
Timestamp Acknowledgments for Determining Message Stability

K. Berket, R. Koch, L. E. Moser, P. M. Melliar-Smith
Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106
fkarlo, ruppert, moser, pmmsg@alpha.ece.ucsb.edu

Abstract

Determination of message stability is important for mul-
ticast group communication systems, both for assuring
applications that messages have been delivered and also
for message buffer management. We present a protocol
for determining message stability that uses a single scalar
timestamp to acknowledge messages from many sources.
The protocol avoids the linear growth in the acknowledg-
ment size that occurs with vector acknowledgment proto-
cols. Compared to other protocols, the protocol consumes
significantly less network bandwidth, and its latency to the
determination of message stability is only slightly larger.
Synchronized physical clocks are shown to yield lower
latency than logical clocks. We also present a simple con-
nection establishment and group membership protocol for
use in conjunction with the message stability protocol.

Key words: Message buffer mangagement, group commu-
nication, message stability, timestamp acknowledgment

1 Introduction

Message stability is an important concept in multicast group
communication systems. A message is stable if every in-
tended receiver of the message has received it. Knowledge
that a message is stable allows the sender to remove the
message from its message buffers, because it will never
need to retransmit the message subsequently. Existing ap-
proaches to determining message stability require explicit
acknowledgments [1, 2] or transitive acknowledgments
[3, 4]. An explicit acknowledgment is sent by a receiver in
direct response to a message it receives; explicit acknowl-
edgments may be sent separately for each sender or may be
grouped to form a vector acknowledgment [5] for all of the
senders. A transitive acknowledgment, included in a newly
generated message, provides information about the receipt
of messages that causally precede [6] the message.

The major performance considerations for determining
the stability of a message are: (1) the bandwidth consumed

This research has been supported in part by DARPA, Contract N00174-
95-K-0083, and by Lawrence Berkeley National Laboratory for the U.S.
Department of Energy, Contract W-7405-ENG.48.

by the acknowledgments, (2) the computing power required
to generate and process the acknowledgments, (3) the
memory (buffers) required, and (4) the latency to determine
that the message is stable.

The bandwidth consumed by the acknowledgments
causes the explicit acknowledgment scheme to scale poorly.
As the number N of group members increases, the band-
width required increases as N2. If the number of receivers
is large, a sender may be overwhelmed by the acknowl-
edgments (acks) it receives from them. Even if this ack
implosion problem is remedied, the bandwidth consumed
grows linearly with the size of the sender group. Transitive
acknowledgments use less bandwidth, because only the
identifiers of the direct causal predecessors of a message
need to be sent as acknowledgments. The number of direct
causal predecessors is typically smaller than the size of
the sender group, but the bandwidth required still increases
with the size of the receiver group due to ack implosion.

For the transitive acknowledgment scheme, the comput-
ing power required at the receivers is large because the
receivers must build and maintain causal order graphs. The
explicit acknowledgment scheme may require substantial
computing power at the senders to handle the effects of ack
implosion; however, a hierarchical structure can be used to
mitigate the ack implosion problem.

The memory required for message buffering for both
the transitive acknowledgment and the explicit acknowl-
edgment protocols is proportional to the mean latency to
the determination of message stability. Messages that are
not determined to be stable must be retained in the buffers
of the sender because it may need to retransmit them to
achieve reliable delivery.

For explicit acknowledgments, the mean latency to the
determination of message stability is on the order of the
round-trip time between the sender and the receiver farthest
from it. The transitive acknowledgment scheme is of the
same order, but may incur additional delays due to the
processing required at each receiver.

The timestamp acknowledgment protocol presented here
determines the stability of messages, using a single scalar
timestamp to acknowledge messages from all of the senders.
A similar approach using a single logical (Lamport) times-
tamp for acknowledgments was presented in [7]. With the

timestamp acknowledgment approach, the bandwidth re-
quired for acknowledgments is independent of the number
of senders, and the computational cost for acknowledg-
ments is low.

