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•  Large-scale graph analytics: Introduction and 
motivating examples 

•  Overview of parallel graph analysis algorithms 
and software 

•  Application case studies 
–  Community Identification in social networks 
–  RDF data analysis using compressed bitmap indexes 

Talk Outline 



•  Graph abstractions are very useful to analyze complex 
data sets. 

•  Sources of data: petascale simulations, experimental 
devices, the Internet, sensor networks 

•  Challenges: data size, heterogeneity, uncertainty, data 
quality 

Large-scale data analysis 

Astrophysics: massive datasets,  
temporal variations  

Bioinformatics: data quality,  
heterogeneity 

Social Informatics: new analytics  
challenges, data uncertainty  

Image sources: (1) http://physics.nmt.edu/images/astro/hst_starfield.jpg (2,3) www.visualComplexity.com 



•  Study of the interactions 
between  various components 
in a biological system 

•  Graph-theoretic formulations 
are pervasive: 
–  Predicting new interactions: 

modeling 
–  Functional annotation of novel 

proteins: matching, clustering 
–  Identifying metabolic pathways: 

paths, clustering 
–  Identifying new protein 

complexes: clustering, centrality 

Data Analysis and Graph Algorithms in Systems Biology 

Image Source: Giot et al., “A Protein Interaction Map of Drosophila melanogaster”,  
Science 302, 1722-1736, 2003. 



Image Source: Nexus (Facebook application) 

Graph –theoretic problems in social networks 

–  Targeted advertising: clustering and 
centrality 

–  Studying the spread of information 



•  [Krebs ’04] Post 9/11 
Terrorist Network Analysis 
from public domain 
information 

•  Plot masterminds correctly 
identified from interaction 
patterns: centrality 

•  A global view of entities is 
often more insightful 

•  Detect anomalous activities 
by exact/approximate 
subgraph isomorphism. 

Image Source: http://www.orgnet.com/hijackers.html 

Network Analysis for Intelligence and Surveillance 

Image Source: T. Coffman, S. Greenblatt, S. Marcus, Graph-based technologies  
for intelligence analysis, CACM, 47 (3, March 2004): pp 45-47 
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Characterizing Graph-theoretic computations 

•  graph sparsity (m/n ratio) 
•  static/dynamic nature 
•  weighted/unweighted, weight 
distribution 
•  vertex degree distribution 
•  directed/undirected 
•  simple/multi/hyper graph 
•  problem size 
•  granularity of computation at 
nodes/edges 
•  domain-specific characteristics 

•  paths 
•  clusters 
•  partitions 
•  matchings 
•  patterns 
•  orderings 

Input data 

Problem: Find *** 

Factors that influence  
choice of algorithm 

Graph kernel 

•  traversal 
•  shortest path 
algorithms 
•  flow algorithms 
•  spanning tree 
algorithms 
•  topological 
sort 
  ….. 

Graph problems are often recast as sparse 
linear algebra (e.g., partitioning) or linear 
programming (e.g., matching) computations  



•  Information networks: social, collaborative, citation, 
biological, epidemiological networks, web crawls, … 

•  These are fundamentally different from graph topologies 
and computations in scientific computing! 

Informatics: dynamic, high-
dimensional, heterogeneous 
data 

static networks,  
2D/3D topologies 

Massive data analytics & Informatics 

Image sources: www.visualComplexity.com; Yifan Hu, “A gallery of large graphs” 



•  Low graph diameter. 

•  Sparse: # of edges m = O(n). 

•  Vertices, edges have multiple attributes. 

•  Skewed (“power law”) degree 
distribution of the number of neighbors. 

Informatics  “Small-world” complex networks 
“Six degrees of separation” 

“Power law” degree distribution 

Image source: Seokhee Hong 



 Serial Performance of “approximate betweenness centrality” on a 
2.67 GHz Intel Xeon 5560 (12 GB RAM, 8MB L3 cache) 

     Input: Synthetic R-MAT graphs (# of edges m = 8n) 

The locality challenge: “Large memory footprint, low 
spatial and temporal  locality impede performance” 

~ 5X drop in  
performance 

No Last-level Cache (LLC) misses 

O(m) LLC misses 



•  Graph topology assumptions in classical algorithms do 
not match real-world datasets 

•  Parallelization strategies at loggerheads with techniques 
for enhancing memory locality 

•  Classical “work-efficient” graph algorithms may not fully 
exploit new architectural features 
–  Increasing complexity of memory hierarchy, processor 

heterogeneity, wide SIMD. 

