
A CACHE-BASED DATA INTENSIVE DISTRIBUTED COMPUTING
ARCHITECTURE FOR “GRID” APPLICATIONS

Brian Tierney, William Johnston, Jason Lee
Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Abstract
Modern scientific computing involves organizing, moving, visualizing, and
analyzing massive amounts of data from around the world, as well as
employing large-scale computation. The distributed systems that solve large-
scale problems will always involve aggregating and scheduling many
resources. Data must be located and staged, cache and network capacity must
be available at the same time as computing capacity, etc. Every aspect of such
a system is dynamic: locating and scheduling resources, adapting running
application systems to availability and congestion in the middleware and
infrastructure, responding to human interaction, etc. The technologies, the
middleware services, and the architectures that are used to build useful high-
speed, wide area distributed systems, constitute the field of data intensive
computing, and are sometimes referred to as the “Data Grid”. This paper
explores the use of a network data cache in a Data Grid environment.

1. INTRODUCTION

High-speed data streams resulting from the operation of on-line instruments and imaging systems are a
staple of modern scientific, health care, and intelligence environments. The advent of high-speed
networks is providing the potential for new approaches to the collection, organization, storage, analysis,
visualization, and distribution of the large-data-objects that result from such data streams. The result
will be to make both the data and its analysis much more readily available.

For example, high energy physics experiments generate high rates and massive volumes of data
that must be processed and archived in real time. This data must also be accessible to large scientific
collaborations — typically hundreds of investigators at dozens of institutions around the world.

In this paper we will describe how “Computational Grid” environments can be used to help with
these types of applications, and give a specific example of a high energy physics applications in this
environment. We describe how a high-speed application-level network data cache is a particularly
important component in a data intensive grid architecture, and describe our implementation of such a
cache.

2. DATA INTENSIVE GRIDS

The integration of the various technological approaches being used to address the problem of integrated
use of dispersed resources is frequently called a “grid,” or a computational grid — a name arising by
analogy with the grid that supplies ubiquitous access to electric power. See, e.g., [9]. Basic grid services
are those that locate, allocate, coordinate, utilize, and provide for human interaction with the various
resources that actually perform useful functions.

Grids are built from collections of primarily independent services. The essential aspect of grid
services is that they are uniformly available throughout the distributed environment of the grid.
Services may be grouped into integrated sets of services, sometimes called “middleware.” Current grid
tools include Globus [8], Legion [15], SRB [2], and workbench systems like Habanero [10] and
WebFlow [1]. Recently the term “Data Grid” has come into use to describe middleware and services for
data intensive Grid applications [3], and several data grid research projects have be started [5][[17].

From the application’s point of view, the Grid is a collection of middleware services that provide
applications with a uniform view of distributed resource components and the mechanisms for
assembling them into systems. From the middleware systems points of view, the Grid is a standardized
set of basic services providing scheduling, resource discovery, global data directories, security,
communication services, etc. However, from the Grid implementor’s point of view, these services result
from and must interact with a heterogeneous set of capabilities, and frequently involve “drilling” down
through the various layers of the computing and communications infrastructure.

2.1 Architecture for Data Intensive Environments

Our model is to use a high-speed data storage cache as a common element for all of the sources and
sinks of data involved in high-performance data systems. We use the term “cache” to mean storage that
is faster than typical local disk, and temporary in nature. This cache-based approach provides standard
interfaces to a large, application-oriented, distributed, on-line, transient storage system. In a wide-area
Grid environment, the caches must be specifically designed to achieve maximum throughput over high-
speed networks.

Each data source deposits its data in the cache, and each data consumer takes data from the
cache, often writing the processed data back to the cache. A tertiary storage system manager migrates
data to and from the cache at various stages of processing. (See Figure 1.) We have used this model for
data handling systems for high energy physics data and for medical imaging data. These applications
are described in some detail in [14] and [13].

The high-speed application-level cache serves several roles in this environment. It provides a
standard high data rate interface for high-speed access by data sources, processing resources, mass
storage systems (MSS), and user interface / data visualization elements. It provides the functionality of
a single very large, random access, block-oriented I/O device (i.e., a “virtual disk”). This cache also
serves to isolate the application from tertiary storage systems and instrument data sources, helping
eliminate contention for those resources.

This cache can be used as a large buffer, able to absorb data from a high rate data source and then
to forward it to a slower tertiary storage system. The cache also provides an “impedance matching”
function between a small number of high throughput streams to a larger number of lower speed streams,
e.g. between fine-grained accesses by many applications and the coarse-grained nature of a few parallel
tape drives in the tertiary storage system.