2 Assumptions and Requirements

A distributed system consists of a finite set N of nodes that
are connected by a network that offers unreliable point-to-
multipoint communication channels. The number of nodes
is assumed to be large, and the structure of the network can
be arbitrary.

Each sender s has a receiver groupRs of receiver nodes
to which it is sending messages, and each receiver r has
a sender group Sr of sender nodes to which it is sending
acknowledgments. A node n 2 N can be both a sender
and a receiver and, typically, all of the nodes are both
senders and receivers, i.e., for all r; s 2 N , Sr = Rs = N .
Each sender s must know the members of its receiver
group Rs, and each receiver r must know the members
of its sender group Sr. Without this requirement, the
acknowledgment mechanisms cannot function properly; a
membership algorithm must be employed to provide this
information (see Section 6).

For the messages sent by the senders, the message
channels are assumed to be reliable FIFO channels, i.e., all
of the intended receivers receive all of the messages sent
by a given sender in the order in which they were sent. A
receiver sends acknowledgments to all of the senders from
which it receives messages. For the acknowledgments sent
by the receivers, the message channels are assumed to be
unreliable non-FIFO channels that deliver infinitely many
acknowledgments if infinitely many acknowledgments are
sent.

Each sender has access to a local clock, which can be
either a physical clock or a logical clock.� The clocks of
the senders are assumed to be synchronized.y The clock
synchronization can be done either in hardware (e.g., GPS-
based clocks or radio-controlled clocks) or in software
[8, 9]. The protocol does not rely on tightly synchronized
clocks. However, the greater the degree of synchrony in the
system, the smaller the mean latency to the determination
of message stability, as discussed in Section 4. To achieve
efficiency, the skew between the clocks at any two nodes

�Both kinds of clocks represent time as a monotonically increasing
function. A physical clock maintains its time value as a function of real
time, while a logical clock determines its current time according to two
rules postulated by Lamport [6]: (1) If two events e1 and e2 happen on
the same processor and e1 precedes e2 , then the time of e1 is less than
the time of e2 . (2) If e1 represents the sending of message m and e2
represents the reception of messagem, then the time of e1 is less than the
time of e2 .
yFor correctness, synchronized clocks are not necessary; however, for
reasonable latency to the determination of message stability, they are
necessary.

sending a message:
place current timestamp into timestamp field of message
place message in messageBuffer

receiving a message:
timestamp = msg.getTimestamp()
sender = msg.getSender()
if timestamp� timestampVector[sender]

ignore message
else

timestampVector[sender] = timestamp
deliver message

sending an acknowledgment:
place smallest timestamp from timestampVector[] into

acknowledgment

receiving an acknowledgment:
ack = msg.getAcknowledgment()
receiver = msg.getSender()
if ack > ackVector[receiver]

ackVector[receiver] = ack
minAck = min(ackVector)
for all messages in messageBuffer with

timestamp � minAck
mark message stable

Figure 1. Use of timestamp acknowledgments for
determining message stability.

should be less than the mean latency between the most
distant sender-receiver pair.

A sender sends messages on a regular basis and, thus, the
higher protocol layers must generate messages regularly.
The mean latency to the determination of message stability
is directly related to the minimum rate at which the senders
send messages.

A sender determines that a message, which it originated,
is stable if it has received an acknowledgment for that
message from every member of its receiver group. The
timestamp acknowledgment protocol presented in Section 3
determines the stability of messages.

3 The Protocol

We now describe the timestamp acknowledgment protocol;
the pseudocode is shown in Figure 1. Each sender uses its
local clock to timestamp each message it sends. When send-
ing an acknowledgment, a receiver acknowledges previous
messages that the senders in its sender group originated, by
means of an acknowledgment timestamp. The acknowledg-
ment timestamp that a receiver sends is distinct from the
sender’s timestamp. When receiving an acknowledgment

from a receiver, a sender determines whether the receiver
has received previous messages that it sent.

If the underlying network does not provide the receiver
with information about the sender of a message, then
the message must contain the sender identifier. In some
networks, such as ATM, each sender uses a different virtual
channel and, thus, sender identifiers are not necessary.

