
Large-scale Graph Analysis

Kamesh Madduri
Computational Research Division

Lawrence Berkeley National Laboratory
KMadduri@lbl.gov madduri.org

Discovery 2015: HPC and Cloud Computing Workshop
June 17, 2011

•  Large-scale graph analytics: Introduction and
motivating examples

•  Overview of parallel graph analysis algorithms
and software

•  Application case studies
–  Community Identification in social networks
–  RDF data analysis using compressed bitmap indexes

Talk Outline

•  Graph abstractions are very useful to analyze complex
data sets.

•  Sources of data: petascale simulations, experimental
devices, the Internet, sensor networks

•  Challenges: data size, heterogeneity, uncertainty, data
quality

Large-scale data analysis

Astrophysics: massive datasets,
temporal variations

Bioinformatics: data quality,
heterogeneity

Social Informatics: new analytics
challenges, data uncertainty

Image sources: (1) http://physics.nmt.edu/images/astro/hst_starfield.jpg (2,3) www.visualComplexity.com

•  Study of the interactions
between various components
in a biological system

•  Graph-theoretic formulations
are pervasive:
–  Predicting new interactions:

modeling
–  Functional annotation of novel

proteins: matching, clustering
–  Identifying metabolic pathways:

paths, clustering
–  Identifying new protein

complexes: clustering, centrality

Data Analysis and Graph Algorithms in Systems Biology

Image Source: Giot et al., “A Protein Interaction Map of Drosophila melanogaster”,
Science 302, 1722-1736, 2003.

Image Source: Nexus (Facebook application)

Graph –theoretic problems in social networks

–  Targeted advertising: clustering and
centrality

–  Studying the spread of information

•  [Krebs ’04] Post 9/11
Terrorist Network Analysis
from public domain
information

•  Plot masterminds correctly
identified from interaction
patterns: centrality

•  A global view of entities is
often more insightful

•  Detect anomalous activities
by exact/approximate
subgraph isomorphism.

Image Source: http://www.orgnet.com/hijackers.html

Network Analysis for Intelligence and Surveillance

Image Source: T. Coffman, S. Greenblatt, S. Marcus, Graph-based technologies
for intelligence analysis, CACM, 47 (3, March 2004): pp 45-47

Research in Parallel Graph Algorithms
Applica'on	
 	

Areas	

Methods/	

Problems	

Architectures	
 Graph	
 	

Algorithms	

Traversal	

Shortest	
 Paths	

Connec'vity	

Max	
 Flow	
 	

…	

…	

…	

GPUs	

FPGAs	

x86	
 mul'core	

servers	

Massively	
 	

mul'threaded	

architectures	

Mul'core	

Clusters	

Clouds	

Social	
 Network	

Analysis	

WWW	

Computa'onal	
 	

Biology	

Scien'fic	
 	

Compu'ng	
 	

Engineering	

Find	
 central	
 en''es	

Community	
 detec'on	

Network	
 dynamics	

Data	
 size	

Problem	

Complexity	

Graph	
 par''oning	

Matching	

Coloring	

Gene	
 regula'on	

Metabolic	
 pathways	

Genomics	

Marke'ng	

Social	
 Search	

VLSI	
 CAD	

Route	
 planning	

Characterizing Graph-theoretic computations

•  graph sparsity (m/n ratio)
•  static/dynamic nature
•  weighted/unweighted, weight
distribution
•  vertex degree distribution
•  directed/undirected
•  simple/multi/hyper graph
•  problem size
•  granularity of computation at
nodes/edges
•  domain-specific characteristics

•  paths
•  clusters
•  partitions
•  matchings
•  patterns
•  orderings

Input data

Problem: Find ***

Factors that influence
choice of algorithm

Graph kernel

•  traversal
•  shortest path
algorithms
•  flow algorithms
•  spanning tree
algorithms
•  topological
sort
 …..

Graph problems are often recast as sparse
linear algebra (e.g., partitioning) or linear
programming (e.g., matching) computations

•  Information networks: social, collaborative, citation,
biological, epidemiological networks, web crawls, …

•  These are fundamentally different from graph topologies
and computations in scientific computing!

