Processors

New Memory and Network
Technology to Lower Energy

•  Memory as important as processors in energy
–  Latency is physics, bandwidth is money
–  Software managed memory or cache hybrids
–  Autotuning has helped with that management
–  Need to raise level of autotuning to higher level kernels

19

Usual memory + network New memory + network

25 Megawatts 75 Megawatts

Energy Efficiency of
Applications

Gainestown
Barcelona
Victoria Falls

Cell Blade
GTX280

Cache-based

GTX280-Host

Local store-based

K. Datta, M. Murphy,
V. Volkov, S. Williams ,
 J. Carter, L. Oliker.
 D. Patterson, J. Shalf,
 K. Yelick, BDK11 book

P
ow

er
 E

ffi
ci

en
cy

P
er

fo
rm

an
ce

7-point stencil aggressively autotuned

What Heterogeneity Means
to Me

•  Case for heterogeneity
–  Many small cores are needed for energy efficiency and

power density; could have their own PC or use a wide SIMD
–  Need one fat core (at least) for running the OS

•  Local store, explicitly managed memory hierarchy
–  More efficient (get only what you need) and simpler to

implement in hardware
•  Co-Processor interface between CPU and

Accelerator
–  Market: GPUs are separate chips for specific domains
–  Control: Why are the minority CPUs in charge?
–  Communication: The bus is a significant bottleneck.
–  Do we really have to do this? Isn’t parallel programming

hard enough

The Future of Software Design
and

Programming Models

•  Memory model
•  Control model
•  Resilience

22

Memory is Not Keeping
Pace

Technology trends against a constant or increasing memory per core
•  Memory density is doubling every three years; processor logic is every two
•  Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs

Source: David Turek, IBM

Cost of Computation vs. Memory

23

Question: Can you double concurrency without doubling memory?

Source: IBM

23

What’s Wrong with Flat
MPI?

•  We can run 1 MPI process per core
–  This works now for Quad-Core on Franklin

•  How long will it continue working?
–  4 - 8 cores? Probably. 128 - 1024 cores? Probably not.

•  What is the problem?
–  Latency: some copying required by semantics
– Memory utilization: partitioning data for separate address

space requires some replication
•  How big is your per core subgrid? At 10x10x10, over 1/2 of the

points are surface points, probably replicated
– Memory bandwidth: extra state means extra bandwidth
– Weak scaling will not save us -- not enough memory per core
–  Heterogeneity: MPI per CUDA thread-block?

•  This means a “new” model for most NERSC users

24

0

2

4

6

8

10

12

14

0

100

200

300

400

500

600

700

1 2 3 6 12

M
em

or
y

pe
r n

od
e

(G
B

)

Ti
m

e
(s

ec
)

cores per MPI process

fvCAM
 (240 cores on Jaguar)

Time

Memory

What’s Wrong with Flat MPI?

Hybrid Programming is key to saving memory
(2011) and sometimes improves performance

25

0

2

4

6

8

10

12

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 6 12

M
em

or
y

pe
r n

od
e

(G
B

)

Ti
m

e
(s

ec
)

cores per MPI process

PARATEC
 (768 cores on Jaguar)

Time

Memory

Why Use 2 Programming
Models When 1 Will Do?

Global address space: thread may directly read/write
remote data

Partitioned: data is designated as local or global

G
lo

ba
l a

dd
re

ss
 s

pa
ce
!

x: 1
y:

l: l: l:

g: g: g:

x: 5
y:

x: 7
y: 0

p0" p1" pn"
•  Affinity control for shared and distributed memory
•  No less scalable than message passing
•  Permits sharing, unlike message passing
•  One-sided communication: never say “receive”

PGAS Languages for
Manycore

•  PGAS memory are a good fit to machines with explicitly
managed memory (local store)
–  Global address space implemented as DMA reads/writes
–  New “vertical” partition of memory needed for on/off chip, e.g.,

upc_offchip_alloc
–  Non-blocking features of UPC put/get are useful

•  SPMD execution model needs to be adapted to
heterogeneity

DMA!