Each sender s has a send buffer in which it places
messages that it has sent but for which it has not yet received
acknowledgments from all nodes in its receiver group Rs.
The sender s also maintains a local acknowledgment vector
with one entry for each node inRs. Similarly, each receiver
rmaintains a local timestamp vector with one entry for each
node in its sender group Sr. At startup, all entries of these
vectors are initialized to 0, and the send buffer is cleared.

The protocol requires a sender to send a message at least
every tsend time units. Likewise, it requires a receiver to
send an acknowledgment at least every tack time units.

Upon receiving a message, a receiver checks whether the
timestamp of the message is less than or equal to the value
in the entry of its local timestamp vector corresponding to
the sender of the message. If so, it ignores the message
(because of the membership rules stated in Section 6.) Oth-
erwise, the receiver copies the timestamp of the message
into the entry of its local timestamp vector corresponding
to the sender of the message and then delivers the message.
The local timestamp vector of the receiver holds the times-
tamp of the last message it has received from each of the
senders in its sender group. Because the message channels
are reliable FIFO channels, the timestamps for a particular
sender are monotonically increasing. Before sending an
acknowledgment, a receiver chooses the smallest entry in
its local timestamp vector and places this timestamp in the
acknowledgment. This timestamp serves as an acknowl-
edgment for all messages that this node has received with
smaller or equal timestamps. The values of the acknowl-
edgments that a receiver sends increase monotonically.

Thus, if a receiver r sends an acknowledgment a1, the
next acknowledgment a2 that r sends contains at least the
information necessary to acknowledge all of the messages
that a1 acknowledges. If a sender s does not receive a1
but does receive a2, then it has received all of the acknowl-
edgment information contained in a1 and so does not need
to receive a1. This allows the protocol to use unreliable
non-FIFO channels for acknowledgments. Moreover, if r
sends the acknowledgments a1 and a2 in that order and
the sender s receives those acknowledgments in the reverse
order, then s can ignore a1.

Upon receiving an acknowledgment timestamp, a sender
knows that the receiver that sent the acknowledgment
has received all messages with timestamps less than or
equal to the acknowledgment timestamp. The sender
inserts the new timestamp value into the entry of its local
acknowledgment vector corresponding to the receiver that
sent the acknowledgment timestamp, if the new timestamp
value is larger than the timestamp value already in that
vector entry.

The smallest entry of the sender’s local acknowledgment
vector determines the message timestamp up to which every
receiver in its receiver group has received messages sent
by any of the senders in its sender group. The sender
can discard from its send buffer all messages that carry a
timestamp less than or equal to the smallest entry in its
local acknowledgment vector.

We now prove the following theorems, which establish
the correctness of the protocol.

Theorem 1. (a) If a sender s determines that a message
m that it sent is stable, then every member of s’s receiver
groupRs has received m.
(b) If a sender s sends a message m, then eventually s will
determine that m is stable.

Proof. (a) A sender s determines that a message m that
it sent with timestamp tm is stable only if it receives an
acknowledgment timestamp atr � tm from every member
r of its receiver group Rs. A receiver r sends an ac-
knowledgment timestamp atr � tm only if it has received
a message m0 from each member s0 of its sender group
Sr with timestamp tm0 � atr. Because, for all r 2 Rs,
it is the case that s 2 Sr , it follows that all r 2 Rs have
received messages from s with timestamps greater than or
equal to tm and, therefore, that message m is stable.

(b) If a sender s sends a message m with timestamp
tm, then eventually every member of s’s receiver group
Rs will receive m. Eventually, each sender s0 sends
a message m0 with a timestamp tm0 � tm. Thus, by
the reliable FIFO channel assumption, eventually every
receiver r of s’s receiver groupRs also receives a message
from every member of its sender group Sr with timestamp
tm0 � tm and, thus, sends an acknowledgment atr � tm0 .
Eventually, s will receive an acknowledgment at0r � atr
from every receiver r in its receiver group Rs, and will
determine that message m is stable. 2