Informatics: dynamic, high-
dimensional, heterogeneous
data

static networks,
2D/3D topologies

Massive data analytics & Informatics

Image sources: www.visualComplexity.com; Yifan Hu, “A gallery of large graphs”

•  Low graph diameter.

•  Sparse: # of edges m = O(n).

•  Vertices, edges have multiple attributes.

•  Skewed (“power law”) degree
distribution of the number of neighbors.

Informatics  “Small-world” complex networks
“Six degrees of separation”

“Power law” degree distribution

Image source: Seokhee Hong

 Serial Performance of “approximate betweenness centrality” on a
2.67 GHz Intel Xeon 5560 (12 GB RAM, 8MB L3 cache)

 Input: Synthetic R-MAT graphs (# of edges m = 8n)

The locality challenge: “Large memory footprint, low
spatial and temporal locality impede performance”

~ 5X drop in
performance

No Last-level Cache (LLC) misses

O(m) LLC misses

•  Graph topology assumptions in classical algorithms do
not match real-world datasets

•  Parallelization strategies at loggerheads with techniques
for enhancing memory locality

•  Classical “work-efficient” graph algorithms may not fully
exploit new architectural features
–  Increasing complexity of memory hierarchy, processor

heterogeneity, wide SIMD.

•  Tuning implementation to minimize parallel overhead is
non-trivial
–  Shared memory: minimizing overhead of locks, barriers.
–  Distributed memory: bounding message buffer sizes, bundling

messages, overlapping communication w/ computation.

The parallel scaling challenge: “Classical parallel graph
algorithms perform poorly on current parallel systems”

•  Parallel framework for small-world complex graph analysis
•  10-100x faster than competing graph analysis software.

–  Parallelism, algorithm engineering, exploiting graph topology.

•  Can process graphs with billions of vertices and edges.
•  Open-source:

Image Source: visualcomplexity.com

snap-graph.sf.net

SNAP: Small-world Network Analysis and Partitioning

SNAP Optimizations for real-world graphs

•  Preprocessing kernels (connected components,
biconnected components, sparsification)
significantly reduce computation time.
–  ex. A high number of isolated and degree-1 vertices

  store BFS/Shortest Path trees from high degree vertices and
reuse them

  Typically 3-5X performance improvement

•  Exploit small-world network properties (low
graph diameter)
–  Load balancing in the level-synchronous parallel BFS

algorithm
–  SNAP data structures are optimized for unbalanced

degree distributions

•  Boost Graph Library
–  C++, graph interface and components are generic

•  JUNG
–  Java-based, graph algorithms + visualization engine

•  igraph
–  C library with R and Python interfaces

•  MultiThreaded Graph Library (MTGL)
–  Boost Graph library-like, for multithreaded architectures

•  …
•  Network Workbench

–  GUI for analysis, workflow
•  Cytoscape

–  Biological network analysis,
 user-contributed plug-ins,

•  …

Libraries and Frameworks for graph analysis

•  BFS (from a single vertex) on a static,
undirected R-MAT network with average vertex
degree 16.

•  Evaluation criteria: largest problem size that
can be solved on a system, minimum execution
time.

•  Reference MPI, shared memory
implementations provided.

•  NERSC Franklin system is ranked #2 on Nov
2010 list.
–  BFS using 500 nodes of Franklin

•  Graph 500 June 2011 list submissions
–  NERSC Hopper, 25 GTEPS, SCALE 37,

 1800 nodes
–  NERSC Franklin, 16 GTEPS, SCALE 36,

 4000 nodes

Graph 500 “Search” Benchmark (graph500.org)

A.	
 Buluc,	
 K.	
 Madduri,	
 Proc.	
 SC	
 2011	

•  Large-scale graph analytics: Introduction and
motivating examples

•  Designing parallel graph analysis algorithms and
software

•  Application case studies
–  Community Identification in social networks
–  RDF data analysis using compressed bitmap indexes

Talk Outline

•  Implicit communities in large-
scale networks are of interest in
many cases.
–  WWW
–  Social networks
–  Biological networks

•  Formulated as a graph clustering
problem.
–  Informally, identify/extract “dense”

sub-graphs.
•  Several different objective

functions exist.
–  Metrics based on intra-cluster vs. inter-

cluster edges, community sizes,
number of communities, overlap …

•  Highly studied research problem
–  100s of papers yearly in CS, Social

Sciences, Physics, Comp. Biology,
Applied Math journals and conferences.

