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President Obama cites Communication Avoiding algorithms in
the FY 2012 Department of Energy Budget Request to Congress:

“New Algorithm Improves Performance and Accuracy on Extreme-Scale
Computing Systems. On modern computer architectures, communication
between processors takes longer than the performance of a floating point
arithmetic operation by a given processor. ASCR researchers have
developed a new method, derived from commonly used linear algebra
methods, to minimize communications between processors and the
memory hierarchy, by reformulating the communication patterns specified
within the algorithm. This method has been implemented in the
TRILINOS framework, %ighly-regarded suite of software, which
provides functionality for researchers around the world to solve large
scale, complex multi-physics problems.”

FY 2010 Congn/Zsional Budget, Volume 4, FY2010 Accomplishments, Advanced Scientific

Computing Research (ASCR), pages 65-67.
CA-GMRES

(Hoemmen, Mohiyuddin, et al.)
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What 1s “Communication”?

 Algorithms have 2 costs:
— Arithmetic (FLOPS)

— Movement of data

« Two parameters: o — Latency, B — Reciprocal Bandwidth
— Time to move n words of datais a + np

CPU CPU

Cihe I

DRAM CPU ” CPU
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Communication 1n the future...

* Gaps growing exponentially...

 Floating point time << 1/Network BW << Network Latency
* Improving 59%l/year vs. 26%l/year vs. 15%l/year

 Floating point time << 1/Memory BW << Memory Latency
* Improving 59%l/year vs. 23%l/year vs. 5.5%/year

* We want more than just “hiding” communication
— Arbitrary speedups possible, vs. at most 2x speedup
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Motivation: Sparse Matrices

« Many algorithms for
scientific applications require
solving linear systems of
equations: AX =D
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In many cases, the matrix A is sparse

— Sparse matrix: a matrix with enough
zero entries to be worth taking
advantage of

» This means that information is
“local” instead of “global”. A
given variable only depends on
some of the other variables.

— Example: Simulating Pressure
around Airfoil
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Figure: Simulating Pressure over Airfoil.
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Source: http://www.nada.kth.se




Solving a Sparse Linear System

« Direct methods solve a linear system in a
- D
A L U

finite sequence of operations
Direct Method for Solving Ax =b

— Often used to solve dense problems
— Ex: Gaussian Elimination

 [lterative methods iteratively refine an
approximate solution to the system

Initial guess
l — Used when
Yes . ' —di
S| Convergence? Return System is large ano! sparse — direct
solution method too expensive
1N0 « \We only need an approximation —
don’t need to solve exactly, so less
Refine operations needed

Solution

« Ais not explicitly stored
Iterative Method for Solving Ax = b — EX: Krylov Subspace Methods (KSI§A5)




How do Krylov Subspace Methods Work?

A Krylov Subspace is defined as:
Ki(A, v) = span{v, Av, A%v, ..., A" 1y}
In each iteration,

— Sparse matrix-vector multiplication (SpMV)
with A to create new basis vector

 Adds a dimension to the Krylov Subspace /

r

— Use vector operations to choose the “best”

approximation of the solution in the )

i ] i proj(r
expanding Krylov Subspace (projection of a , LI:'.
vector onto a subspace) K

* How “best” 1s defined distinguishes

different methods

Examples: Conjugate Gradient (CG), Generalized Minimum
Residual Methods (GMRES), Biconjugate Gradient (BiCG)




A Few Applications of Krylov Subspace Methods

* Image Processing
Applications

— Ex: Image segmentation,
Contour detection |

o Physical simulations Figure: Contour Detection [CSNYMK10]
— Solving PDEs

« Ex: Simulating blood flow (Parlab’s Health App)

Figure: ParLab Health App:  ® MOblle/CIOUd applications
Modeling Blood Blow in the
Brain

latency is long (or if this parameters are variable
between machines!)