x: 1
y:

x: 5
y:

x: 7
y: 0

Shared
partitioned
on-chip

l: m: Private on-chip

Shared
off-chip
DRAM

Computer Node

CPU Memory

GPU

GPU
Mem
ory

CPU CPU

GPU

GPU
Mem
ory

Computer Node

CPU Memory

GPU

GPU
Mem
ory

CPU CPU

GPU

GPU
Mem
ory

Network

PGAS

Avoiding Synchronization in
Communication

•  Two-sided message passing (e.g., MPI) requires
matching a send with a receive to identify memory
address to put data
–  Wildly popular in HPC, but cumbersome in some applications
–  Couples data transfer with synchronization

•  Using global address space decouples synchronization
–  Pay for what you need!
–  Note: Global Addressing ≠ Cache Coherent Shared memory

address

message id

data payload

data payload
one-sided put message

two-sided message

network
 interface

memory

host
CPU

Joint work with Dan Bonachea, Paul Hargrove,
Rajesh Nishtala and rest of UPC group	

One-Sided Communication Avoids
Unnecessary Overheads

Comparison of MPI to GASNet (LBNL/UCB one-sided
communication layer)

Joint work with Berkeley UPC Group	

3D FFT on BlueGene/P

Joint work with Rajesh Nishtala, Dan Bonachea,
Paul Hargrove,and rest of UPC group	

31

Avoid Synchronization in
Applications

Computations as DAGs
View parallel executions as the directed acyclic graph of the
computation

Slide source: Jack Dongarra	

Parallel LU Factorization
Blocks 2D
block-cyclic
distributed

Panel factorizations
involve communication
for pivoting Matrix-

matrix
multiplication
used here.
Can be coalesced

C
om

pleted part of L

A(i,j)‏ A(i,k) ‏

A(j,i)‏ A(j,k) ‏

Trailing matrix
to be updated

Panel being factored

Completed part of U

Event Driven Execution of
LU Factorization

•  Ordering needs to be imposed on the schedule
•  Critical operation: Panel Factorization

–  need to satisfy its dependencies first
–  perform trailing matrix updates with low block numbers first
–  “memory constrained” lookahead

•  General issue: dynamic scheduling in partitioned memory
–  Can deadlock memory allocator!

some edges omitted

34

 DAG Scheduling Outperforms
Bulk-Synchronous Style

UPC LU factorization code adds cooperative (non-
preemptive) threads for latency hiding
–  New problem in partitioned memory: allocator deadlock
–  Can run on of memory locally due tounlucky execution order

PLASMA on shared memory UPC on partitioned memory

PLASMA by Dongarra et al; UPC LU joint with
Parray Husbands	

Hardware and Software Scaling
Require New Resilience Models

•  Resiliency challenges
–  Chance of component failure grows with

system / job size
–  Failure and power management 

irregular performance behavior
•  Hardware / software

–  Component values should not cause
system-wide or application-wide outages

Software assumption
that all processors run
at the same speed:
• Clock speed may change due

to temperature and power
•  Failures in memory system

may also affect performance

60 %

To Virtualize or Not

•  The fundamental question facing in parallel
programming models is:

 What should be virtualized?
•  Hardware has finite resources

–  Processor count, number of registers, caches size, are finite
–  Hide this from programmer (express all parallelism and

locality) or expose it (express what is important)
•  Locality vs Load balance is fundamental trade-off:

–  Most successful examples of locality-important applications/
machines use static scheduling

–  Unless they have a dynamic task graph so it is impossible
•  Two extremes are well-studied

–  Dynamic parallelism without locality
–  Static parallelism (with threads = processors) with locality

Hierarchical Partitioned Global
Address Space Programming

•  Partitioned Global Address Space languages
–  Ability to control data location and movement through partitioning
–  Ability to move data without synchronizing

•  Challenges for future systems
–  Heterogeneity: fine and coarse-grained parallelism
–  Data parallel (efficiency & simplicity) and task parallel (generality)
–  More than one level of partitioning

Memory

Memory

Memory

Proc Mem Proc Mem
• • •

Proc Mem Proc Mem
• • •

Echelon ProgSys Team: Michael Garland, Alex Aiken, Brad
Chamberlain, Mary Hall, Greg Titus, Kathy Yelick

Hierarchical Pointers in a
PGAS Memory Model

•  A global address space for hierarchical machines may have multiple
kinds of pointers