If all of the nodes in the system are both senders and
receivers, the timestamp acknowledgment mechanism not
only allows a sender to determine stability of its own
messages but also allows it to determine the stability of
messages from other senders. When a node receives a
timestamp acknowledgment from another node, it knows
that the node has received all messages with timestamps
less than or equal to the acknowledgment timestamps from
all other nodes. Thus, the timestamp acknowledgments
carry information about the stability of messages from all
nodes in the system (all-stable abcast in Isis [10] and safe
delivery in Totem [11]). The determination of message
stability is important for achieving virtual synchrony [10]
and extended virtual synchrony [11], which are important
for ensuring the consistency of replicated data and for
coordinating processing within a distributed system.

Theorem 2. Suppose that every node inN is both a sender
and a receiver. Then

(a) If a node n 2 N determines that a message m sent
by a node n0 in N is stable, then every node in N has
received m.
(b) If a node n 2 N sends a message m, then eventually
all nodes in N will determine that m is stable.

Proof. The proof is a simple extension of the proof of
Theorem 1. 2

4 Timestamp vs. Vector Acknowledgments

We now compare our timestamp acknowledgment scheme
with the traditional vector acknowledgment scheme [5, 10]
based on four different criteria: bandwidth used, cycles
used, memory used, and latency to the determination of
message stability. Because there is a minimum rate at which
each sender sends messages and because each receiver
sends acknowledgments at a constant rate, the number of
messages increases with the number of senders and the
number of acknowledgments increases with the number of
receivers.

Bandwidth Requirements. In a system consisting of
Ns senders and Nr receivers, the bandwidth requirement
for the timestamp acknowledgment protocol isO(Nr). One
timestamp value is sent per receiver, independent of the
number of senders in the system.

In contrast, a vector acknowledgment protocol sends
one vector per receiver. Because the length of the vector is
linear in the number of senders, the consumed bandwidth
is O(NrNs). Compared to the timestamp acknowledgment
protocol, the bandwidth required by a vector acknowledg-
ment protocol is larger by a factor of Ns.

Computation. For both timestamp acknowledgment
and vector acknowledgment schemes, a sender must com-
pute the smallest acknowledgment it has received every
time it receives a new acknowledgment. It does so using a
local acknowledgment vector with Nr entries. Entering a
new entry in a presorted vector takes O(logNr) steps every
time an entry of the vector is updated. Because the num-
ber of acknowledgments is O(Nr), the computational cost
for each sender is O(Nr logNr) for both acknowledgment
schemes.

For the receivers the situation is different. Although a
vector acknowledgment protocol requires each receiver to
maintain a vector of length Ns to store the identifiers of
the last messages it has received from each of the senders,
sorting is not necessary. Therefore, the computational cost
for each receiver is O(Ns).

The timestamp acknowledgment protocol requires each
of the receivers to compute the smallest timestamp of the
last message it received from each of the senders. The
computational cost at each of the receivers therefore is
O(Ns logNs).

Buffer Requirements. Because a sender must store
messages (to be able to resend them in case of message loss)
until it determines that they have become stable, the buffer
size grows linearly with the latency to the determination of
message stability, which is analyzed below. The buffer size

of any sender must be at least as large as the worst-case
acknowledgment time divided by the maximum message
send rate of the sender.

Latency to the Determination of Message Stabil-
ity. The timestamp acknowledgment protocol saves band-
width by transmitting only one timestamp value, instead
of a vector of length O(Nr). This saving comes at the
cost of additional latency to the determination of message
stability.

Because the receivers acknowledge messages sent by
all senders with a single scalar timestamp, the slowest
sender determines the timestamp up to which messages
are acknowledged. If one of the senders lags behind
in sending messages (due to message loss or poor clock
synchronization), the receivers can acknowledge messages
only up to the slowest sender’s last message. In this case,
messages from other senders are not acknowledged when
they could have been.

To analyze the latency to the determination of message
stability in more detail, we consider a non-empty group S
of senders and a non-empty group R of receivers. These
sets may overlap and may be identical. For simplicity,
we assume perfectly synchronized physical clocks. Clock
skew and message loss are incorporated into the channel
latency.