« Often used in combination with Multigrid as bottom-solve

— Even more important where bandwidth is very limited,

* Auto-tuning becomes more important if we don’t know our

hardware

11




Krylov Subspace Methods are Communication-Bound

* Problem: Calls to communication-bound kernels every
Iteration

— SpMV (computing A*v)
* Parallel: share/communicate source vector
with neighbors

« Sequential: read A (and vectors) from slow
memory

— \ector operations
— Orthogonalization
» Dot products

» Vector addition and scalar
multiplication

DN B X =0

« Solution:

— Replace Communication-bound kernels by
Communication-Avoiding ones

— Reformulate KSMs to use these kernels 12




Example: GMRES

Pseudocode to perform s steps of original algorithm:

1: for k =1tosdo
2: W = AVj_+

3: Orthogonalize w against v, ..
Gram-Schmidt

4: end for

5. Compute solution using H

-

(SpMV operation in every iteration:

requires communication of current

~

entries of v (parallel) / reading A and
vectors from slow memory (sequential)

., Vx_1 using Modified

\

" Vector operations in every iteration

-

requires global communication
(parallel) / reading O(n) words from
slow memory (sequential)

)

_/
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Communication-Avoiding KSMs

* We need to break the dependency
between communication bound
kernels and KSM iterations

» ldea: Expand the subspace s SpMV
dimensions (s SpMVs with A), then

do s steps of refinement
— unrolling the loop s times

* To do this we need two new
Communication-Avoiding kernels Orthogonalize

— “Matrix Powers Kernel” replaces
SpMV

— “Tall Skinny QR” (TSQR) replaces
orthogonalization operations




The Matrix Powers Kernel
Given A, v, and s, Matrix powers kernel computes
{v, Av, A%, ..., ASlv}

If we figure out dependencies beforehand, we can do all the
communication for s steps of the algorithm only
reading/communicating A o(1) times!

— Parallel case: Reduces latency by a factor of s at the cost of
redundant computations

— Sequential case: reduces latency and bandwidth by a factor of s, no
redundant computation

Simple example: a tridiagonal matrix
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Communication Avoiding Kernels: TSOR

« TSQR =Tall Skinny QR (#rows >> #cols)

— QR: factors a matrix A into the product
of

 An orthogonal matrix (Q)
« An upper triangular matrix (R)

— Here, Alis the matrix of the Krylov
Subspace Basis \Vectors

 output of the matrix powers kernel

— Q and R allow us to easily expand the
dimension of the Krylov Subspace

« Usual Algorithm

« Compute Householder vector for each
column O(n log P) messages

«  Communication Avoiding Algorithm

« Reduction operation, with QR as
operator O(log P) messages

R

R2

U2

N

R4

U4

Shape of reduction tree depends on
architecture

— Parallel: use “deep” tree, saves
messages/latency

— Sequential: use flat tree, saves
words/bandwidth

— Multicore; use mixture

Figure: [ABDK10]




Example: CA-GMRES

s steps of original algorithm:

1: for k =1tosdo

2: w = Avy_1

3: Orthogonalize w against vy, ..., vx_1 using Modified
Gram-Schmidt

4. end for

5. Compute solution using H

s steps of CA algorithm:

1: W= [VO, Avp. A2V0, Ce e ASVO]
2: [Q, R] = TSQR(W)

3: Compute H using R

4. Compute solution using H

s powers of A for no extra
latency cost

s steps of QR for one step of
latency




Runtime per kernel, relative to CA-GMRES(k,t), for all test matrices,
using 8 threads and restart length 60

4.5 ‘
j Matrix powers
4.0 kernel .
TSQR
= 3.5 Block Gram- |4
& f Schmidt
I Small dense ||
g% 30 operations
o .
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Platform: Intel Clovertown, 8 cores

Sparse matrix name

[MHDY09]




Current CA Krylov Subspace Methods

CG, Lanczos, Arnoldi (Hoemmen, 2010),
GMRES (Hoemmen, Mohiyuddin, Demmel, Yelick, 2009)
BICG, CGS, BiCGStab (Carson, Knight, Demmel, 2011).

Factor of s less communication than standard version.

General approach for CG-like methods:

— In each outer loop, compute s basis vectors from previous
iteration’s residual vectors

— Perform s inner loop iterations
« Compute current recurrence coefficients
* Replace SpMVs with local basis vector operations
 Replace dot products with shorter, local dot products

— continue until convergence....
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Challenges: Stability and Convergence

Stability of Communication-Avoiding Krylov
Subspace Methods depends on s

e Does v. Av. A%v. ... look familiar?
Y, Y, 9

— Power Method! Converges to principle eigenvector

— Expected linear dependence of basis vectors

* Means the Krylov Subspace can’t expand any more — method
breaks down, convergence stalls

» Can we remedy this problem to remain stable for
larger s values?
— Yes! Other possible basis choices:
. Newton [V.(A— 010V, (A—0:0)(A=06:Nv,...]
e Chebyshev [V, T1(V), Ta(V)....]




