
U.S. Department of Energy Contract No. DE-AC02-05CH11231

FastBit Indexing
for Searching and Analyzing Massive Data

John Wu
Scientific Data Management

Berkeley Lab

John.Wu@nersc.gov

http://sdm.lbl.gov/fastbit!

FastBit Overview

 A bitmap indexing software package that provides
extremely efficient search operations over large datasets
  Measured >10X faster than the most popular bitmap

index implementation
  Contains innovative techniques: efficient compression

(patent 2004), multi-level encoding, binning
 Used in many scientific and commercial applications

  Combustion, astrophysics, network security, drug
discovery

 One of 100 most innovative new products in 2008,
R&D 100 Award

FastBit Technology 1: Compression

10000000000000000000011100000000000000000000000000000……………….00000000000000000000000000000001111111111111111111111111!

Example: 2015 bits!

Main Idea: Use run-length-encoding, but...!
partition bits into 31-bit groups [not 32 bit] on 32-bit machines!

31 bits! 31 bits!(62 groups skipped) …!31 bits!

•  Name: Word-Aligned Hybrid (WAH) code (US patent)
•  Key features: WAH is compute-efficient

 Uses the run-length encoding (simple)
 Allows operations directly on compressed bitmaps
 Never breaks any words into smaller pieces during operations
 Worst case index size 4N words, not N*N (without compression)

Encode each group using one 32-bit word!
31-bit count=63!

Merge neighboring groups with identical bits!

31 literal bits!0! 1! 0! 31 literal bits!0!

32 bits!

[Wu, Otoo, and Shoshani 2006]!

Compressed Index Performance

•  WAH compressed indexes are 10X faster than DBMS,
5X faster than our own version of BBC

•  Based on 12 most queried variables from a STAR dataset with 2.2 million
rows, average column cardinality 222,000

2-attribute queries! 5-attribute queries!

FastBit Technology 2: Multi-Level Encoding
  Prove theoretically that

the second level needs to
have only a small number
of bins (15 ~ 50
depending on the
skewness of the data)

  Only two levels are
necessary

  Result: 5X speedup on
average

  Combined with WAH,
could achieve 50X
speedup

10X faster!

[Wu, Shoshani and Stockinger 2010]!

Efficient Numerical Searches

b) temp < 3	

c) CH4 > 0.3 AND ���
 temp < 3	

d) CH4 > 0.3 AND ���
 temp < 4	

a) CH4 > 0.3	

Scientific data contains many variables, multivariate searches are
challenging for most techniques, FastBit is very effective for such operations
Application below: locating the flame front in a burning methane jet

[Stockinger, Wu,
Shalf, Bethel 2005]!

Efficient Keyword Searches
  FastBit provides efficient indexing

techniques for not only numbers,
but also text values

  FastBit can answer queries
hundreds of times faster in many
cases

  Test data: Enron email archive
  Searches involving mixed keywords

and numerical values: message
contains “California” and sender =
“kenneth.lay@enron.com” and
date=“2001/07/18”

  Comparing against MySQL and a
version of MonetDB with FastBit

  More on text searches later by
Kamesh Madduri

[Stockinger, Cieslewicz, Wu, Rotem, Shoshani 2008]!

8

Example application (after data is collected):
Forensic Network Data Analysis

  Application scenario: post-incident analysis, looking back into historical
records to determine the root cause

  Use network session records produced by BRO intrusion detection
system (IDS)
  Billions of session records available, usually in ASCII text
  Existing analysis tools can efficiently utilize only a small fraction of

the records
  FastBit enables interactive analysis of a large number of records

  Finding malicious network scans, characterized by a small number
of hosts contacting nearly all machines in a network

  Improving quality of IDS alarms by correlating real-time
observations with historical trends

  New features required of FastBit
  Group-by operator
  Conditional histogram

9

Dynamic Histograms In FastBit
  Conditional histograms are common

in data analysis
  E.g., finding the number of

malicious network connections
in a particular time window

  Top left: a histogram of number of
connections to port 5554 of machine
in LBNL IP address space (two-
horizontal axes), vertical axis is time
  Two sets of scans are visible as

two sheets
  Bottom left: FastBit computes

conditional histograms much faster
than common data analysis tools
  10X faster than ROOT
  FastBit indexes improve ROOT

by 5X [Stockinger, Bethel, Campbell, Dart, Wu 2006]!

10

Example Application (while data is collected):
Real-Time Network Data Analysis

  Application scenario: detect anomalous
traffic before it can do any damage

  Existing stream data analysis tool
examines current time window only
  Need to compare current observation with

past trends
  Ex: Host A is contacting many others, is

this common in the past? or has this
happened in the past?