Depending on the size of the cache relative to the objects of interest, the tertiary storage system
management may only involve moving partial objects to the cache. In other words, the cache may
contain a moving window for an extremely large off-line object/data set. Generally, the cache storage
configuration is large (e.g., 100s of gigabytes) compared to the available disks of a typical computing

Figure 1 The Data Handling Model

Parallel computation /
data analysis

real-time data
cache partition

processing
scratch
partition

application
data cache

partition

large, high-speed network cache

data cataloguing, archiving,
and access control system

Data
Source

(instrument or
simulation)

visualization
applications

tertiaray storage
system

Disk Storage Tape Storage

environment (e.g., 10s of gigabytes), and very large compared to any single disk (e.g. hundreds of ~10
gigabytes).

In this type of environment, a client typically will copy large portions of a data set from the
remote archive to local disk before visualizing or processing the data. However, if the network is fast
enough and if the cache is tuned for remote access and uses parallel disks, the cache can provide data
access to remote clients that is even faster than local disk. Additionally many applications actually only
need a small portion of the total data set. By leaving the data on a remote cache, a much smaller amount
of data may actually be moved over the network.

3. THE DISTRIBUTED-PARALLEL STORAGE SYSTEM

Our implementation of this high-speed, distributed cache is called the Distributed-Parallel Storage
System (DPSS) [20]. LBNL designed and implemented the DPSS as part of the DARPA MAGIC
project [6], and as part of the U.S. Department of Energy’s high-speed distributed computing program.
This technology has been successful in providing an economical, high-performance, widely distributed,
and highly scalable architecture for caching large amounts of data that can potentially be used by many
different users.

Typical DPSS implementations consist of several low-cost workstations as DPSS block servers,
each with several disk controllers, and several disks on each controller. A four-server DPSS with a
capacity of one Terabyte (costing about $10-$12K in mid-2000) can thus produce throughputs of over
70 MBytes/sec by providing parallel access to 20-30 disks.The overall architecture of the DPSS is
illustrated in Figure 2.

Other papers describing the DPSS in more detail include [20], which describes how the DPSS
was used to provide high-speed access to remote data for a terrain visualization application, [21], which
describes the basic architecture and implementation, and [22], which describes how the instrumentation
abilities in the DPSS were used to help track down a wide area network problem.

The application interface to the DPSS cache supports a variety of I/O semantics, including Unix-
like I/O semantics, through an easy to use client API library (e.g. dpssOpen(), dpssRead(), dpssWrite(),
dpssLSeek(), dpssClose()). The data layout on the disks is completely up to the application, and the
usual strategy for sequential reading applications is to write the data “round-robin,” striping blocks of
data across the servers. The client library also includes a flexible data replication ability, allowing for
multiple levels of fault tolerance. The DPSS client library is multi-threaded, where the number of client
threads is equal to the number of DPSS servers. Therefore the speed of the client scales with the speed
of the server, assuming the client host is powerful enough.

Client Application

Parallel
Disks

DPSS Server

Parallel
Disks

DPSS Server

Parallel
Disks

DPSS Server

DPSS Master

data blocks

data blocks

data blocks
Logical Block

Requests

y logical to physical
block lookup

y access control
y load balancing

Physical Block
Requests

The internal architecture of the DPSS is illustrated in Figure 3. Requests for blocks of data are
sent from the client to the “DPSS master” process, which determines which “DPSS block servers” the
blocks are located on, and forwards the requests to the appropriate servers. The server then sends the
block directly back to the client. Servers may be anywhere in the network: there is no assumption that
they are all at the same location, or even the same city.

DPSS performance, as measured by total throughput, is optimized for a relatively smaller
number (a few thousand) of relatively large files (greater than 50 MB). Performance is the same for any
file sizes greater than 50 MB. We have also shown that performance scales well with the number of
clients, up to at least 64 clients. For example, if the DPSS system is configured to provide 50 MB/sec to
1 client, it can provide 1 MB/sec to each of 50 simultaneous clients. The DPSS master host starts to run
out of resources with more than 64 clients.

Because of the threaded nature of the DPSS server, a server scales linearly with the number of
disks, up to the network limit of the host (possibly limited by the network card or the CPU). The total
DPSS system throughput scales linearly with the number of servers, up to at least 10 servers.