We let lsr denote the message latency for a message m
sent by a sender s and received by a receiver r. In the case
of message loss, this latency includes the time for issuing a
retransmission request and resending the message. Because
the acknowledgment channels are neither reliable nor FIFO,
it might happen that the acknowledgment is lost and a later
acknowledgment from the same receiver acknowledges m.
Therefore, we let lrs be the acknowledgment latency from
the time r sent its first acknowledgment of m to the time s
received an acknowledgment of m from r. This definition
of lrs can be used if acknowledgments are delivered out of
order. The latencies lsr and lrs are non-negative and need
not be equal.

In the vector acknowledgment protocol, a receiver sends
a vector acknowledgment at least every tack time units,
which reaches the sender lrs time units later. A message m
sent by a sender s0 is determined to have become stable

t1;s0 = max
r2R

fls0r + lrs0g+ tack

time units after s0 sent it, which is the maximum round trip
delay from sender s0 to any receiver r plus tack. Note that
t1;s0 is specific to the sender s0 and can be different for
different senders in S.

In our timestamp acknowledgment protocol, a sender s0

sends a messagem at least every tsend time units. A receiver
r0 can acknowledge m at the latest tsend +maxs2Sflsr0g
time units after s0 sent m. The sender s0 receives an
acknowledgment of m from a receiver r 2 R at most
tack + lr0s0 time units later. Calculating the maximum over
all receivers r 2 R, we obtain a latency to the determination
of message stability of

t2;s0 = max
r2R

ftsend +max
s2S

flsrg+ tack + lrs0g

= tsend + tack + max
s2S;r2R

flsr + lrs0g

time units. Thus, t2;s0 time units after s0 sent m, s0 has
received acknowledgments from all receivers in R and
determines m to be stable. Like t1;s0, t2;s0 is sender-
specific.

Comparing t1 and t2, we find that they relate to each
other as follows:

t1;s0 � t2;s0 (1)

t2;s0 � max
s2S

ft1;sg+ t1;s0 + tsend � tack (2)

Inequality (1) results from the additional term tsend and the
fact that the argument in the max function of t1 is a subset
of the argument in the max function of t2. Inequality (2)
holds because

max
s2S;r2R

flsr+ lrs0g � max
s2S;r2R

flsr+ lrs+ ls0r+ lrs0g (3)

� max
s2S;r2R

flsr+ lrsg (4)

+max
r2R

fls0r+ lrs0g

= max
s2S

f max
r2R

flsr+ lrsg g (5)

+max
r2R

fls0r+ lrs0g

= max
s2S

ft1;sg+ t1;s0 � 2tack (6)

In inequality (3) we expanded the argument of the max
function by including lrs + ls0r , and in inequality (4) we
use the triangle inequality maxa;bfa + bg � maxafag +
maxbfbg. In equation (5) we separated the max functions
for s and r, and in equation (6) we substituted t1;s and
t1;s0.

Note that maxs2S;r2Rflsr + lrsg is the maximum of
the round-trip delays for any sender-receiver pair, whereas
maxs2S;r2Rflsr + lrs0g describes the maximum latency
from any sender s to any receiver r to a specific sender
s0. These paths are not loops. Therefore, t1;s0 and t2;s0

cannot be compared directly. The expansion performed in
inequality (3) allows the formation of an upper bound for
t2;s0 as a function of t1;s0.

If the message and acknowledgment channels have the
same latency, i.e., lsr = lrs, the maximum latency to the
determination of message stability is given by

t2;s0 � max
s2S

ft1;sg+ tsend

for a sender s0. This analysis shows that the timestamp
acknowledgment protocol exhibits a larger latency to the
determination of message stability than the vector acknowl-
edgment protocol. However, it also shows that the latency
to the determination of message stability for the times-
tamp acknowledgment protocol is at most equal to the

4

2 5

8

s1

48

52

r1

s2

r2

Figure 2. Acknowledgment latencies for the
timestamp acknowledgment and the vector ac-
knowledgment protocols. The senders are s1 and
s2, and the receivers are r1 and r2. Solid edges
represent message channels, and dashed edges
represent acknowledgment channels. The labels
on the edges represent latencies.

latency to the determination of message stability for the
most distant sender-receiver pair plus the latency to the
determination of message stability of the sender s0 for the
vector acknowledgment protocol (assuming tsend � tack).