•  These can be encode by programmers in type system or hidden,
e.g., all global or only local/global

•  This partitioning is about pointer span, not control / parallelism

B

span 1
(core local)

span 2
(chip local)

level 3
(node local)

level 4
(global world)

C
D

A
1

2
3 4

•  Demonstrated in Titanium (Java-based PGAS)
•  Statically determines what pointer reach
•  Allocation sites approximated as abstract

locations (alocs)
•  All explicit and implicit program variables have

points-to sets
–  The set of alocs that the variable may reference

•  Abstract locations have reach or “span”
–  Thread local locations created by local thread
–  Process local locations reside in same memory

space
–  Global locations can be anywhere

Type Systems Help:
Hierarchical Pointer Analysis

24633

5526

832

1752

4759

286

517

67

262

66

10

100

1000

10000

100000

amr gas ft cg mg

R
ac

es
 (L

og
ar

ith
m

ic
 S

ca
le

)

Benchmark

Static Races Detected
sharing concur
feasible feasible+AA1
feasible+AA3

Race Detection Results

1-level pointer
multi-level pointer

Autotuning: Write Code
Generators

•  Autotuners are code generators plus search
algorithms to find best code

•  Avoids compiler problems of dependence analysis
and approximate performance models

  Functional portability
from C

  Performance portability
from search at install time

Matrix
Vector Mul
specialized

to n,m

Triangular
Solve

specialized
to n,m

Matrix
Multiply

specialized
to n,m

BLAS = Basic Linear Algebra Subroutine: matrix multiply, etc.

BLAS
Library

Atlas
Autotuner:
code generator
+search

Performance of Autotuned Matrix Multiply
HP 712 / 80i

Autotuners for Input-
Dependence Optimizations

•  Sparse Matrix
–  Significant index meta data
–  Irregular memory accesses
–  Memory bound

•  Autotuning
–  Tune over data structures (add 0s)
–  Delayed tuning decisions until runtime
–  Still use significant install-time tuning (dense matrix in

sparse format) with online specialization based on matrix
structure

Protein FEM /
Spheres

FEM /
Cantilever

FEM /
Accelerator Circuit webbase

0
1
2
3
4
5
6
7
8
9

10
11

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

ti
le

ve
r

W
in

d
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n
o
m

ic
s

E
p
id

em
io

lo
g
y

A
cc

el
er

at
o
r

C
ir
cu

it

W
eb

b
as

e LP

G
F
lo

p
/

s

Xeon X5550
(auto-tuned Pthreads)

Auto-
tuned

See theses from Im, Vuduc, Williams, and Jain

Recent Past Autotuners:
Sparse Matrices

•  OSKI: Optimized Sparse Kernel Interface
•  Optimized for: size, machine, and matrix structure
•  Functional portability from C (except for Cell/GPUs)
  Performance portability

from install time search and
model evaluation at runtime

  Later tuning, less opaque
interface

Matrix
Vector Mul
specialized

to n,m

Triangular
Solve

specialized
to n,m

Matrix
Vector Mul
specialized

to n,m,
structure

See theses from Im, Vuduc, Williams, and Jain

OSKI
Library

OSKI
Autotuner:
code generator
+search

Performance on Median Matrix of Suite

Future: Improving Support for
Writing Autotuners!

•  Ruby class
encapsulates SG
pattern!
–  body of anonymous

lambda specifies filter
function!

•  Code generator
produces OpenMP !
–  ~1000-2000x faster than

Ruby!
–  Minimal per-call runtime

overhead!

class LaplacianKernel < Kernel
 def kernel(in_grid, out_grid)
 in_grid.each_interior do |point|
 in_grid.neighbors(point,1).each
 do |x|
 out_grid[point] += 0.2*x.val
 end
 end
end

VALUE kern_par(int argc, VALUE* argv, VALUE
self) {
unpack_arrays into in_grid and out_grid;

#pragma omp parallel for default(shared)
private (t_6,t_7,t_8)
for (t_8=1; t_8<256-1; t_8++) {
 for (t_7=1; t_7<256-1; t_7++) {
 for (t_6=1; t_6<256-1; t_6++) {
 int center = INDEX(t_6,t_7,t_8);
 out_grid[center] = (out_grid[center]
 +(0.2*in_grid[INDEX(t_6-1,t_7,t_8)]));
 ...
 out_grid[center] = (out_grid[center]
 +(0.2*in_grid[INDEX(t_6,t_7,t_8+1)]));
;}}}
return Qtrue;}

Joint with Shoaib Kamil,
Armando Fox, John Shalf.

