
NetLogger: A Toolkit for Distributed System Performance Analysis

Dan Gunter, Brian Tierney, Brian Crowley, Mason Holding, Jason Lee
Lawrence Berkeley National Laboratory

Abstract

Diagnosis and debugging of performance
problems on complex distributed systems requires end-
to-end performance information at both the
application and system level. We describe a
methodology, called NetLogger, that enables real-time
diagnosis of performance problems in such systems.
The methodology includes tools for generating
precision event logs, an interface to a system event-
monitoring framework, and tools for visualizing the
log data and real-time state of the distributed system.
Low overhead is an important requirement for such
tools, therefore we evaluate efficiency of the
monitoring itself. The approach is novel in that it
combines network, host, and application-level
monitoring, providing a complete view of the entire
system.

1. Introduction

The performance characteristics of distributed
applications are complex, rife with "soft failures" in
which the application produces correct results but has
much lower throughput or higher latency than
expected. Because of the complex interactions between
multiple components in the system, the cause of the
performance problems is often elusive. Bottlenecks can
occur in any component along the data's path:
applications, operating systems, device drivers,
network adapters, and network components such as
switches and routers. Sometimes bottlenecks involve
interactions between components, sometimes they are

due to unrelated network activity impacting the
distributed system.

Usually the interactions between components are
not known ahead of time, and may be difficult to
replicate. Therefore, it is important to capture as much
of the system behavior as possible while the application
is running. It is also important to respond to
performance problems as soon as possible; while post-
hoc diagnosis of the data is valuable for systemic
problems, for operational problems users will have
already suffered through a period of degraded
performance.

We have developed a methodology, called
NetLogger, for monitoring, under realistic operating
conditions, the behavior of all elements of the
application-to-application communication path in
order to determine exactly what is happening within a
complex system.

Distributed application components are modified
to produce timestamped logs of "interesting" events at
all the critical points of the distributed system. The
events are correlated with the system's behavior in
order to characterize the performance of all aspects of
the system and network in detail.

NetLogger has demonstrated its usefulness in
several contexts, including the Distributed Parallel
Storage System (DPSS)[5], and Radiance[15]. Both of
these are loosely-coupled client-server architectures. In
principle, however, the approach is adaptable to any
distributed system architecture. The way in which
NetLogger is integrated into a distributed system will
vary, but NetLogger's behavior and utility are
independent of any particular system design.

2. NetLogger Toolkit Components

All the tools in the NetLogger Toolkit share a
common log format, and assume the existence of
accurate and synchronized system clocks. The
NetLogger Toolkit itself consists of three components:
an API and library of functions to simplify the
generation of application-level event logs, a set of tools
for collecting and sorting log files, and a tool for
visualization and analysis of the log files.

2.1. Common log format

NetLogger uses the IETF draft standard Universal
Logger Message format (ULM)[1] for the logging and
exchange of messages. Use of a common format that is
plain ASCII text and easy to parse simplifies the
processing of potentially huge amounts of log data, and
makes it easier for third-party tools to gain access to
the data.

The ULM format consists of a whitespace-
separated list of "field=value" pairs. ULM required
fields are DATE, HOST, PROG, and LVL; these can
be followed by any number of user-defined fields.
NetLogger adds the field NL.EVNT, whose value is a
unique identifier for the event being logged. The value
for the DATE field has six digits of accuracy, allowing
for microsecond precision in the timestamp. Here is a
sample NetLogger ULM event:

DATE=20000330112320.95794
3 HOST=dpss1.lbl.gov
PROG=testProg LVL=Usage
NL.EVNT=WriteData
SEND.SZ=49332

This says that the program testprog on host
dpss1.lbl.gov performed a WriteData event with a send
size of 49,322 on March 30, 2000 at 11:23 (and some
seconds) in the morning.

The user-defined events at the end of the log entry
can be used to record any descriptive value or string
that relates to the event such as message sizes, non-
fatal exceptions, counter values, and so on.
0 Clock synchronization

In order to analyze a network-based system using
absolute timestamps, the clocks of all relevant hosts

must be synchronized. This can be achieved using a
tool which supports the Network Time Protocol (NTP)
[8], such as the xntpd [9] daemon. By installing a
GPS-based NTP server on each subnet of the
distributed system and running xntpd on each host, all
the hosts' clocks can be synchronized to within about
0.25ms. If the closest time source is several IP router
hops away, accuracy may decrease somewhat.
However, it has been our experience that
synchronization within 1 ms is accurate enough for
many types of analysis. The NTP web site (http://
www.eecis.udel.edu/~ntp/) has a list of public NTP
servers that one can connect to and synchronize with.