•  Tuning implementation to minimize parallel overhead is 
non-trivial 
–  Shared memory: minimizing overhead of locks, barriers. 
–  Distributed memory: bounding message buffer sizes, bundling 

messages, overlapping communication w/ computation.  

The parallel scaling challenge: “Classical parallel graph 
algorithms perform poorly on current parallel systems”   



•  Parallel framework for small-world complex graph analysis 
•  10-100x faster than competing graph analysis software. 

–  Parallelism, algorithm engineering, exploiting graph topology. 

•  Can process graphs with billions of vertices and edges. 
•  Open-source: 

Image Source: visualcomplexity.com 

snap-graph.sf.net 

SNAP: Small-world Network Analysis and Partitioning 



SNAP Optimizations for real-world graphs 

•  Preprocessing kernels (connected components, 
biconnected components, sparsification) 
significantly reduce computation time. 
–  ex. A high number of isolated and degree-1 vertices 

   store BFS/Shortest Path trees from high degree vertices and 
reuse them 

  Typically 3-5X performance improvement 

•  Exploit small-world network properties (low 
graph diameter) 
–  Load balancing in the level-synchronous parallel BFS 

algorithm 
–  SNAP data structures are optimized for unbalanced 

degree distributions 



•  Boost Graph Library 
–  C++, graph interface and components are generic 

•  JUNG 
–  Java-based, graph algorithms + visualization engine 

•  igraph 
–  C library with R and Python interfaces 

•  MultiThreaded Graph Library (MTGL) 
–  Boost Graph library-like, for multithreaded architectures  

•  … 
•  Network Workbench 

–  GUI for analysis, workflow 
•  Cytoscape 

–  Biological network analysis,  
 user-contributed plug-ins,  

•  … 

Libraries and Frameworks for graph analysis 



•  BFS (from a single vertex) on a static, 
undirected R-MAT network with average vertex 
degree 16. 

•  Evaluation criteria: largest problem size that 
can be solved on a system, minimum execution 
time. 

•  Reference MPI, shared memory 
implementations provided. 

•  NERSC Franklin system is ranked #2 on Nov 
2010 list. 
–  BFS using 500 nodes of Franklin 

•  Graph 500 June 2011 list submissions 
–  NERSC Hopper, 25 GTEPS, SCALE 37,  

 1800 nodes 
–  NERSC Franklin, 16 GTEPS, SCALE 36,  

 4000 nodes 

Graph 500 “Search” Benchmark (graph500.org) 

A.	
  Buluc,	
  K.	
  Madduri,	
  Proc.	
  SC	
  2011	
  



•  Large-scale graph analytics: Introduction and 
motivating examples 

•  Designing parallel graph analysis algorithms and 
software 

•  Application case studies 
–  Community Identification in social networks 
–  RDF data analysis using compressed bitmap indexes 

Talk Outline 



•  Implicit communities in large-
scale networks are of interest in 
many cases. 
–  WWW 
–  Social networks 
–  Biological networks 

•  Formulated as a graph clustering 
problem. 
–  Informally, identify/extract “dense” 

sub-graphs. 
•  Several different objective 

functions exist. 
–  Metrics based on intra-cluster vs. inter-

cluster edges, community sizes, 
number of communities, overlap … 

•  Highly studied research problem 
–  100s of papers yearly in CS, Social 

Sciences, Physics, Comp. Biology, 
Applied Math journals and conferences.  

Community Identification 

Image Source: visualcomplexity.com 



•  Measure based on optimizing inter-cluster density over 
intra-cluster sparsity. 

•  For a weighted, directed network with vertices partitioned 
into non-overlapping clusters, modularity is defined as 

•  If a particular clustering has no more intra-cluster edges 
than would be expected by random chance, Q=0. Values 
greater than 0.3 typically indicate community structure. 

•  Maximizing modularity is NP-complete. 

Modularity: A popular optimization metric 



For an unweighted and undirected network, modularity is 
given by 

and in terms of clusters/modules, it is equivalently 

Modularity 

Resolution limit: Modules  
will not be found,  
optimizing modularity, if  



•  New parallel algorithms for modularity-optimizing 
community identification. 
–  Divisive: edge betweenness-based, spectral 
–  Agglomerative 
–  Hybrid, multi-level 

•  Several algorithmic optimizations for small-world 
networks. 