  Need to do all these in real-time
  Process current data (efficient stream

engine)
  Archive and index incoming data (efficient

index update)
  Answer queries in archived data (efficient

query processing on read-only data)
  New feature required of FastBit: efficient

index update

11

FastBit for Network Traffic Streams

  Working with UCB database group, implemented a prototype system that
integrates FastBit with TelegraphCQ, a stream query engine

  Tested the integrated system with a benchmark of 5 realistic queries
  Graph above shows that the combined system easily handles 10,000 network

sessions per second on a 2.4GHz P4 system
  A typical desktop computer is sufficient to handle network traffic to a large

supercomputer center (~ 500 network sessions per second)

Reiss, Stockinger, Wu,
Shoshani, Hellerstein 2007!

Summary of FastBit Technology

  FastBit is extremely efficient in many applications: high-energy physics,
combustion, astrophysics, network security, drug discovery, …

  The efficiency comes from new methods and algorithms, careful
software engineering, and rigorous theoretical analyses to prove
optimality

  Efficient compression for bitmaps
  Our compression is 10X faster than nearest competitor
  Proven optimal in computational complexity theory

  Multi-level bitmap encoding
  Two-level indexes 3-5 times faster than one-level indexes
  Proven that two levels are sufficient in theory

  Binning for numerical data with a very large number of distinct values
  Developed a clustering technique that is 3-5 times faster than no

binning for high-cardinality data

Overview of FastBit Software
  Task: given a large collection of data, efficiently

locate records satisfying a set of conditions
  Example data – structured data:

  High-energy physics data – billions of collision
events, with hundreds of variables

  Simulation data on a mesh – each mesh point may
be viewed as a record/row, each variable a column

  Example queries:
  Count how many records where pressure > 1000

and temperature between 500 and 1000
  Select all records where momentum > …

  FastBit solves this search problem with
  Column data organization
  Bitmap index

  FastBit is an award-winning open-source
software
  R&D100 award (Wu, Shoshani, Otoo,

Stockinger, 2008)
  Used in a number of research projects

tem
perature

pressure
m

om
entum

row

colum
n

Discovery 2015!

What FastBit Is Not

!   Not a database management system (DBMS)
  It is much closer to BigTable (NoSQL) than to ORACLE
  Most SQL commands are not supported

!   Not a plug-in for a DBMS
  It is a stand-alone data processing tool
  No DBMS is needed in order to use FastBit

!   Not an internet search engine
  FastBit is primarily for structured data; internet search

engines are for text (unstructured) data
!   Not a client-server system

  We have used FastBit in server programs, but by itself,
it is not a client-server system

Discovery 2015!

How Do I Use FastBit

 Command-line tools
  A handful of command-line tools are available to load

data, build indexes, and query data
 Write your own program using FastBit as a library

  Two levels of API:
•  Class table
•  Class part + query

  FastBit is written in C++
•  Other languages may access FastBit through C API

Discovery 2015!

Discovery 2015!

Exercise I: Install FastBit Software

 Download FastBit from http://codeforge.lbl.gov/projects/fastbit
  Jun 2011 version: ibis1.2.4
 Unpack fastbit-ibis1.2.4.tar.gz

  tar xvzf fastbit-ibis1.2.4.tar.gz && cd fastbit-ibis1.2.4
  Installation instruction on a Unix-type system

  Prerequisite – C++ compiler (e.g., g++), pthread library, make, gzip, tar
(pretty standard stuff)

  Commands: ./configure && make –j 2
  Installation instruction on MS Windows

  Prerequisite – pthreads-w32, VisualStudio (or another C++ compiler)
  Compile with VisualStudio

•  Start VisualStudio, open win/ibis.sln
  Compile with MinGW

•  cd win && make –f MinGW.mak ibis
 Compilation will take 15 minutes or more

FastBit Data Model
 FastBit is designed to search multi-

dimensional append-only data
  Conceptually in table format

•  rows  objects
•  columns  attributes

 FastBit uses vertical (column-
oriented) data organization
  Efficient for searching

 Physical data layout
  A data table is split into “partitions”
  Each partition is a directory in a file

system
  Each directory has a metadata file

describing the data partition
  Each column is represented by a file

row

colum
n

Discovery 2015!

Metadata File

BEGIN HEADER
DataSet.Name=testData
Number_of_rows=1000000
Number_of_columns=6
Table_State=1
index = <binning none/><encoding equality/>
END HEADER

BEGIN Column
name=i9
description=integers 0, 1, ..., and 9
data_type=Int
index = <encoding range/>
END Column

Discovery 2015!