Community Identification

Image Source: visualcomplexity.com

•  Measure based on optimizing inter-cluster density over
intra-cluster sparsity.

•  For a weighted, directed network with vertices partitioned
into non-overlapping clusters, modularity is defined as

•  If a particular clustering has no more intra-cluster edges
than would be expected by random chance, Q=0. Values
greater than 0.3 typically indicate community structure.

•  Maximizing modularity is NP-complete.

Modularity: A popular optimization metric

For an unweighted and undirected network, modularity is
given by

and in terms of clusters/modules, it is equivalently

Modularity

Resolution limit: Modules
will not be found,
optimizing modularity, if

•  New parallel algorithms for modularity-optimizing
community identification.
–  Divisive: edge betweenness-based, spectral
–  Agglomerative
–  Hybrid, multi-level

•  Several algorithmic optimizations for small-world
networks.

•  Analysis of large-scale complex networks constructed
from real data.

•  Note: No single “right” community detection algorithm
exists. Community structure analysis should be user-
driven and application-specific, combining various fast
algorithms.

Our Contributions

Bader and Madduri, “SNAP”, IPDPS 2008.

•  Top-down approach: Start with entire network as one
community, recursively split the graph to yield smaller
modules.

•  Two popular methods:
–  Edge-betweenness based: iteratively remove high-centrality

edges.

  Centrality computation is the compute-intensive step, parallelize it.
–  Spectral: apply recursive spectral bisection on the “modularity

matrix” B, whose elements are defined as Bij = Aij – didj/2m.
Modularity can be expressed in terms of B as:

  Parallelize the eigenvalue computation step (dominated by sparse
matrix-vector products).

Divisive Clustering, Parallelization

•  Bottom-up approach: Start with n singleton communities,
iteratively merge pairs to form larger communities.
–  What measure to minimize/maximize? modularity
–  How do we order merges? priority queue

•  Parallelization: perform multiple “independent” merges
simultaneously.

Agglomerative Clustering, Parallelization

•  Simulated annealing
•  Extremal optimization
•  Linear programming
•  Statistical inference
•  Spin models, random walks
•  Clique percolation
•  …

Other Community Identification
Approaches

•  How would a memory-efficient, near linear-work
greedy approach perform on real data?

•  Helpful preprocessing steps
–  2-Core reduction of the graph

  High-percentage of degree-1 vertices in networks with
exponential and power-law degree distributions.

–  Filter very high-degree vertices (d > dH ≈ √n)
  Ambiguity on what cluster they belong to.

Engineering a hybrid parallel community
identification algorithm

3 4

1 1

•  Coarsen/sparsify graph
–  Local search at vertices to identify dense

components, completely relax priority queue
constraint => abundant parallelism.

–  Future work: Identify network-specific motifs (bipartite
cliques).

•  Run greedy agglomerative approach once
graph is less than size threshold.

Hybrid approaches: Parallelization

4 6 1 1
1

 Assembled a collection for algorithm performance analysis, from
some of the largest publicly-available network data.

Real-world data

Name # vertices # edges Type
Amazon-2003 473.30 K 3.50 M co-purchaser
eu-2005 862.00 K 19.23 M www
Flickr 1.86 M 22.60 M social
wiki-Talk 2.40 M 5.02 M collab
orkut 3.07 M 223.00 M social
cit-Patents 3.77 M 16.50 M cite
Livejournal 5.28 M 77.40 M social
uk-2002 18.50 M 198.10 M www
USA-road 23.90 M 29.00 M Transp.
webbase-2001 118.14 M 1.02 B www

SNAP vs. Other Implementations
(serial performance)

Webbase-2001
(n=118M, m=1.02B)

Largest network analyzed in prior papers.