Residual 2-norm
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CABiICG Convergence, s =10 , Cond# ~1e4d

—— Monomial

Residual 2-norm

— Newton
—— Chebyshev
* Naive
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Summary of Preliminary Results

Our CA variants (generally) maintain stability for s in between 2 and 10

— Which basis (Monomial, Newton, or Chebyshev) is most effective

depends on the specific Krylov method we use and the condition number
of A (and other spectral properties of A)

— Reduces communication costs by a factor of s
« So, if s = 10, possible speedup is 10x!

In general, as s increases, the number of iterations needed to converge
increases, and after a certain point, the method breaks down

— Could be remedied by preconditioning, extended precision, etc.

Must choose s to maintain stability
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Challenges: Performance

* How to choose s?
— Assuming that stability 1s not an 1ssue...

— After some value of s, the matrix Is too dense to avoid
communication using the Matrix Powers Kernel

— But exactly computing this value of s requires
computing the matrix powers!

* How to partition the matrix for ASx?

— As above, computing dependencies requires
computing matrix powers

— The redundant work (“ghost zones”) are induced by
the partition. So how can we achieve load balance?




Partitioning for CA-KSMs

0 T
R
(R
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HoLLL AL
KELL
1

OV A 0000’0

0 processor 1 10  processor2 20  processor3™ 3(0)  processor4

Parallel communication for Parallel communication for (assuming no
AsX(A5,X) = [X, Ax, A2, ..., Asx], y = ASX, Cancrf(')'r?;'eorg an
given overlapping partition of A given 1D rowwise layout of A

« Minimizing communication in matrix powers reduces to hypergraph
partitioning s-level column-nets.
* Problem: Computational and storage cost:
s x Boolean sparse matrix-matrix multiplies!




Partitioning for CA KSMs

Solution: Use reachability estimation [Cohen *94]

— O(nnz) time randomized algorithm for estimating size of transitive
closure.
 Calculating transitive closure costs O(n*nnz)

Can be used to estimate nnz-per-column in matrix product As in O(nnz)
time
— Can be used to sparsify the hypergraph — Drop large nets during
construction

— Reduces size of data structure and computational cost, while still
providing a good partition

Can be used to estimate overlap between columns — the number of nonzero
rows two column have in common

— This could allow us to heuristically load balance




« What if Ais stencil-like (in general,

Challenges: Performance for Stencil-like Matrices

o(n) cost to read)?
— In the sequential algorithm...

* Not communication-bound
due to reading A, but...

 Communication bottleneck is

now reading Krylov vectors

— O(kn) cost to read
Krylov basis vectors
every k steps

Can we reduce the communication
cost of k steps from O(kn) to O(n)?

(i, J-

(i-1,))

(i, j+1)

@i+1,))

10 20 30 40 50 60
=

Figure: 2D 5-point stencil. Each grid-
point is updated at each time-step
using only nearest neighbor values
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Streaming Matrix Powers Computation

* Idea: Don’t explicitly store basis vectors

— Streaming Matrix Powers: Interleave matrix powers computation and
construction of the Gram Matrix G

— Part i computes G+=V;'V; , discards V,

(AT)" p Ap —-——
¥ .} > [ |
(AT) k r P Ak?, P

 Tradeoff: requires two matrix powers invocations, but
bandwidth reduced by a factor of k

« OKif reading and applying A is inexpensive (e.g., stencil, AMR
base case, others?)

« Overall communication reduced from O(kn) to O(n) !

33




Auto-tuning for CA-KSMs

« Auto-tuning for stability
— Choice of basis to use
« Depends on s, condition number of A, method, etc.

« Auto-tuning for performance

— Partitioning A amongst parallel processors to minimize
communication

— Partitioning for cache blocking to maximize cache reuse
— Determine which variant of the matrix powers kernel to use
* E.g., “streaming” if A is stencil-like

— Many other standard parallel and sequential optimizations...

« Eventually will be built into pOSKI (Parallel Optimized Sparse Kernel
Interface), an auto-tuning library for sparse matrix computations
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What Is preconditioning?

The number of iterations a KSM takes to converge depends on the
“condition number” of A

— Condition number is a property of a matrix/system (not of the algorithm
or precision used)

« For Ax=Db, roughly denotes how error in b affects error in x

— The lower the condition number, the fewer iterations needed for
convergence

Preconditioning: Instead of solving Ax=b, solve (MA)x = Mb, where the
matrix MA has a lower condition number than A

— Many methods exist for finding a matrix M which has this property

* “Sparse Approximate Inverse”, “Incomplete LU, “Polynomial
Preconditioning”, etc.