Figure 2 illustrates the latencies to the determination of
message stability for the timestamp acknowledgment and
vector acknowledgment protocols. The senders s1 and s2
each send at least one message every time unit, and the
receivers r1 and r2 each send at least one acknowledgment
every time unit. In the example, s1 sends a message m1

and r1 receives it two time units later.

Using the vector acknowledgment protocol, r1 acknowl-
edges m1 no later than three time units after s1 sent it. The
acknowledgment for m1 from r1 reaches s1 no later than
seven time units after s1 sent m1. The same applies for
s1 and r2, resulting in the same maximum round trip
delay of seven time units. Having received acknowl-
edgments of m1 from both receivers, s1 determines that
message m1 is stable at most seven time units after sending
m1. At s2, the maximum latency to the determination of
message stability for a vector acknowledgment scheme is
maxf5 + 1 + 8; 5 + 1 + 8g = 14 time units.

Using the timestamp acknowledgment protocol, the sys-
tem behaves as follows. As above, the sender s1 sends a
message m1 and the receiver r1 receives it two time units
later. Before r1 can acknowledge m1, it must wait for a
message m2 from s2 with a timestamp at least equal to
the timestamp of m1. Assuming synchronized clocks, s2
sends m2 no later than one time unit after s1 sent m1.
Message m2 reaches r1 six time units after s1 sent m1. The
acknowledgment for m1 from r1 might be delayed another
time unit. Thus, s1 receives an acknowledgment for m1

from r1 no later than time 11. Similarly, s1 receives an

acknowledgment for m1 from r2 no later than time 11.
Therefore, s1 can determine that m1 is stable at 11 time
units.

5 Physical Clocks vs. Logical Clocks

The designers of distributed systems can choose between
physical clocks and logical (Lamport) clocks. The previous
analysis was based on physical clocks. The protocol also
works for logical clocks, but does not perform as well,
because logical clocks are more loosely synchronized than
physical clocks.

Now we present an example, shown in Figure 3, that
points out the drawbacks of logical clocks. For simplicity,
we disregard the loss of acknowledgments. Initially, the
clocks of the two senders have identical time values (we
choose a value of zero for the example). In Figure 3a,
sender s1 sends five messages. The last of them carries
the timestamp 5. Sender s2 then sends a message with
timestamp 1.

If physical clocks are used, the receivers r1 and r2 can
acknowledge all six messages because s2’s message carries
a timestamp greater than the timestamps of all of s1’s
messages.

With logical clocks, the receivers r1 and r2 can acknowl-
edge messages only up to the smaller timestamp, which is
1 (Figure 3b). Upon receiving the acknowledgment, both
senders s1 and s2 remove the message with timestamp 1
from their buffers and update their clocks to 6. In Figure
3c, s1 and s2 send messages with timestamp 7. Now r1
and r2 can acknowledge all messages that have been sent.
Upon reception of these acknowledgments, each sender can
determine that all of its messages are stable and can remove
them from its buffers (Figure 3d).

Physical clocks would have allowed the sender s1 to
determine that the messages are stable and to clear them
from its buffers immediately after it had received the first
acknowledgments from r1 and r2. With logical clocks,
the additional round of message exchange is necessary to
update the clocks so that the acknowledgments can be sent
in the next round.