SNAP 4x faster! Requires 12 GB memory
vs. 30 GB for Louvain algorithm.

Amazon-2003
(n=473K, m=3.5M)

igraph: C library for network analysis.
SNAP requires 0.5 GB memory vs. 12 GB+ for
igraph CNM implementation!

igraph time
~ 8 hours.

Results on a Intel Xeon 5560 (“Nehalem”) system
•  2 sockets x 4 cores x 2-way SMT
•  12 GB DRAM, 8 MB shared L3
•  51.2 GBytes/sec peak bandwidth
•  2.66 GHz proc.

SNAP Algorithms: Comparative Performance

Amazon-2003
(n=473K, m=3.5M)

•  Smallest network in the
test suite.
•  Divisive edgeBC and
basic agglomerative
clustering algorithm
(CNM) highly compute-
intensive.
•  CNM-RAT (comm.
sizes factored in)
significantly faster than
CNM.

~1.5 min. <1 s.

~500 min.

Performance results on a Intel
Xeon 5560 (Nehalem) system.

Communities: Sizes and Cardinality

of communities
CNM 240
Spectral 10K
Hybrid 196

Amazon-2003
(n=473K, m=3.5M)

Spectral alg. fails to
resolve communities
beyond one level of the
agglomerative clustering
dendrogram!

CNM

Spectral

Communities: Modularity

•  Hybrid approach
performs surprisingly
well.
•  # of communities from
CNM-RAT and Hybrid
roughly the same.
•  CNM-RAT suffers in
modularity quality.
•  CNM did not finish (>
6hrs) for most networks.

•  Analysis of dynamic graphs becoming increasingly important: detect
trends (WWW), allegiance switching, emerging communities (social
networks).

•  Goal: Avoid computing from scratch.
•  Consider path-based problems:

–  Are there paths connecting s and t between time T1 and T2?
–  Does the path between s and t shorten drastically?
–  Is a vertex suddenly very central?

•  Contribution: New space-efficient data structures, fast algorithms
for dynamic network analysis.

Dynamic graph computations

Link-cut tree for
answering
connectivity queries.
Performance results on
Sun Fire T5140.
10 million vertices,
80 million edges

Construction time Query time (1 million queries)

Madduri	
 and	
 Bader,	
 IPDPS’09.	

•  Large-scale graph analytics: Introduction and
motivating examples

•  Designing parallel graph analysis algorithms and
software

•  Application case studies
–  Community Identification in social networks
–  RDF data analysis using compressed bitmap indexes

Talk Outline

•  The RDF (Resource Description Framework) data model
is a popular abstraction for linked data repositories
–  triple form [<subject> <predicate> <object>]

–  Data sets with a few billion triples
 quite common

•  Emergence of “triple stores”, custom databases for
storage and retrieval of RDF data
–  Jena, Virtuoso, Sesame

Semantic data analysis

•  We use the compressed bitmap indexing software FastBit
to index RDF data

•  Search queries on RDF data can be accelerated with use
of compressed bitmap indexes

•  Our Contributions:
–  Parallel bitmap index construction (we store the sparse graphs

corresponding to each unique predicate)
–  New query-answering approach: pattern matching queries on

RDF data are modified to use bitmap indexes.

•  Speedup insight: SPARQL queries can be expressed as
fast and I/O optimal bit vector operations.

FastBit-RDFJoin

K.	
 Madduri,	
 K.	
 Wu,	
 Proc.	
 SSDBM	
 2011.	

Answering a SPARQL Query with Bitmap Indexes

SPARQL Query

Select ?p where {
 ?p <type> ‘scientist’ .
 ?city1 <locatedIn> ‘USA’ .
 ?city2 <locatedIn> ‘China’ .
 ?p <bornInLocation> ?city1 .
 ?adv <bornInLocation> ?city2 .
 ?p <hasDoctoralAdvisor> ?adv .