The DPSS provides several important and unique capabilities for data intensive distributed
computing environments. It provides application-specific interfaces to an extremely large space of
logical blocks; it offers the ability to build large, high-performance storage systems from inexpensive
commodity components; and it offers the ability to increase performance by increasing the number of
parallel disk servers.

DPSS data blocks are available to clients immediately as they are placed into the cache. It is not
necessary to wait until the entire file has been transferred before requesting data. This is particularly
useful to clients requesting data from a tape archive. As the file moves from tape to the DPSS cache, the
blocks in the cache are immediately available to the client. If a block is not available, the application
can either block, waiting for the data to arrive, or continue to request other blocks of data which may be
ready to read.

3.1 TCP Issues

The DPSS uses the TCP protocol for data transfers. For TCP to perform well over high-speeds
networks, it is critical that there be enough buffer space for the congestion control algorithms to work
correctly [11]. Proper buffer size is a function of the network bandwidth-delay product, but because
bandwidth-delay products in the Internet can span 4-5 orders of magnitude, it is impossible to configure
the default TCP parameters on a host to be optimal for all connections [18].

Figure 4 shows the importance of the setting of the TCP buffer size correctly. This figure
illustrates that buffers can be hand-tuned for either LAN access or WAN access, but not both at once. It
is also apparent that while setting the buffer size big enough is particularly important for the WAN case,
it is also important not to set it too big for the LAN environment. If the buffers are too large, throughput

Client
Application

Shared Memory Cache

Block
Request
Thread

Disk
Read

Thread

Disk
Read

Thread

Disk
Read

Thread

Disk
Read

Thread

DPSS Master

from other DPSS servers

*

DPSS Data Server

to other

DPSS se
rve

rs

Block
Writer
Thread

to other
 clients

Disk Disk DiskDisk

Figure 3 DPSS Server Architecture

may decrease because the larger receive buffer allows the congestion window to grow sufficiently large
that multiple packets are lost (in a major buffer overflow) during a single round trip time (RTT), which
then leads to a time-out instead of a smooth fast retransmit/recovery.

To solve this problem, the DPSS client library attempts to automatically determine the
bandwidth-delay product for each connection to a DPSS server and sets the TCP buffer size to the
optimal value dynamically for each client. This provides optimal tuning both LAN and WAN clients
simultaneously. Optionally the user can specify the buffer size to the DPSS client library via a shell
environment variable.

We are currently developing a network monitoring service that will monitor the network path
between specified sites, and store the bandwidth delay products for these network paths in a directory
service. Then “network-aware” application can query this service for the optimal TCP buffer size to use
on the fly.

4. A HIGH ENERGY PHYSICS APPLICATION

We have conducted a set of high-speed, network based, data intensive computing experiments between
Lawrence Berkeley National Laboratory (LBNL) in Berkeley, Calif., and the Stanford Linear
Accelerator (SLAC) in Palo Alto, Calif. The results of this experiment were that a sustained 57
megabytes/sec of data were delivered from datasets in the distributed cache to the remote application
memory, ready for analysis algorithms to commence operation. This experiment represents an example
of our data intensive computing model in operation.

The prototype application was the STAR analysis system that analyzes data from high energy
physics experiments. (See [7].) A four-server DPSS located at LBNL was used as a prototype front end
for a high-speed mass storage system. A 4-CPU Sun E-4000 located at SLAC was a prototype for a
physics data analysis computing cluster, as shown in Figure 5. The National Transparent Optical
Network testbed (NTON - see [16]) connects LBNL and SLAC and provided a five-switch, 100-km,
OC-12 ATM path. All experiments were application-to-application, using TCP transport.

Multiple instances of the STAR analysis code read data from the DPSS at LBNL and moved that
data into the memory of the STAF application where it was available to the analysis algorithms. This
experiment resulted in a sustained data transfer rate of 57 MBytes/sec from DPSS cache to application
memory. This is the equivalent of about 4.5 TeraBytes / day. The goal of the experiment was to
demonstrate that high-speed mass storage systems could use distributed application-level caches to
make data available to the systems running the analysis codes. The experiment was successful, and the
next steps will involve completing the mechanisms for optimizing the MSS staging patterns and
completing the DPSS interface to the bit file movers that interface to the MSS tape drives.