•  Analysis of large-scale complex networks constructed 
from real data. 

•  Note: No single “right” community detection algorithm 
exists. Community structure analysis should be user-
driven and application-specific, combining various fast 
algorithms. 

Our Contributions 

Bader and Madduri, “SNAP”, IPDPS 2008. 



•  Top-down approach: Start with entire network as one 
community, recursively split the graph to yield smaller 
modules. 

•  Two popular methods: 
–  Edge-betweenness based: iteratively remove high-centrality 

edges. 

  Centrality computation is the compute-intensive step, parallelize it. 
–  Spectral: apply recursive spectral bisection on the “modularity 

matrix” B, whose elements are defined as Bij = Aij – didj/2m. 
Modularity can be expressed in terms of B as: 

  Parallelize the eigenvalue computation step (dominated by sparse 
matrix-vector products). 

Divisive Clustering, Parallelization 



•  Bottom-up approach: Start with n singleton communities, 
iteratively merge pairs to form larger communities. 
–  What measure to minimize/maximize? modularity 
–  How do we order merges? priority queue 

•  Parallelization: perform multiple “independent” merges 
simultaneously. 

Agglomerative Clustering, Parallelization 



•  Simulated annealing 
•  Extremal optimization 
•  Linear programming 
•  Statistical inference 
•  Spin models, random walks 
•  Clique percolation 
•  … 

Other Community Identification 
Approaches 



•  How would a memory-efficient, near linear-work 
greedy approach perform on real data? 

•  Helpful preprocessing steps 
–  2-Core reduction of the graph 

  High-percentage of degree-1 vertices in networks with 
exponential and power-law degree distributions. 

–  Filter very high-degree vertices (d > dH ≈ √n) 
  Ambiguity on what cluster they belong to.  

Engineering a hybrid parallel community 
identification algorithm 

3 4 

1 1 



•  Coarsen/sparsify graph 
–  Local search at vertices to identify dense 

components, completely relax priority queue 
constraint => abundant parallelism.  

–  Future work: Identify network-specific motifs (bipartite 
cliques). 

•  Run greedy agglomerative approach once 
graph is less than size threshold. 

Hybrid approaches: Parallelization 

4 6 1 1 
1 



   Assembled a collection for algorithm performance analysis, from 
some of the largest publicly-available network data. 

Real-world data 

Name # vertices # edges Type 
Amazon-2003 473.30 K 3.50 M co-purchaser 
eu-2005 862.00 K 19.23 M www 
Flickr 1.86 M 22.60 M social 
wiki-Talk 2.40 M 5.02 M collab 
orkut 3.07 M 223.00 M social 
cit-Patents 3.77 M 16.50 M cite 
Livejournal 5.28 M 77.40 M social 
uk-2002 18.50 M 198.10 M www 
USA-road 23.90 M 29.00 M Transp. 
webbase-2001 118.14 M 1.02 B www 



SNAP vs. Other Implementations  
(serial performance) 

Webbase-2001 
(n=118M, m=1.02B) 

Largest network analyzed in prior papers. 

SNAP 4x faster! Requires 12 GB memory 
vs. 30 GB for Louvain algorithm. 

Amazon-2003 
(n=473K, m=3.5M) 

igraph: C library for network analysis. 
SNAP requires 0.5 GB memory vs. 12 GB+ for 
igraph CNM implementation! 

igraph time  
~ 8 hours. 

Results on a Intel Xeon 5560 (“Nehalem”) system 
•  2 sockets x 4 cores x 2-way SMT 
•  12 GB DRAM, 8 MB shared L3 
•  51.2 GBytes/sec peak bandwidth 
•  2.66 GHz proc. 



SNAP Algorithms: Comparative Performance 

Amazon-2003 
(n=473K, m=3.5M) 

•  Smallest network in the 
test suite. 
•  Divisive edgeBC and 
basic agglomerative 
clustering algorithm 
(CNM) highly compute-
intensive. 
•  CNM-RAT (comm. 
sizes factored in) 
significantly faster than 
CNM. 

~1.5 min. <1 s. 

~500 min. 