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

single-precision peak

double-precision peak

single-precision peak

double-precision peak

Xeon X5550 (Nehalem) NVIDIA C2050 (Fermi)

DP add-only

DP add-only

Autotuning Gets Kernel
Performance Near Optimal

• Roofline model captures bandwidth and computation limits
• Autotuning gets kernels near the roof

See Sam Williams PhD Thesis & papers for Roofline
Tuning results by large number of Berkeley / LBNL folks

Algorithms to Optimize for
Communication

46

0

1

2

3

4

5

6

7

8

9

10

1980 1990 2000 2010

Lo
g

Ef
fe

ct
iv

e
G

ig
aF

LO
PS

Calendar Year

High Order

Autocode

ARK integrator
complex chem Higher

order
AMR

NERSC
RS/6000

NERSC
SP3

Cray 2

AMR

Low Mach

“Moore’s Law” for combustion
simulations

Figure from “SCaLeS report,” Volume 2

Combustion: “Effective speed” increases came from
both faster hardware and improved algorithms.

Choose Scalable
Algorithms

• Algorithmic gains in last decade have
far outstripped Moore’s Law

– Adaptive meshes
 rather than uniform
– Sparse matrices
 rather than dense
– Reformulation of
 problem back to basics

• Two kinds of scalability
– In problem side (n)
– In machine size (p)

• Example of canonical “Poisson” problem on n points:
– Dense LU: most general, but O(n3) flops on O(n2) data
– Multigrid: fastest/smallest, O(n) flops on O(n) data

Performance results: John Bell et al	

Communication-Avoiding
Algorithms

•  Sparse Iterative (Krylov Subpace) Methods
–  Nearest neighbor communication on a mesh
–  Dominated by time to read matrix (edges) from DRAM
–  And (small) communication and global

synchronization events at each step
•  Can we lower data movement costs?

–  Take k steps with one matrix read from
DRAM and one communication phase

•  Serial: O(1) moves of data moves vs. O(k)
•  Parallel: O(log p) messages vs. O(k log p)

•  Can we make communication provably optimal?
–  Communication both to DRAM and between cores
–  Minimize independent accesses (‘latency’)
–  Minimize data volume (‘bandwidth’)

Joint work with Jim
Demmel, Mark
Hoemman, Marghoob
Mohiyuddin

Bigger Kernel (Akx) Runs at Faster
Speed than Simpler (Ax)

Speedups on Intel Clovertown (8 core)

Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick

“Monomial”	
 basis	
 [Ax,…,Akx]	
 	
 	

fails	
 to	
 converge	

	
 A	
 different	
 polynomial	
 basis	
 does	
 converge	

Communication-Avoiding
Krylov Method (GMRES)

Performance on 8 core Clovertown

Communication-Avoiding
Dense Linear Algebra

•  Well known why BLAS3 beats BLAS1/2: Minimizes
communication = data movement
–  Attains lower bound Ω (n3 / cache_size1/2) words moved in

sequential case; parallel case analogous
•  Same lower bound applies to all linear algebra

–  BLAS, LU, Cholesky, QR, eig, svd, compositions…
–  Sequential or parallel
–  Dense or sparse (n3 ⇒ #flops in lower bound)

•  Conventional algs (Sca/LAPACK) do much more
•  We have new algorithms that meet lower bounds

–  Good speed ups in prototypes (including on cloud)
–  Lots more algorithms, implementations to develop

53

Research by Demmel, Anderson, Ballard, Carson, Dumitriu, Grigori, Hoemmen,
Holtz, Keutzer, Knight, Langou, Mohiyuddin, Schwartz, Solomonik, Williams,
Xiang,Yelick