LAN (rtt = 1ms)

WAN (rtt = 50ms)

Tuned for
LAN

Tuned for
WAN

Tuned for
Both

T
hr

ou
gh

pu
t (

M
b i

ts
/s

ec
)

100

200

300

64KB TCP
Buffers

512 KB TCP
Buffers

264

44

152

112

264

112

Figure 4 Importance of correct TCP tuning

4.1 Current Results

We recently achieved 71 MBytes/sec (568 Mbits/sec) of I/O across the wide area using the
configuration shown in Figure 6. This was using a single application runing on an 8 node Compac
Alpha Linux cluster, located at Sandia National Lab in Livermore, CA, about 100 km from the DPSS
system at Lawrence Berkeley National Lab in Berkeley, CA. Note that the bottleneck link in the
network is an OC-12 “packet over Sonet” (i.e.: not ATM) pipe from Berkeley to Oakland. The
maximum data rate on OC-12 ATM is 534 Mbits/sec due to ATM header overhead, which OC-12
packet over Sonet does not have. This is how we were able to acheive a throughput that is faster that the
maximum OC-12 ATM data rate.

It should be noted that both this application and the HEP application above read data from the
DPSS in chunk of at least 8 MBytes per dpssRead() call. Read block sizes on the order of at least 4
MBytes in size are required achieve such high I/O rates, in order to fill the entire I/O pipeline.

SLAC
Palo Alto, CA

Cisco LS1010
ATM Switch

Sun E4000
(8 CPU)

OC-12

DPSS Client: STAF
analysis package

Lawrence Berkeley
National Lab, Berkeley CA

Sun Ultra I

DPSS

Sun Ultra ISun Ultra I

Sun Ultra I

Sun Ultra ISun Ultra I

Fore ASX-1000
ATM Switch

Disks

Disks

Disks

Disks

OC-3

UC Berkeley

Fore ASX-200
ATM SwitchNortel Vector

ATM Switch

NTON
(OC-12)

OC-12

SLAC to LBNL= 100 KM

OC-12
OC-3

Figure 5 HEP Experiment Configuration

Storage Cluster
(DPSS)

Total Throughput = 570 Mbits/sec (71 MB/sec) on 32 data streams, or 17 Mbits/stream

Berkeley Lab:
.75 TB, 4 server

DPSS
Sandia Livermore Lab

 Linux Cluster (CPlant)

NTON Oakland
POP

OC-48OC-12

1000 BT1000 BT

Compute Cluster
(8 nodes)

Figure 6 Compute Cluster Application

5. CONCLUSIONS

We believe this architecture, and its integration with systems like Globus, will enable the next
generation of configurable, distributed, high-performance, data-intensive systems; computational
steering; and integrated instrument and computational simulation. We also believe a high performance
network application-level cache system such as the DPSS will be an important component to these
“computational grid” and “data grid” environments.

Acknowledgments

The work described in this paper is supported by the U. S. Dept. of Energy, Office of Energy Research,
Office of Computational and Technology Research, Mathematical, Information, and Computational
Sciences and ERLTT Divisions under contract DE-AC03-76SF00098 with the University of California,
and by DARPA, Information Technology Office.

6. REFERENCES
[1] Erol Akarsu, Geoffrey C. Fox, Wojtek Furmanski, Tomasz Haupt, “WebFlow - High-Level Programming

Environment and Visual Authoring Toolkit for High Performance Distributed Computing,” Proceedings of
IEEE Supercomputing ‘98, Nov. 1998.

[2] Chaitanya Baru, Reagan Moore, Arcot Rajasekar, Michael Wan, “The SDSC Storage Resource Broker,”
Proc. CASCON’98 Conference, Nov.30-Dec.3, 1998, Toronto, Canada. (http://www.npaci.edu/DICE/
SRB)

[3] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke, “The Data Grid: Towards an Architecture
for the Distributed Management and Analysis of Large Scientific Data Sets”, Internet II Network Storage
Symposium, Oct. 1999, http://dsi.internet2.edu/netstore99/

[4] K. Czajkowski, I. Foster, C., Kesselman, N. Karonis, S. Martin, W. Smith, S. Tuecke. “A Resource Man-
agement Architecture for Metacomputing Systems,” Proc. IPPS/SPDP ’98 Workshop on Job Scheduling
Strategies for Parallel Processing,1998.