Performance results on a Intel 
Xeon 5560 (Nehalem) system. 



Communities: Sizes and Cardinality 

# of communities 
CNM        240 
Spectral  10K 
Hybrid     196 

Amazon-2003 
(n=473K, m=3.5M) 

Spectral alg. fails to 
resolve communities 
beyond one level of the 
agglomerative clustering 
dendrogram! 

CNM 

Spectral 



Communities: Modularity 

•  Hybrid approach 
performs surprisingly 
well. 
•  # of communities from 
CNM-RAT and Hybrid 
roughly the same. 
•  CNM-RAT suffers in 
modularity quality. 
•  CNM did not finish (> 
6hrs) for most networks. 



•  Analysis of dynamic graphs becoming increasingly important: detect 
trends (WWW), allegiance switching, emerging communities (social 
networks).  

•  Goal: Avoid computing from scratch. 
•  Consider path-based problems: 

–  Are there paths connecting s and t between time T1 and T2? 
–  Does the path between s and t shorten drastically? 
–  Is a vertex suddenly very central? 

•  Contribution: New space-efficient data structures, fast algorithms 
for dynamic network analysis. 

Dynamic graph computations 

Link-cut tree for 
answering  
connectivity queries. 
Performance results on  
Sun Fire T5140. 
10 million vertices,  
80 million edges 

Construction time Query time (1 million queries) 

Madduri	
  and	
  Bader,	
  IPDPS’09.	
  



•  Large-scale graph analytics: Introduction and 
motivating examples 

•  Designing parallel graph analysis algorithms and 
software 

•  Application case studies 
–  Community Identification in social networks 
–  RDF data analysis using compressed bitmap indexes 
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•  The RDF (Resource Description Framework) data model 
is a popular abstraction for linked data repositories  
–  triple form [<subject> <predicate> <object>] 

–  Data sets with a few billion triples  
 quite common  

•  Emergence of “triple stores”, custom databases for 
storage and retrieval of RDF data 
–  Jena, Virtuoso, Sesame 

Semantic data analysis 



•  We use the compressed bitmap indexing software FastBit 
to index RDF data 

•  Search queries on RDF data can be accelerated with use 
of compressed bitmap indexes 

•  Our Contributions:  
–  Parallel bitmap index construction (we store the sparse graphs 

corresponding to each unique predicate) 
–  New query-answering approach: pattern matching queries on 

RDF data are modified to use bitmap indexes. 

•  Speedup insight: SPARQL queries can be expressed as 
fast and I/O optimal bit vector operations. 

FastBit-RDFJoin 

K.	
  Madduri,	
  K.	
  Wu,	
  Proc.	
  SSDBM	
  2011.	
  



Answering a SPARQL Query with Bitmap Indexes 

SPARQL Query 

Select ?p where { 
    ?p      <type>                  ‘scientist’ . 
    ?city1 <locatedIn>          ‘USA’ . 
    ?city2 <locatedIn>          ‘China’ . 
    ?p      <bornInLocation> ?city1 . 
    ?adv  <bornInLocation> ?city2 . 
    ?p      <hasDoctoralAdvisor> ?adv . 

Query Graph 

Search Query: list of all scientists born in a city in USA, who have/had a 
Doctoral advisor born in Chinese city.  

join Index lookup 

The ordering of bit vector operations determines query work performed. 



•  LUBM SPARQL test query evaluation time in milliseconds, 
performance on a 2.67 GHz Intel Xeon processor. 

Performance results: LUBM benchmark 



•  The SNAP (snap-graph.sf.net) framework offers  
 novel parallel methods for social and information  
 network analytics 

–  Two orders of magnitude faster than competing  
 “serial” software approaches 

•  We have designed the first parallel methods for  
 several community detection formulations 

•  Ongoing research projects 
–  Semantic data analytics using compressed bitmap  

 indexes 

–  Eulerian path-based de novo genome assembly 

•  Future research direction: Modeling network dynamics; 
persistent monitoring of dynamically changing properties 

Summary: Our Research Enables Complex 
Data-intensive Applications 

BIG DATA 
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Summariza'on,	
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Collaborators, Acknowledgments 



•  Questions? 