A < 2 2 < A

Basic Bitmap Index

 First commercial version
  Model 204, P. O’Neil, 1987

 Easy to build: faster than building B-
trees

 Efficient for querying: only bitwise
logical operations
  A < 2  b0 OR b1
  A > 2  b3 OR b4 OR b5

 Efficient for multi-dimensional queries
  Use bitwise operations to combine

the partial results
 Size: one bit per distinct value per row

  Definition: Cardinality == number of
distinct values

  Compact for low cardinality
attributes, say, cardinality < 100

  Worst case: cardinality = N,
number of rows; index size: N*N
bits

Data
values
0!
1!
5!
3!
1!
2!
0!
4!
1!

1!
0!
0!
0!
0!
0!
1!
0!
0!

0!
1!
0!
0!
1!
0!
0!
0!
1!

0!
0!
0!
0!
0!
1!
0!
0!
0!

0!
0!
0!
1!
0!
0!
0!
0!
0!

0!
0!
0!
0!
0!
0!
0!
1!
0!

0!
0!
1!
0!
0!
0!
0!
0!
0!

=0! =1! =2! =3! =4! =5!
b0! b1! b2! b3! b4!b5!

Discovery 2015!

Strategies to Improve Bitmap Index

 Compression
  Reduce the size of each individual bitmap
  Best known compression method: Byte-aligned Bitmap Code

[Antoshenkov 1994], used in Oracle bitmap index
  Word-Aligned Hybrid (WAH) code trades some disk space for

much more efficient query processing
 Encoding

  Basic equality encoding, in Model 204
  Multi-component encoding [Chan and Ioannidis 1998]
  Multi-level encoding

 Binning
  Equal-width binning, equal-depth binning, …
  Has to perform candidate check to rule out false positives, time for

candidate check dominates the total query response time
  Order-preserving Bin-based Clustering (OrBiC)

Discovery 2015!

Indexing Option String

 Syntax
  <binning … /> <encoding … /> <compression … />

 Binning options
  Basic binning option: linear scale, log scale, equal-weight
  Examples:

•  <binning none/>
•  <binning nbins=1000/>
•  <binning begin=10, end=20, scale=linear, nbins=10/>
•  <binning precision=2/>

 Encoding options
  Three basic options: equality, range and interval
  Combinations:

•  multi-level, e.g., <encoding interval-equality/>
•  multi-component, e.g., <encoding equality ncomp=2/>

 Compression options
  Public release only supports WAH compression, most users should

leave this part out

Discovery 2015!

Indexing Option Suggestions

  Not specifying any option == default option
  Use the default unless you known something about your data and

query
  The following recommendations primarily depends on the column

cardinality and the type of query
  Definition: column cardinality == number of distinct values actually

appear in the data partition
  Cardinality < 100:

  Equality queries: <binning none/> <encoding equality/>
  Range queries: <binning none/> <encoding interval/>

  Cardinality < 1,000,000 (Nrows/10):
  Have disk space (index size 2X raw data size):

 <binning none/> <encoding interval-equality/>
  Very high cardinality: <binning none/> <encoding binary/>
  Small number of values to be queried: use them as bin boundaries,

treat the number of bins as the column cardinality above

Discovery 2015!

FastBit Command-Line Tools

 All source code for these tools are in examples directory
 Ardea: convert text version of the data records into FastBit

raw binary data format – an operation common known as
“load”
  ardea –d output-dir –t text-file –m columnname:type

  Ibis: query existing data
  ibis –d data-dir –q “select c1,c2 where c3 > 5 and c4 < 6”

Discovery 2015!

Exercise II: Use Command-Line Tools

  cd tests
  ../examples/ardea -d tmp -m "a:int, b:float, c:short" -t test0.csv

  ls –l tmp
total 4
-rw-r--r-- 1 John Users 400 Jun 18 14:40 -part.txt
-rw-r--r-- 1 John Users 400 Jun 18 14:40 a
-rw-r--r-- 1 John Users 400 Jun 18 14:40 b
-rw-r--r-- 1 John Users 200 Jun 18 14:40 c

  ../examples/ibis –d tmp –build-index “<binning none/>”
  ../examples/ibis –d tmp –q “where a < 5”
  ../examples/ibis –d tmp –q “select a, b, c where a < 5” –v
  More details can be found in doc/quickstart.html, or at

http://crd.lbl.gov/~kewu/fastbit/doc/quickstart.html
  Generate synthetic data with tests/setqgen.cpp

  Larger sample data available from http://sdm.lbl.gov/fastbit/data/
Discovery 2015!

Software Layering

 Abstract view: ibis::table and ibis::tablex
  A table is immutable; to add new records, use tablex
  A query (through function select) produces another

table
  Additional functions include: build indexes, get

conditional histograms, get column values, …
 Concrete view: ibis::part and ibis::query

  Each part (partition) is vertically organized
  An index for a column of a partition is built in memory
  A query on partition produces a compressed bitmap

representing the rows satisfying the specified conditions

Discovery 2015!