This technique is used in almost all practical applications of KSMs




What About Preconditioning in CA-KSMSs?

Problem: CA preconditioning approach requires a
different approach/implementation for each type of
preconditioner!

Existing algorithms
« Polynomial preconditioners (Saad, Toledo)

« M is polynomial in A — easily incorporated into Matrix
Powers Kernel

« CA-Left and Right preconditioning (Hoemmen, 2010)
« For 2 non-trivial classes of preconditioners

« 1+ 0(1) more messages than single SpMYV, 1
preconditioner solve

 Tradeoff: computation cost increases significantly
« Can require twice as many flops as s SPMVs!
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Related Work: s-step Methods

Author Algorithm Basis Preconditioning Matrix TSQR?
Powers?
Van Rosendale, CG Monomial Polynomial No -
1983
Leland, 1989 CG Monomial Polynomial No -
Walker, 1988 GMRES Monomial None No No
Chronopoulos CG Monomial None No -
and Gear, 1989
Chronopoulos Orthomin, Monomial None No No
and Kim, 1990 GMRES
Chronopoulos, MINRES Monomial None No No
1991
Kim and Symm. Monomial None No No
Chronopoulos, L.anczos,
1991 Arnoldi
Sturler, 1991 GMRES Chebyshev None No No
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Related Work, contd.

Author Algorithm Basis Preconditioning | Matrix Powers? | TSQR?
Joubert and Carey, GMRES Chebyshev None Yes (stencil only) No
1992
Chronopoulos and Nonsymm Monomial None No -
Kim, 1992 . Lanczos
Bai, Hu, and Reichel, | GMRES Newton None No No
1991
Erhel, 1995 GMRES Newton None No No
De Sturler and van GMRES Chebyshev General No No
der Vorst, 2005
Toledo, 1995 CG Monomial Polynomial Yes (stencil only) -
Chronopoulos and CGR, Monomial None No -
Swanson, 1990 Orthomin
Chronopoulos and Orthodir Monomial None No -

Kinkaid, 2001
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Future Work

Other CA Krylov Subspace methods?

Evaluate current preconditioning methods
— and extend CA approach to other classes of preconditioners

Parallel Implementations
— Performance tests

Improving stability
— Extended precision

Auto-tuning work
— Incorporation of Matrix Powers into pOSKI (Jong-Ho Byun, et al., UCB)

— Code generation for Matrix Powers (collaborating with Ras Bodik, Michelle
Strout)

— Exploring co-tuning for CA-KSMS (i.e., Matrix Powers and TSQR)

Looking forward: how do Communication-Avoiding algorithms relate to
energy efficiency?




Thank you!

Questions?
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For k=0,1,..., until convergence, Do

Compute four N X (s+ 1) matrices via 2 X
2 matrix powers kernel, and change-of-basis matrix B

P - [pSk::« Apslu LR | Aspsk}
R = [T’Sk, ATSk, ey AST’SIJ
P* = [p;k, ATp;k, (AT

CA-BICG

;=
Tjt1
Tjt1 = T5 — OAD; Compute the (2s+2) x (s+ 1) coefficient matrices
*
Tj—H — 1 B 0(5+1)><(s+1)
Lk
6. _ J Cske = Osx1 5 dsp, = 1 B
J ri, Ty 0(s+1)><(s+1) Osx1
* " ke d°,  NV'ad, .
Piyr =Tjp1 + ijj Oshyj = ( SHJ)T T
(Qps)” Geluy
EndDo Tsktj+1l = Tsktj T OsktgPsk+j
1

Pehtjtl = Tsktj — skt [P, }%}Csk+j

* Kk ) * *1 .1
Fohjat = Tapgs — sk (P55 B ey
_ 40:i(s—4—1) 1:(s—7)
Asktj+1 = dskﬂ‘ = Qsk+5Csp1
0 T 0
Bapsi = (dokrjrs) Gllisjnn
Sk — T
(dgkﬂ') Gddy
Dsktj+1 = Tsktjtr1 T BsktiDsk+;
* ok %
psk+j+1 — Tsk+j+1 + 6sk‘+jpsk+j
0:(s—j—1)
Cshtj+1 = Ask+j+1 + Bskt5Copy

EndDo

EndDo




ALGORITHM 7.3: Biconjugate Gradient (BCG)