Query Graph

Search Query: list of all scientists born in a city in USA, who have/had a
Doctoral advisor born in Chinese city.

join Index lookup

The ordering of bit vector operations determines query work performed.

•  LUBM SPARQL test query evaluation time in milliseconds,
performance on a 2.67 GHz Intel Xeon processor.

Performance results: LUBM benchmark

•  The SNAP (snap-graph.sf.net) framework offers
 novel parallel methods for social and information
 network analytics

–  Two orders of magnitude faster than competing
 “serial” software approaches

•  We have designed the first parallel methods for
 several community detection formulations

•  Ongoing research projects
–  Semantic data analytics using compressed bitmap

 indexes

–  Eulerian path-based de novo genome assembly

•  Future research direction: Modeling network dynamics;
persistent monitoring of dynamically changing properties

Summary: Our Research Enables Complex
Data-intensive Applications

BIG DATA

Analy'cs,	
 	

Summariza'on,	
 	

Visualiza'on	

Modeling	
 &	
 	

Simula'on	

•  Scientific Data Management & Future Technologies research
groups, LBNL

•  Prof. David A. Bader, Georgia Institute of Technology
•  Jonathan Berry, Bruce Hendrickson (Sandia National Laboratories)
•  John Feo, Daniel Chavarria (Pacific Northwest National

Laboratories)
•  PNNL CASS-MT Center and Cray Inc. for access to their XMT

systems.
•  Par Lab @ UC Berkeley for access to their Millennium cluster

systems.
•  Research supported in part by DOE Office of Science under contract

number DE-AC02-05CH11231.

Collaborators, Acknowledgments

•  Questions?

Thank you!

Backup Slides

Graph 500 and Parallel BFS

•  Compressed Sparse Row-like

Graph representation

0 7

5

3

8

2

4 6

1

9

2 5 7 7
6
0 3
2 4 7
3 6 8
0 8
1 4 8 9
0 0 3 8
4 5 6 7
6

0
1
2
3
4
5
6
7
8
9

4
1
2
3
3
2
4
4
4
1

Vertex Degree Adjacencies

Flatten
adjacency
arrays

2 5 7 7 6 0 3 2 4 …. 6 7 6 Adjacencies Size: 2*m

0 4 5 7 … 28 Size: n+1
Index into
adjacency
array

•  Each processor stores the entire graph (“full
replication”)

•  Each processor stores n/p vertices and all
adjacencies out of these vertices (“1D
partitioning”)

•  How to create these “p” vertex partitions?
–  Graph partitioning algorithms: recursively optimize for

conductance (edge cut/size of smaller partition)
–  Randomly shuffling the vertex identifiers ensures that

edge count/processor are roughly the same

Distributed Graph representation

•  Consider a logical 2D processor grid (pr * pc = p)
and the matrix representation of the graph

•  Assign each processor a sub-matrix (i.e, the
edges within the sub-matrix)

2D graph partitioning

0 7

5

3

8

2

4 6

1 x x x
x

x x
x x x

x x x
x x

x x x
x x x

x x x x

9 vertices, 9 processors, 3x3 processor grid

Flatten
Sparse matrices

Per-processor local graph
representation

Graph traversal (BFS) problem definition

0 7

5

3

8

2

4 6

1

9
source
vertex

Input: Output:
1

1

1

2

2 3 3

4

4

distance from
source vertex

Memory requirements (# of machine words):
•  Sparse graph representation: m+n
•  Stack of visited vertices: n
•  Distance array: n

1. Expand current frontier (level-synchronous approach, suited for low diameter
graphs)

Parallel BFS Strategies

0 7

5

3

8

2

4 6

1

9

source
vertex

2. Stitch multiple concurrent traversals (Ullman-Yannakakis approach,
suited for high-diameter graphs)

•  O(D) parallel steps
•  Adjacencies of all vertices
in current frontier are
visited in parallel

0 7

5

3

8

2

4 6

1

9source
vertex

•  path-limited searches
from “super vertices”
•  APSP between “super
vertices”

Locality (where are the random accesses originating from?)