When using a single timestamp value for acknowledg-
ments, clock synchronization is necessary to reduce the
latency. The latency is determined by the largest skew be-
tween the clocks at any two senders. Before acknowledging
a message from a sender with a faster clock, a receiver must
wait for a message from a sender with a slower clock. The
timestamp of the message from the sender with the slower
clock must be at least equal to the timestamp of the message
from the sender with the faster clock. Poorly synchronized
physical clocks with a large clock skew exhibit an increase
in latency similar to that for logical clocks. The larger
the maximum clock skew (largest clock skew between any
sender and any receiver), the longer it takes to determine
that a message is stable.

t=1t=5

clock=5

a) s1 sends five messages, s2 sends
 one message

clock=5clock=5

clock=1

s1 s2

r2r1

b) s1 and s2 receive first acknowledgment

ack 1
 t=6

ack 1
t=6

clock=6 clock=6

clock=6 clock=6

s1

r1

s2

r2

ack 7
 t=8

ack 7
t=8

d) s1 and s2 receive second acknowledgment

clock=8clock=8

clock=8clock=8

s1 s2

r2r1

c) s1 sends one message, s2 sends
 one message

t=7t=7

clock=7

clock=7 clock=7

clock=7

s1 s2

r2r1

Figure 3. Timestamp acknowledgment protocol
being used in a system based on logical clocks.
T denotes the current reading of the logical clock,
and t denotes the message timestamp.

A‚22 A‚22

ack
33

C‚33C‚33

Node 1 Node 2 Node 3

B‚27

ack 27 ack 27Message B
is determined
to be stable

Figure 4. Lack of correct membership informa-
tion can cause incorrect determination of mes-
sage stability.

6 Group Membership

With timestamp acknowledgments, a sender knows which
receiver created the acknowledgment, but it does not know
which messages from other senders gave rise to the times-
tamp acknowledgment. This might cause a problem if
the nodes do not know the correct sender and receiver
memberships.

Figure 4 shows a group membership consisting of three
nodes, each of which acts as both a sender and a receiver. A
reliable multicast protocol that resides between the unreli-
able network and the timestamp acknowledgment protocol
provides reliable FIFO delivery. In the example, node 3
lacks correct membership information. In its view, only
node 2 and itself belong to the group.

The scenario begins with node 2 sending a message A
with timestamp 22, followed by node 1 sending a message
B with timestamp 27. Due to a network failure, node 3 does
not receive message B. The underlying reliable multicast
protocol does not detect the failure until it receives the next
message from node 1.

Incomplete membership information causes node 3 to
acknowledge all messages with timestamps less than or
equal to 33, after it has received message C. Node 1
now assumes that node 3 has received message B and,
therefore, incorrectly regards message B as stable after it
has received node 2’s acknowledgment with timestamp 27.
Subsequently, the reliable multicast protocol requests the
missing message B, which node 1 has already removed
from its buffers.

This example shows the importance of correct mem-
bership information. Each of the senders must know the
receivers in its sender group and vice versa. A lack of cor-
rect membership information can cause a sender to regard

a message as stable, even though some nodes in its receiver
group have not received the message.

The determination of accurate membership information
is a difficult problem in general [12]. For connection-
oriented networks (e.g., ATM), the problem is more
tractable. Correct membership information needed for
determining message stability can be obtained by applying
the following rules for a sender s and a receiver r:

� If a receiver r is a member of a sender s’s receiver
group Rs, then a message channel has been estab-
lished from s to r, an acknowledgment channel has
been established from r to s, and s has received an ac-
knowledgment from r, confirming that s is a member
of r’s sender group Sr.

� If a sender s is a member of a receiver r’s sender
group Sr, then an acknowledgment channel has been
established from r to s, a message channel will be
established from s to r, and r will receive a message
from s.

For connection, the steps for adding a sender or receiver to
a group membership are:

1. A receiver r establishes an acknowledgment channel
from r to a sender s.

2. A receiver r adds a sender s to its sender group
Sr when r sends its first acknowledgment to s, and
records that acknowledgment timestamp in s’s entry
of r’s local timestamp vector.

3. A sender s establishes a message channel from s to a
receiver r.

4. A sender s adds a receiver r to its receiver group Rs

when s sends the first message to r with a timestamp
greater than the acknowledgment timestamp received
from r.