Challenges to Exascale

1)  System power is the primary constraint
2)  Concurrency (1000x today)
3)  Memory bandwidth and capacity are not keeping pace
4)  Processor architecture is open, but likely heterogeneous
5)  Programming model heroic compilers will not hide this
6)  Algorithms need to minimize data movement, not flops
7)  I/O bandwidth unlikely to keep pace with machine speed
8)  Reliability and resiliency will be critical at this scale
9)  Bisection bandwidth limited by cost and energy

Unlike the last 20 years most of these (1-7) are equally
important across scales, e.g., 1000 1-PF machines

Performance Growth

General Lessons

•  Early intervention with hardware designs
•  Optimize for what is important:
 energy  data movement
•  Anticipating and changing the future

–  Influence hardware designs
–  Use languages that reflect abstract machine
–  Write code generators / autotuners
–  Redesign algorithms to avoid communication

•  These problems are essential for computing
performance in general

55

A Brief History of
Languages

•  When vector machines were king
–  Parallel “languages” were loop annotations (IVDEP)
–  Performance was fragile, but there was good user support

•  When SIMD machines were king
–  Data parallel languages popular and successful (CMF, *Lisp, C*, …)
–  Quite powerful: can handle irregular data (sparse mat-vec multiply)
–  Irregular computation is less clear (multi-physics, adaptive meshes,

backtracking search, sparse matrix factorization)

•  When shared memory machines (SMPs) were king
–  Shared memory models, e.g., OpenMP, Posix Threads, are popular

•  When clusters took over
–  Message Passing (MPI) became dominant

Are we still at the mercy of hardware with multicore?

Thank You!

57

Fault Resilience
Chip with FIT rate 1000 fails once

every 16 years

A room full of them will fail every
few minutes

58

Industry Trends in Fault
Resilience

•  Industry must maintain
constant FIT rate per node
–  ~10^3 failures in 10^9 hours

•  Moore’s law gets us 100x
improvement
–  Cores are increased, but

FITs per chip ~constant
–  But still have to increase

node count by 10x
•   10x worse FIT rate

–  MTTI 1 week to 1 day
–  MTTI 1 day to 1 hour

•  Localized checkpointing
–  LLNL SCR to node-local NVRAM
–  More user-assistance in identifying what data to checkpoint

Fault Tolerance/Resilience
•  Hard Errors: proportional to component count

–  Spare cores in design (Cisco Metro)
–  SoC design (fewer components and fewer sockets)
–  Use solder (not sockets)
–  Fewer sockets (pushes us to 10TF chip to keep # sockets const.)

•  Soft Errors: cosmic rays randomly flip bits
–  Simpler low-power cores expose less surface area
–  ECC for memory and caches
–  On-board NVRAM controller for localized checkpoint
–  Checkpoint to neighbor for rollback (LLNL SCR)

•  Silent errors: Sometimes RAID & ECC are not enough
–  End-to-End protection schemes (ZFS)
–  Byzantine Fault Tolerance (BFT)

60

Abstract Machine Model

•  Programming models have traditionally
reflected the underlying hardware
– SIMD hardware  Data parallel
– Shared memory  OpenMP / threads
– Distributed memory  MPI

•  Need a portable abstract machine
model for future architectures

Architecture Paths to
Exascale

•  Leading Technology Paths (Swim Lanes)
–  Multicore: Replicate traditional cores (x86 and Power7)
–  Manycore/Embedded: Use many simpler, low power

cores from embedded space (BlueGene)
–  GPU/Accelerator: Use highly specialized processors

from gaming space (NVidia Fermi, Cell)

62

0

20

40

60

80

100

120

140

Fulll cores Manycore Opt Topology Advanced Mem

M
eg

aw
at

ts
 fo

r 1
 E

xa
flo

p
m

ac
hi

ne

Interconnect
Memory
FPU

Exascale Basic Arithmetic
•  Exascale Options (“Swim Lanes”)

– 1 GHz proc 109

– 1 K to 10K FPUs / socket (103 to 104)
– 1 M sockets / system (106 to 105)

•  Constraints
– Higher clock speeds the system will melt
– More sockets the system will never stay up

•  And more money in the interconnect
– More FPUs / chip: insufficient memory bw

•  4-8 way SIMD/VLIW? Enough fine-grained
parallelism?

63

= 1018