Thank you! 
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Graph 500 and Parallel BFS 



•  Compressed Sparse Row-like 

Graph representation 
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Flatten  
adjacency  
arrays 
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•  Each processor stores the entire graph (“full 
replication”) 

•  Each processor stores n/p vertices and all 
adjacencies out of these vertices (“1D 
partitioning”) 

•  How to create these “p” vertex partitions? 
–  Graph partitioning algorithms: recursively optimize for 

conductance (edge cut/size of smaller partition) 
–  Randomly shuffling the vertex identifiers ensures that 

edge count/processor are roughly the same  

Distributed Graph representation 



•  Consider a logical 2D processor grid (pr * pc = p) 
and the matrix representation of the graph 

•  Assign each processor a sub-matrix (i.e, the 
edges within the sub-matrix) 

2D graph partitioning 
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Flatten  
Sparse matrices 

Per-processor local graph  
representation  



Graph traversal (BFS) problem definition 
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distance from  
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Memory requirements (# of machine words): 
•  Sparse graph representation: m+n 
•  Stack of visited vertices: n 
•  Distance array: n 



1. Expand current frontier (level-synchronous approach, suited for low diameter 
graphs) 

Parallel BFS Strategies 
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2. Stitch multiple concurrent traversals (Ullman-Yannakakis approach, 
suited for high-diameter graphs) 

•  O(D) parallel steps 
•  Adjacencies of all vertices  
in current frontier are  
visited in parallel 
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9source  
vertex 

•  path-limited searches 
from “super vertices” 
•  APSP between “super 
vertices” 



Locality (where are the random accesses originating from?) 

A deeper dive into the “level synchronous” strategy 

0 31 

53 84 

74 

11 

93 

1. Ordering of vertices in the “current 
frontier” array, i.e., accesses to 
adjacency indexing array, 
cumulative accesses O(n). 

2. Ordering of adjacency list of each 
vertex, cumulative O(m). 

3. Sifting through adjacencies to 
check whether visited or not, 
cumulative accesses O(m).  

26 

44 

63 

1. Access Pattern: idx array -- 53, 31, 74, 26 
2,3. Access Pattern: d array -- 0, 84, 0, 84, 93, 44, 63, 0, 0, 11 



Performance Observations 

Youtube social network 

Graph expansion  Edge filtering 

Flickr social network 



Graph500 BFS: SCALE 32 performance on Hopper  
(Cray XE6, 24 cores per node) 
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Graph500 BFS: SCALE 32 communication time  
on Hopper (lower is better) 
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De novo Genome Assembly 



•  Genome Assembly: “a 
big jigsaw puzzle” 

•  De novo: Latin 
expression meaning 
“from the beginning” 
–  No prior reference 

organism 
–  Computationally falls 

within the NP-hard 
class of problems  

De novo Genome Assembly 

DNA extraction 

Fragment  
the DNA 

Clone into vectors Isolate vector DNA 

Sequence the library 

CTCTAGCTCTAA	
  
AGGTCTCTAA	
  

AAGTCTCTAA	
  
AAGCTATCTAA	
  

CTCTAGCTCTAAGGTCTCTAACTAAGCTAATCTAA	
  

Genome Assembly 



•  Break up the (short) reads into overlapping 
strings of length k.  

•  Construct a de Bruijn graph (a directed 
graph representing overlap between 
strings) 

Eulerian path-based assembly strategies 

ACGTTATATATTCTA	
   ACGTT	
   CGTTA	
   GTTAT	
  

TTATA	
   …..	
   TTCTA	
  

k	
  =	
  5	
  

CCATGATATATTCTA	
   CCATG	
   CATGA	
   ATGAT	
  

TGATA	
   …..	
   TTCTA	
  



•  Each (k-1)-mer represents a node in the graph 
•  Edge exists between node a to b iff there exists a k-mer 

such that its prefix is a and suffix is b. 

•  Traverse the graph (if possible, identifying an Eulerian 
path) to form contigs. 

•  However, correct assembly is just one of the many 
possible Eulerian paths. 

de Bruijn graph-based Assembly 

AAGACTCCGACTGGGACTTT	
  
AAG	
   AGA	
   GAC	
   ACT	
   CTT	
   TTT	
  

CTG	
  
TGG	
  GGG	
  

GGA	
  

CTC	
  TCC	
  CCG	
  
CGA	
  

ACTCCGACTGGGACTTTGAC	
  
TGA	
  



Application: Identification of biomass-degrading Genes 
and Genomes from cow rumen 

Image Source: Hess et al., Science 331(6016), 463-467, 2011. 