A deeper dive into the “level synchronous” strategy

0 31

53 84

74

11

93

1. Ordering of vertices in the “current
frontier” array, i.e., accesses to
adjacency indexing array,
cumulative accesses O(n).

2. Ordering of adjacency list of each
vertex, cumulative O(m).

3. Sifting through adjacencies to
check whether visited or not,
cumulative accesses O(m).

26

44

63

1. Access Pattern: idx array -- 53, 31, 74, 26
2,3. Access Pattern: d array -- 0, 84, 0, 84, 93, 44, 63, 0, 0, 11

Performance Observations

Youtube social network

Graph expansion Edge filtering

Flickr social network

Graph500 BFS: SCALE 32 performance on Hopper
(Cray XE6, 24 cores per node)

4

8

12

16

20

5040 10008 20000 40000

G
TE

PS

Number of cores

1D Flat MPI 2D Flat MPI 1D Hybrid 2D Hybrid

Graph500 BFS: SCALE 32 communication time
on Hopper (lower is better)

2

4

6

8

10

12

5040 10008 20000 40000

Co
m

m
.

ti
m

e
(s

ec
on

ds
)

Number of cores

1D Flat MPI 2D Flat MPI 1D Hybrid 2D Hybrid

De novo Genome Assembly

•  Genome Assembly: “a
big jigsaw puzzle”

•  De novo: Latin
expression meaning
“from the beginning”
–  No prior reference

organism
–  Computationally falls

within the NP-hard
class of problems

De novo Genome Assembly

DNA extraction

Fragment
the DNA

Clone into vectors Isolate vector DNA

Sequence the library

CTCTAGCTCTAA	

AGGTCTCTAA	

AAGTCTCTAA	

AAGCTATCTAA	

CTCTAGCTCTAAGGTCTCTAACTAAGCTAATCTAA	

Genome Assembly

•  Break up the (short) reads into overlapping
strings of length k.

•  Construct a de Bruijn graph (a directed
graph representing overlap between
strings)

Eulerian path-based assembly strategies

ACGTTATATATTCTA	
 ACGTT	
 CGTTA	
 GTTAT	

TTATA	
 …..	
 TTCTA	

k	
 =	
 5	

CCATGATATATTCTA	
 CCATG	
 CATGA	
 ATGAT	

TGATA	
 …..	
 TTCTA	

•  Each (k-1)-mer represents a node in the graph
•  Edge exists between node a to b iff there exists a k-mer

such that its prefix is a and suffix is b.

•  Traverse the graph (if possible, identifying an Eulerian
path) to form contigs.

•  However, correct assembly is just one of the many
possible Eulerian paths.

de Bruijn graph-based Assembly

AAGACTCCGACTGGGACTTT	

AAG	
 AGA	
 GAC	
 ACT	
 CTT	
 TTT	

CTG	

TGG	
 GGG	

GGA	

CTC	
 TCC	
 CCG	

CGA	

ACTCCGACTGGGACTTTGAC	

TGA	

Application: Identification of biomass-degrading Genes
and Genomes from cow rumen

Image Source: Hess et al., Science 331(6016), 463-467, 2011.

Goal: Identify microbial enzymes that aid in
deconstruction of plant polysaccharides.
Cow rumen microbes known to be particularly effective
In breaking down switchgrass.

•  Two major complications for de novo assembly:
–  Likely uneven representation of organisms within a

sample
–  Likely polymorphisms between closely related

members in an environment
•  Assembly is difficult even if we have an estimate

of organism representation in a sample
•  If coverage is not known, Poisson likelihood

estimates used by isolate genome assemblers
break down.

Metagenomes

•  Given the challenges, what approach do we take?

•  We can still construct the de Bruijn graph
–  Try out various values of k, use base quality information
–  Require parallel computation for dealing with the large data sizes

•  Understand data set characteristics to suggest
algorithmic changes in current assemblers
–  Can we automate selection of k?
–  What is the genome coverage like?
–  Can we predict the approximate size of the metagenome?