2.2. NetLogger API

In order to instrument an application to produce
event logs, the application developer inserts calls to the
NetLogger API at all the critical points in the code,
then links the application with the NetLogger library.
This facility is currently available in six languages:
Java, C, C++, Perl, Python, and Fortran. The API has
been kept as simple as possible, while still providing
automatic timestamping of events and logging to either
memory, a local file, syslog, a remote host. Logging to
memory is available in the form of a buffer which can
be explicitly flushed to one of the other locations (file,
host, or syslog), or automatically flushed when the
buffer is full.

Here is a sample of the Java API usage:

NetLogger eventLog = new

NetLogger("testprog");

eventLog.open("dolly.lbl.

gov", 14830);

...

eventLog.write("WriteIt",

"SEND.SZ=" + sz);

...

eventLog.close();

If the value for sz is 49332, and the program is
running on the host dpss1.lbl.gov, the write() statement
above will produce the sample log entry provided in

the description of ULM, above. In this case, the data
will be sent to port 14830 on the host dolly.lbl.gov.

2.3. Event log collection and sorting

NetLogger facilitates the collection of event logs
from an application which runs across a wide-area
network by providing automatic logging to a chosen
host and port. A server daemon, called netlogd,
receives the log entries and writes them into a file on
the local disk. Thus, applications can transparently log
events in real-time to a single destination over the
wide-area network.

Another tool, the Real-Time Collector, has been
developed in order to receive events from both
applications and system event monitoring services. The
jobs of the real-time collector are to coordinate the
aggregation of event trace data from applications with
monitoring data, and to provide an easy-to-use gateway
to the monitoring management system for one or more
graphical front-ends. In order to do this, the real-time
collector must perform three functions: receive
application data, process remote requests, and possibly
translate between different log formats.

2.4. Event log visualization and analysis

We have found exploratory, visual analysis of the
log event data to be the most useful means of
determining the causes of performance anomalies. The
NetLogger Visualization tool, nlv, has been developed
to provide a flexible and interactive graphical
representation of system-level and application-level
events. Nlv uses three types of graph primitives to
represent different events. These are shown in Figure
1.

point

loadline

lifeline

X X X X

Figure 1: NLV Graph Primitives

The most important of these primitives is the
lifeline, which represents the "life" of an object (datum
or computation) as it travels through a distributed
system. With time shown on the x-axis, and ordered
events shown on the y-axis, the slope of the lifeline
gives a clear visual indication of latencies in the
distributed system. Each object is given a unique
identifier by placing a unique combination of values in
one or more of its ULM fields. These values are used
for all events along the path. In a client-server system,
one such event path might include: a request's dispatch
from the client, the request's arrival at the server, the
begin and end of server processing of the request, the
response's dispatch from the server, and the response's
arrival at the client.

The other two graph primitives are the loadline
and the point. The loadline connects a series of scaled
values into a continuous segmented curve, and is most
often used for representing changes in system
resources such as CPU load or free memory. The point
data type is used to graph single occurrences of events,
often error or warning conditions such as TCP
retransmits. In addition, the point datatype can be
scaled to a value, producing in a scatterplot. For
example, the size of the data passed up from the
operating system from individual read() calls was
instrumented in a distributed file server, producing the
graph in Figure 2.

Figure 2: Scatterplot with point primitive

In order to assist correlation of observed system
performance with logged events, nlv has been designed
to allow real-time visualization of the event data as
well as historical browsing and playback of interesting

time periods. In the real-time mode, the graph scrolls
along the time axis (x-axis) in real time, showing data
as it arrives in the event log. In historical mode, the
user can change the position in the log file, change the
scale of the graph, zoom in and out interactively,
choose a subset of events to look at, and so on. The
program switches between these two modes at the press
of a button. A portion of an nlv graph, showing
lifelines from a client stacked below events from a
server, is shown in Figure 3.