Goal: Identify microbial enzymes that aid in 
deconstruction of plant polysaccharides. 
Cow rumen microbes known to be particularly effective 
In breaking down switchgrass. 



•  Two major complications for de novo assembly: 
–  Likely uneven representation of organisms within a 

sample 
–  Likely polymorphisms between closely related 

members in an environment 
•  Assembly is difficult even if we have an estimate 

of organism representation in a sample 
•  If coverage is not known, Poisson likelihood 

estimates used by isolate genome assemblers 
break down. 

Metagenomes 



•  Given the challenges, what approach do we take? 

•  We can still construct the de Bruijn graph 
–  Try out various values of k, use base quality information 
–  Require parallel computation for dealing with the large data sizes 

•  Understand data set characteristics to suggest 
algorithmic changes in current assemblers  
–  Can we automate selection of k? 
–  What is the genome coverage like? 
–  Can we predict the approximate size of the metagenome? 

Towards designing a metagenome 
assembler 



Steps in the new de Bruijn graph-based 
assembly scheme 
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•  Process base quality information 
•  Mark ambiguous bases 

•  Try to merge paired reads 

•  Write back filtered reads 
•  Parallelization strategy: split input files into 

“P” parts; each node processes its file 
independently 
– Predominantly I/O bound 

1. Preprocessing 

paired reads 

Insert length of ~ 200bp 

125bp 
125bp 



•  Need a dictionary to track occurrences of each 
kmer 

•  Velvet uses a splay tree to track unique kmers 
– Splaying expensive for large data sizes; 

maintaining an ordered set unnecessary when 
kmer updates are predominantly insert-only 
(“cow rumen” dataset) 

•  Alternative: Ingest all kmers, perform 
lexicographical sort 

•  Parallelization: enumerate kmers independently 
+ one global sort to get kmer count 

2. Kmer spectrum construction 



Finding unique kmers: hashing vs sorting 
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Serial performance results on a 512 GB system  
(2.6 GHz Opteron processor) 
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Serial sort,  
18.6 GB memory 
4.2x faster 



•  Store edges only, represent vertices (kmers) 
implicitly. 

•  Distributed graph representation 
•  Sort by start vertex 
•  Edge storage format: 

3. Graph construction 

ACTAGGC CTAGGCA 

Store edge (ACTAGGCA), orientation,  
originating read id (x), edge count  

Read ‘x’: 

Use 2 bits per nucleotide 



•  High percentage of unique kmers  
⇒  Try compacting kmers from same read first 
–  If kmer length is k, potentially k-times space 

reduction! 

•  Parallelization: computation can be done 
locally by sorting by read ID, traversing 
unit-cardinality kmers. 

4. Vertex compaction 

ACTAG	
   CTAGG	
   TAGGA	
   AGGAC	
  

ACTAGGAC	
  



•  Identify connected components in the 
string graph 

•  Error resolution and scaffolding can be 
concurrently performed on multiple 
independent components 

5. Redistributing reads for Velvetg execution 

Compress/remove whiskers Identify and fix “low coverage” edges 

Long  
String 1 

Long  
String 2 

Long  
String 1 

Long  
String 2 



•  Current data set (after preprocessing) 
requires 320 GB for in-memory graph 
construction 
– Experimented with 64 nodes (256-way 

parallelism) and 128 nodes (512-way) of 
NERSC Franklin (Cray XT4 system, 2.3 GHz 
quad-core Opteron processor) 

•  MPI across nodes + OpenMP within a 
node 

•  Local sort: multicore-parallel quicksort 
•  Global sort: sample sort 

Parallel Implementation Details 



•  Comparison: Velveth (up to graph construction) takes ~ 
12 hours on the 512 GB Opteron system. 

Parallel Performance 
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128 nodes: 213 seconds 64 nodes: 340 seconds 



•  Very conservative graph assembly 
– No filtering, getting exact global counts of 

kmers 
•  20% of time spent in MPI communication 

(including global sort)  
•  3.3x intra-node speedup for parallel sort 

(~7 GB array), execution time 32 seconds 
•  I/O (preprocessing and kmer freq.) not a 

bottleneck up to 128 nodes 

Observations 