1
1

1.
2
3.
4

5
6
7.
8.
9.
0.
I

T

EndDo

Compute rg := b — Azq. Choose r}, such that (rg,ry) # 0.
Set. pg 1= rg.py =T,
Forj = 0,1,.... until convergence Do:
R L —_ / ) #*
Tjyl =&+ Qyp;
ri—a _?-A;_f;a_?-
3 -':: AT D] *

o1+ 55D
T O]

(Saad, 2000)




ALGORITHM 7.5: Conjugate Gradient Squared

1. Computery := b — Axqy:r} arbitrary.
2 SE‘T})(] = U =T

3. Forj=0,1,2.... until convergence Do:
4 a; = (rj,ry) [/ (Ap;, 1)

5. gi=u; —a;Ap;

6. xj =x; +o;(u;+q;)

7 rig =1 —a;Au; + g;)

S By =(riv )/ (rj.r3)

9 Uil = Tip1 + B354,

0 pit1 =uj + Bi(q; + 5ip;)

1. EndDo

(Saad, 2000)




ALGORITHM 7.6: BICGSTAB

~

8.
9.
10.
11.

IR N

Computery := b — Axg;r§ arbitrary;
P00 = TqQ.

Forj = 0,1,..., until convergence Do:

aj = (rj,ry)/(Apj, )
Sj = IJ e (_]:ijf‘lpj

wj = (As;, s;)/(As;, As;)

77
Tjpl = X5 + Q5P + WjS;
Fjp1 = 85 _$wj44"5j
B 1= ELne) 5 &
VRN =]
Pit1 = Tjiy1 + Bi(pj — w;jAp;)
EndDo

(Saad, 2000)
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Algorithm Overview

Initially assign r-vector of rankings (a,,..., a,), (sampled from
exponential R.V., A = 1) to each vertex v

In each iteration (up to s), for each vertex v, take the coordinate-wise
minima of the r-vectors reachable from v (denoted S(v), non-zeros
In column of A corresponding to v)

r— 1
Apply estimator: v

Intuition: lowest-ranked node in S(v) is highly correlated with [S(v)|

— Example: If S(v) contains half the nodes, we expect the lowest rank of
nodes in S(v) is very small.

. 1
Prob(|T —T| > €T) = O(—
(1T =T| = T) = O(—=)
where T IS the actual size of the transitive closure, r is the number
of randomized rankings per vector




ry(1)

| T4(r)

r;(1)

| 1a(r)
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| rar)
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(1) | .| r(n) r3(1) | .| rs(n) ry(1) | .| r(n)
r,(1)=min(
r (i), (i), rs(i))
) | n | [ Rd) | -] ) rs(1) | .| ra(n) ra(1) | ...] ra(n) rs(1) | .| rs(r)




ra(1) | ...| rq(n) rs(1) | ...| rs(r)

ry(1) =min(

r(1),13(1), ry(i))

r(1) | ...[ ryn) (1) | ...[ ry(r) ra(1) | ...[ rs(r) (1) | ...| ry(r) rs(1) | ...[ rs(r)




ra(1) | ...| rq(n) rs(1) | ...| rs(r) ra(1) | ...| rqa(n)

r,(1)=min(

r3(1), ra(1), 15(i))

r(1) | ...[ ryn) (1) | ...[ ry(r) ra(1) | ...[ rs(r) (1) | ...| ry(r) rs(1) | ...[ rs(r)




r;(1)

| r5(r)

ry(1) = min(

F(1),13(1), 1y(i))

ry(1)

| 1alr)

r;(1)

| 1a(r)

ry(1)

| r4(r)




Preliminary Experiments

Set of small test matrices from UFSMC [Davis ‘94]

tol = 0.5 (half-dense), 4 parts, se{2, 3, 4} depending on
fill in AS

Comparison of hypergraph size and communication
volume for four strategies:

— s-level column nets

— Sparsified column nets (somewhere between s- and 1-level)
— 1-level column nets

— Graph partitioning (A+AT)

Software: PaToH [Catalyurek, Aykanat, ‘99] and Metis
[Karypis, Kumar ‘98]




Matrix Application n nnz
arc130 Materials 130 1037
Science

west0132 Chemical 132 413
Engineering

str 0 LP 363 2454

gre 343 Directed 343 1032

graph

mcca Astrophysics 180 2659

rw496 Markov 496 1859
Chain Model
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Normalized Communication Volume (PaToH)
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Results and Observations

 Sparsified nets lead to comparable partition
quality for significantly reduced hypergraph
Size

* Tuning parameter tol gives flexibility to trade
off:
— Quality of partition
— Computation and storage costs