The data represented in the screenshot above was
generated while debugging a problem with an actual
client- server application called Radiance [15], which
is a distributed scene rendering engine. A researcher
who helped develop the application was experiencing

an unusual latency at the beginning of each rendered
frame. When he instrumented Radiance with
NetLogger, the exact location of this latency became
obvious. Between the end of a the client’s read
operation (C_END) and the start of the server’s read
(S_BEFORE_READ), a 0.2 second gap, more than
expected, appeared on the graph. In response to this
observation, the application was modified and the
latency was cut in half [12].

3. Analysis of NetLogger Efficiency

Logging can perturb the application or its
environment if it occurs too frequently, and in the

Figure 3: Screenshot of NetLogger Visualization tool (cropped)

worst case the monitoring tool can end by monitoring
itself.

Therefore, it is important to examine the efficienty
of the logging itself. In this section we will analyze
performance results gathered from the C, C++, and
Java NetLogger APIs.

3.1. Experimental setup

The experiment itself was intentionally kept
trivial: 50,000 log lines were written to file, LAN,
WAN, and memory destinations. The pseudocode for
the entire program is:

FOR each destination DO

 FOR N = 1 to 50000 DO

 NetLoggerWrite()

 END

END

Two systems were used for testing: a Sun Ultra-60
running Solaris 2.7, and a Pentium II 500MHz box
running Linux 2.2.5. Both machines had a 100 Mb/s
ethernet connection to the local network. As they were
on the same subnet, both machines had a similar
connection to the Internet for the wide-area tests,
which were all done to the same remote machine.

Four different destinations for NetLogger data
were chosen: a host on a wide-area network (physically
located near Chicago, Illinois), a host on the local area
network (located in Berkeley, CA), and the local disk
(using /tmp to avoid logging over a network disk). The
bandwidth in the local area network was around 85
Mb/s -- typical for fast Ethernet -- and the connection
to the remote WAN was measured by netest to be
around 7 Mb/s.

Each test was performed using the C and Java
APIs, both with and without buffering the data in
memory as described in Section 2.3. The Java version
was 1.2, using Sun’s HotSpot JVM on Solaris and the
Classic VM on Linux. The C programs were compiled
with gcc with default compiler optimizations (the –O
flag) turned on.

3.2. Results and analysis

The results shown in Figure 4 demonstrate, first,
that the choice of Java Virtual Machine (JVM) is
critical for good Java performance. On Solaris, which
has a “just-in-time” compiler, the Java performance
was comparable to the C performance. On Linux,
which had a “Classic VM” with no compilation of
frequently reused code, the C test ran about 2 to 5
times faster than the Java test.

Second, the Java results showed a remarkable
consistency, for both Linux and Solaris, across WAN,
LAN, file, and memory tests. This observation leads to
the hypothesis that the I/O is not the dominant factor
in the Java API’s performance. Profiling the test code
on both Solaris and Linux confirmed this hypothesis,
as it showed that the Java API spent less than 2% of its
total time in the I/O routines.

Finally, in the C API, it is notable that writing to
memory, while faster than writing to WAN and LAN,
was consistently slower than writing to a local file.
This is partially explained by the buffering of all disk
writes to memory by both the Solaris and Linux
kernels.

NetLogger Performance

0

5000

10000

15000

20000

25000

WAN LAN File Memory

Method

W
ri

te
s

p
er

 s
ec

o
n

d

Linux-C Solaris-C Linux-Java Solaris-Java

Figure 4: NetLogger Performance Results

3.3. Summary

The results lead to some important lessons on the
use of NetLogger:

• in Java it is not worth the trouble to buffer in
memory unless writing to a very slow network
connection

• however, in Java it is well worth using a just-
in-time compiler

• in C, memory buffering will be effective when
writing to a remote or local network

• however, in C writing to a local file (not an
NFS mounted disk) directly is preferable to
buffering in memory

The performance which we have reported here are
adequate for many types of applications, but of course
some applications would benefit from instrumentation
at even higher frequencies. Even when it has sole
possession of the CPU, NetLogger is unable to log
more than 24,000 of lines per second; extrapolating
from this result, it would be difficult to log more than a
few hundred lines per second with 1% perturbation of
the system. Thus, NetLogger is clearly not the right
tool for kernel monitoring. We believe that the
verbosity of ULM is an important factor in
NetLogger’s performance; therefore, use of an internal
binary format, such as Pablo's Self-Defining Data
Format (SDDF)[2] is being actively researched as a
way to extend NetLogger to handle an even wider
range of application requirements.