[5] EU DATAGRID Project, http://home.cern.ch/~les/grid/

[6] B. Fuller and I. Richer “The MAGIC Project: From Vision to Reality,” IEEE Network, May, 1996, Vol. 10,
no. 3. http://www.magic.net/

[7] W. Greiman, W. E. Johnston, C. McParland, D. Olson, B. Tierney, C. Tull, “High-Speed Distributed Data
Handling for HENP,” Computing in High Energy Physics, April, 1997. Berlin, Germany. http://www-
itg.lbl.gov/STAR/

[8] Globus: See http://www.globus.org

[9] Grid: The Grid: Blueprint for a New Computing Infrastructure, edited by Ian Foster and Carl Kesselman.
Morgan Kaufmann, Pub. August 1998. ISBN 1-55860-475-8. http://www.mkp.com/books_catalog/1-
55860-475-8.asp

[10] Habanero: http://www.ncsa.uiuc.edu/SDG/Software/ Habanero/

[11] V. Jacobson, “Congestion Avoidance and Control,” Proceedings of ACM SIGCOMM ‘88, August 1988.

[12] W. Johnston, G. Jin, C. Larsen, J. Lee, G. Hoo, M. Thompson, B. Tierney, J. Terdiman, “Real-Time Gener-
ation and Cataloguing of Large Data-Objects in Widely Distributed Environments,” International Journal
of Digital Libraries - Special Issue on “Digital Libraries in Medicine”. November, 1997. (Available at http:/
/www-itg.lbl.gov/WALDO/)

[13] William E. Johnston. “Real-Time Widely Distributed Instrumentation Systems,” In The Grid: Blueprint for
a New Computing Infrastructure. Edited by Ian Foster and Carl Kesselman. Morgan Kaufmann, Pubs.
August 1998.

[14] William E. Johnston, W. Greiman, G. Hoo, J. Lee, B. Tierney, C. Tull, and D. Olson. “High-Speed Distrib-
uted Data Handling for On-Line Instrumentation Systems,” Proceedings of ACM/IEEE SC97: High Per-
formance Networking and Computing. Nov., 1997. http://www-itg.lbl.gov/ ~johnston/papers.html

[15] Legion: See http://www.cs.virginia.edu/~legion/

[16] NTON, “National Transparent Optical Network Consortium.” See http://www.ntonc.org/.

[17] Partical Phyics Data Grid (PPDG) Project, http://www.cacr.caltech.edu/ppdg/

[18] J. Semke, J. Mahdavi, M. Mathis, “Automatic TCP Buffer Tuning,” Computer Communication Review,
ACM SIGCOMM, volume 28, number 4, Oct. 1998.

[19] M. Thompson, W. Johnston, J. Guojun, J. Lee, B. Tierney, and J. F. Terdiman, “Distributed health care
imaging information systems,” PACS Design and Evaluation: Engineering and Clinical Issues, SPIE Med-
ical Imaging 1997. (Available at http://www-itg.lbl.gov/Kaiser.IMG)

[20] Brian Tierney, William E. Johnston, Hanan Herzog, Gary Hoo, Guojun Jin, Jason Lee, Ling Tony Chen,
Doron Rotem. “Distributed Parallel Data Storage Systems: A Scalable Approach to High Speed Image
Servers,” ACM Multimedia ‘94 (San Francisco, October 1994). http://www-itg.lbl.gov/DPSS/papers/

[21] Brian Tierney, W. Johnston, H. Herzog, G. Hoo, G Jin, and J. Lee, “System Issues in Implementing High
Speed Distributed Parallel Storage Systems,” Proceedings of the USENIX Symposium on High Speed Net-
working, Aug. 1994, LBL-35775. http://www-itg.lbl.gov/DPSS/ papers.html.

[22] Brian Tierney, W. Johnston, G. Hoo, J. Lee, “Performance Analysis in High-Speed Wide-Area ATM Net-
works: Top-to-Bottom End-to-End Monitoring,” IEEE Network, May, 1996, Vol. 10, no. 3. LBL Report
38246, 1996. http://www-itg.lbl.gov/DPSS/papers.html

	A CACHE-BASED DATA INTENSIVE DISTRIBUTED COMPUTING ARCHITECTURE FOR “GRID” APPLICATIONS
	1. INTRODUCTION
	2. Data Intensive Grids
	2.1 Architecture for Data Intensive Environments
	Figure 1 � The Data Handling Model

	3. The Distributed-Parallel Storage System
	Figure 2 � Overall DPSS Architecture
	Figure 3 � DPSS Server Architecture
	3.1 TCP Issues
	Figure 4 � Importance of correct TCP tuning

	4. A High Energy Physics Application
	Figure 5 � HEP Experiment Configuration
	4.1 Current Results
	Figure 6 � Compute Cluster Application

	5. Conclusions
	Acknowledgments

	6. References