Ingesting Data

 Key functions from ibis::tables, used in examples/ardea.cpp
// create a tablex object

ibis::tablex* ta = ibis::tablex::create();
// parse the metadat string

ta->parseNamesAndTypes(metadata.c_str());
// read CSV file, store content in memory

ierr = ta->readCSV(csvfiles[i], nrpf, del);
// write the content from memory to the named directory

ierr = ta->write(outdir, “name”, “some description");

Discovery 2015!

Simple Queries

 Key functions from ibis::table, used in examples/thula.cpp
// create a table data object from a directory name

ibis::table *tbl = ibis::table::create(“directory-name”);
// a selection forms its own table

ibis::table *res = tbl->select(“select clause”, “where clause”);
// create a cursor for row-wise access to the results

ibis::table::cursor *csr = res->createCursor();
// fetch the next row and dump it to std::cout

while (0 == csr->fetch())
 csr->dump(std::cout);

Discovery 2015!

Low-Level Query Functions

 Requires the use of ibis::part and ibis::query (examples/rara.cpp)
 // construct a partition from the given directory

ibis::part apart(argv[1], static_cast<const char*>(0));
// create a query object with the current user name

ibis::query aquery(ibis::util::userName(), &apart);
// assign the query conditions as the where clause

int ierr = aquery.setWhereClause(argv[2]);
// select columns to print

ierr = aquery.setSelectClause(sel.c_str());
// evaluate the query

ierr = aquery.evaluate();
// print the selected values

aquery.printSelected(std::cout);

Discovery 2015!

Histogram Functions

 Conditional histograms are commonly used in data analyses
  Count the number of events collected every hour for all

events from a particular day (1-D)
  Count the number of network connection attempts per

minute per destination port for a specific duration of time (2-
D)

 Class ibis::part also has a set of functions to compute histograms
  get1DDistribution
  get2DDistribution
  get3DDistribution
  May use regular bins or adaptive bins
  May be weighted by another variable

  FastBit uses indexes to reduce the amount of data accessed and
speeds up the histogram computations

Discovery 2015!

Exercise III: Minimal Query Program

 Write a C++ program that takes a directory name and a query
string as arguments, compute the number of records in the
directory satisfying the query conditions

 Compile and link
  Example

#include <table.h>
int main(int argc, char** argv) {
 ibis::table *tbl = ibis::table::create(argv[1]);
 ibis::table *res = tbl->select(0, argv[2]);
 std::cout << "The number of records satisfying \"" << argv[2] << "\" in "
 << argv[1] << " is " << res->nRows() << std::endl;
 delete res;
 delete tbl;
 return 0;
}

Discovery 2015!

Index Sizes to Expect

  Indexes are built for one column and one partition at a time
  The maximum size of an index is primarily determined by three

parameters: the number of rows N, the number of bitmaps used
B, and the bitmap encoding used.

  The range and interval encoded indexes are not compressible in
the worst case, therefore their sizes are N * B bits

 Under the equality encoding, for a binned index, B is the number
of bins, otherwise the number of bitmaps is the number of distinct
values (i.e., column cardinality)
  For small B, say, B < 100, N * B bits are needed because

bitmaps are likely not compressible
  For B < N / 10, the common case, index size is about 2 N

words
  For columns with extremely high cardinality, use binary encoding,

which requires log B bitmaps and N * log B bits

Discovery 2015!

Updating Data and Indexes

 Most efficient way to add new records is to add a partition
to an existing table

 Modifying an existing row must be implemented as a
deletion following by an append

 Updating an index on a partition will cause a whole new
index to be written, which can take a long time compared to
the time to answer a query

 To improve response time, such updates are allowed to be
delayed, presumably till the system is no longer busy

Discovery 2015!

Parallelism

 Using ibis::part and ibis::query, each parallel processing element
could work on one data partition
  Additional code required to synthesize the final result

  Additional parallelism can come from having each processor
answer a part of a query
  For a query involving “a > 2 and b < 3”, process the condition

involving a and b on two separate threads or processors
  Require additional code to combine the partition results

  Prefer to have more partitions than the number of processors to
improve load balancing

  The original version of FastBit was a CORBA server program
  Current code were the core of the multithreaded server,

minus the CORBA functions
  All existing code is thread-safe

Discovery 2015!

THANKS!

ANY QUESTIONS?

More information at
http://sdm.lbl.gov/fastbit

FastBit mailing list
https://hpcrdm.lbl.gov/cgi-bin/mailman/listinfo/fastbit-users

List of contributors
https://codeforge.lbl.gov/.../AUTHORS