4. Related projects

There are several research projects addressing
network performance analysis. For example, see the
list of projects and tools on the Cooperative
Association for Internet Data Analysis (CAIDA) Web
site [4]. However, we believe the NetLogger approach
is unique in combining application, system, and
network monitoring.

In addition, there are quite a few packages, such as
Pablo[10], Upshot [14], and others [3], which are
designed to do distributed process monitoring. Unlike
NetLogger, these packages are aimed at the analysis of
MPI/PVM-style parallel processing, and provide only
coarse-grained measurements of the end-to-end

characteristics of the system, with a focus on CPU
utilization. Although NetLogger visualization does not
include some of the specialized graph types used for
such systems, analysis of large distributed systems is
not intractable: we have used NetLogger with some
success to analyze a distributed database application
with around 200 nodes used in the high-energy physics
BaBAR experiment [13].

5. Future work

Our goal is to allow the NetLogger Toolkit to be as
useful and unobtrusive as possible, so that it may
become a ubiquitous service for distributed
applications. We intend to extend the evaluation of
NetLogger’s overhead which was discussed here to all
the current languages (C, C++, Java, Perl, Python,
Fortran) in which it has an API, and to attempt
analyses with larger test applications. In addition, we
are continuing the integration of NetLogger
monitoring with various monitoring management
services, and developing more sophisticated analysis
tools. Finally, we are committed to adding support for
an output format using the emerging standard of XML,
to facilitate interoperability with other monitoring
services and tools.

6. Conclusion

We have demonstrated that the NetLogger
application can be useful for debugging distributed
applications, and can log events at a raw speed of
24,000 lines per second. Therefore, we believe that
NetLogger could form an integral part of many high-
reliability, high-performance distributed systems.

7. Acknowledgements

This work was supported by the Director, Office of
Science, Office of Advanced Scientific Computing
Research, Mathematical, Information, and
Computational Sciences Division under U.S.
Department of Energy Contract No. DE-AC3-
76SF00098. This is report no. LBNL-46269.

References

[1] J. Abela, T. Debeaupuis. Universal Format for

Logger Messages, IETF Internet Draft, http://

www.ietf.org/internet-drafts/draft-abela-ulm-05.txt

[2] Ruth Aydt. The Pablo Self-Defining Data Format.

http://vibes.cs.uiuc.edu/Publications/Documents/

documents.htm#SDDF, 1992 latest revision 2000.

[3] S. Browne, J. Dongarra, K. London, Review of

Performance Analysis Tools for MPI Parallel Pro-

grams, http://www.cs.utk.edu/~browne/perftools-

review/.

[4] CAIDA.

http://www.caida.org/Tools/taxonomy.html

[5] Jason R. Lee. The Image Server System: A High-

Speed Parallel Distributed Data Server, LBL

report 36002, http://www-

didc.lbl.gov/DPSS/papers/ISS-paper.LBL-

report.fm.html

[6] Java Agents for Monitoring and Management.

http://www-didc.lbl.gov/JAMM/

[7] Java HotSpot(tm) Technology.

http://java.sun.com/products/hotspot/index.html.

[8] D. Mills. Simple Network Time Protocol (SNTP).

RFC 1769, March 1995

[9] D. Mills. Simple Network Time Protocol

(SNTP). University of Delaware,
http://www.eecis.udel.edu/~ntp/

[10] Pablo. http://www-

pablo.cs.uiuc.edu/Projects/Pablo/

[11] SIGGRAPH, pp. 459- 472.

[12] D. Robertson. Correspondence, March, 1999.

[13] Tierney, B., Gunter, D., Becla, J., Jacobsen, B.,

Quarrie, D., Using NetLogger for Distributed Sys-

tems Performance Analysis of the BaBar Data

Analysis System , Proceedings of Computers in

High Energy Physics 2000 (CHEP 2000) , Feb.

2000, LBNL-44828.

[14] The Upshot Program Visualization System.

http://www-c.mcs.anl.gov/home/lusk/upshot/.

[15] G.J.Ward. The RADIANCE Lighting Simulation

and Rendering System. Computer Graphics

Proceedings, 1994, ACM