For disconnection, the steps for removing a sender or
receiver from a group membership are:

1. A receiver r or a sender s closes both the acknowl-
edgment channel and the message channel.

2. A receiver r removes a sender s from its sender group
Sr, and similarly a sender s removes a receiver r from
its receiver group Rs, when it determines that either
the acknowledgment channel or the message channel
has been closed.

This abrupt termination suffices for determining message
stability. Other properties of importance to distributed
systems might require more precise coordination of both
connection and disconnection.

By comparison with other membership algorithms, this
membership algorithm is simple because each sender main-
tains its own receiver group membership and each receiver
maintains its own sender group membership, and because
each membership change is established pairwise between a
sender and a receiver.

7 Conclusion

We have presented an elegantly simple protocol for deter-
mining message stability in multicast group communication
systems, and have established its correctness. The protocol
uses a single scalar timestamp to acknowledge messages
from many sources and, thus, scales well to systems with
large numbers of senders and receivers --- a scaling not
achieved by message stability protocols using explicit or
transitive acknowledgments. The network bandwidth re-
quired (the expensive resource) is substantially less than
that for other protocols, while the latency to the determina-
tion of message stability and the required size of message
buffers (the less expensive resources) are only slightly
greater. As large multicast groups develop over ATM
and over the Internet, improved message stability proto-
cols, such as that presented here, will become increasingly
important.

References

[1] V. G. Cerf and R. E. Kahn, ‘‘A protocol for packet
network intercommunication,’’ IEEE Transactions
on Communications, vol. 22, no. 5 (May 1974), pp.
647-648.

[2] P. B. Danzig, ‘‘Finite buffers and fast multicast,’’
Proceedings of the International Conference on Mea-
surement and Modeling of Computer Systems, Berke-
ley, CA (May 1989), pp. 108-117.

[3] Y. Amir, D. Dolev, S. Kramer, and D. Malki, ‘‘Tran-
sis: A communication subsystem for high availabil-
ity,’’ Proceedings of the 22nd IEEE International
Symposium on Fault-Tolerant Computing, New York,
NY (July 1992), pp. 76-84.

[4] P. M. Melliar-Smith, L. E. Moser, and V. Agrawala,
‘‘Broadcast protocols for distributed systems,’’ IEEE
Transactions on Parallel and Distributed Systems,
vol. 1, no. 1 (January 1990), pp. 17-25.

[5] G. T. J. Wuu and A. J. Bernstein, ‘‘Efficient solutions
to the replicated log and dictionary problems,’’ Oper-
ating Systems Review, vol. 20, no. 1 (January 1986),
pp. 57-66.

[6] L. Lamport, ‘‘Time, clocks, and the ordering of
events in a distributed system,’’ Communications of
the ACM, vol. 21, no. 7 (July 1978), pp. 558-568.

[7] P. Ezhilchelvan, R. Macedo, and S. Shrivastava,
‘‘Newtop: A fault-tolerant group communication
protocol,’’ Proceedings of the IEEE International
Conference on Distributed Computer Systems, Van-
couver, Canada (May 1995), pp. 296-306.

[8] F. Cristian, ‘‘A probabilistic approach to distributed
clock synchronization,’’ Proceedings of the 9th IEEE
International Conference on Distributed Computing
Systems, Newport Beach, CA (June 1989), pp. 288-
296.

[9] T. K. Srikanth and S. Toueg, ‘‘Optimal clock syn-
chronization,’’ Journal of the ACM, vol. 34, no. 3
(July 1987), pp. 626-645.

[10] K. P. Birman and R. Van Renesse, Reliable Dis-
tributed Computing with the Isis Toolkit, IEEE Com-
puter Society Press (1994).

[11] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and
D. A. Agarwal, ‘‘Extended virtual synchrony,’’ Pro-
ceedings of the 14th IEEE International Conference
on Distributed Computing Systems, Poznan, Poland
(June 1994), pp. 56-65.

[12] T. D. Chandra, V. Hadzilacos, S. Toueg, and B.
Charron-Bost, ‘‘On the impossibility of group mem-
bership,’’ Technical Report 95-1548, Department of
Computer Science, Cornell University, Ithaca, NY.