Towards designing a metagenome
assembler

Steps in the new de Bruijn graph-based
assembly scheme

FASTQ	
 input	
 data	

Sequences	
 aXer	
 	

error	
 resolu'on	

1	
 Preprocessing	

Determine	
 	

appropriate	
 	

value	
 of	
 k	
 to	
 use	

2	
 Kmer	
 spectrum	

Preliminary	
 de	
 Bruijn	
 graph	
 	

construc'on	

3	

Vertex/edge	
 compac'on	

(lossless	
 transforma'ons)	

4	

Error	
 resolu'on	
 +	
 further	

graph	
 compac'on	

5	

Scaffolding	
 6	

Compute and
memory-intensive

•  Process base quality information
•  Mark ambiguous bases

•  Try to merge paired reads

•  Write back filtered reads
•  Parallelization strategy: split input files into

“P” parts; each node processes its file
independently
– Predominantly I/O bound

1. Preprocessing

paired reads

Insert length of ~ 200bp

125bp
125bp

•  Need a dictionary to track occurrences of each
kmer

•  Velvet uses a splay tree to track unique kmers
– Splaying expensive for large data sizes;

maintaining an ordered set unnecessary when
kmer updates are predominantly insert-only
(“cow rumen” dataset)

•  Alternative: Ingest all kmers, perform
lexicographical sort

•  Parallelization: enumerate kmers independently
+ one global sort to get kmer count

2. Kmer spectrum construction

Finding unique kmers: hashing vs sorting

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

of reads (in millions)

Splay tree update time for a data set of 19.5 million (125 bp) reads
(k=61)

Serial performance results on a 512 GB system
(2.6 GHz Opteron processor)

51 GB memory

Serial sort,
18.6 GB memory
4.2x faster

•  Store edges only, represent vertices (kmers)
implicitly.

•  Distributed graph representation
•  Sort by start vertex
•  Edge storage format:

3. Graph construction

ACTAGGC CTAGGCA

Store edge (ACTAGGCA), orientation,
originating read id (x), edge count

Read ‘x’:

Use 2 bits per nucleotide

•  High percentage of unique kmers
⇒  Try compacting kmers from same read first
–  If kmer length is k, potentially k-times space

reduction!

•  Parallelization: computation can be done
locally by sorting by read ID, traversing
unit-cardinality kmers.

4. Vertex compaction

ACTAG	
 CTAGG	
 TAGGA	
 AGGAC	

ACTAGGAC	

•  Identify connected components in the
string graph

•  Error resolution and scaffolding can be
concurrently performed on multiple
independent components

5. Redistributing reads for Velvetg execution

Compress/remove whiskers Identify and fix “low coverage” edges

Long
String 1

Long
String 2

Long
String 1

Long
String 2

•  Current data set (after preprocessing)
requires 320 GB for in-memory graph
construction
– Experimented with 64 nodes (256-way

parallelism) and 128 nodes (512-way) of
NERSC Franklin (Cray XT4 system, 2.3 GHz
quad-core Opteron processor)

•  MPI across nodes + OpenMP within a
node

•  Local sort: multicore-parallel quicksort
•  Global sort: sample sort

Parallel Implementation Details

•  Comparison: Velveth (up to graph construction) takes ~
12 hours on the 512 GB Opteron system.

Parallel Performance

0

20

40

60

80

100

120

140

160

Assembly step

Preprocessing

Kmer Freq.

Graph construct

Graph compact

0

20

40

60

80

100

120

140

160

Assembly step

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

128 nodes: 213 seconds 64 nodes: 340 seconds

•  Very conservative graph assembly
– No filtering, getting exact global counts of

kmers
•  20% of time spent in MPI communication

(including global sort)
•  3.3x intra-node speedup for parallel sort

(~7 GB array), execution time 32 seconds
•  I/O (preprocessing and kmer freq.) not a

bottleneck up to 128 nodes

Observations

