Harnessing computing power for security:
BitBlaze, WebBlaze, and
real-time spam URL filtering

Devdatta Akhawe, Domagoj Babi¢, Adam Barth, Juan Caballero,
Chris Grier, Steve Hanna, Justin Ma, Lorenzo Martignoni,
Stephen McCamant, Feng Mao, James Newsome, Vern Paxson,

Prateek Saxena, Dawn Song, and Kurt Thomas

{smcc,dawnsong}@cs.berkeley.edu
University of California, Berkeley

Computer security: bad news

Apple slammed over iPhone, iPad location tracking

By JORDAN ROEERTSON AP Technalogy Writer

v Online scammers jump on bin Laden news

By BARBARA ORTUTAY AP Technalogy Wiriter

v|Data breach at security firm linked to attack on Lockheed

By Christopher Drew and John Markaff
New York Times

up

Sony: Credit data risked in PlayStation outage

Ey RYAN NAKASHIMA and JORDAN ROBERTSON AP Business Writers

Updated: D4/26/2011 08:50:24 PM PDT

More powerful computers seem to just
increase our exposure to security threats

Defense is challenging

) Software inevitably has bugs

) Attackers now have real incentives
® Financial, national interest, . ..

) Increasing sophistication and scale of
attacks
) We need a new generation of defense

techniques
® Move beyond symptom-based and
heuristic approaches

The BitBlaze approach

) Use program semantics, focus on root
causes
) Build a unified binary analysis platform

for security

® Leverage advances in program analysis,
instrumentation, etc.

) Apply it to solve real-world security

problems
® I'll discuss just a few examples

BitBlaze core components

BitBlaze binary analysis infrastructure

Outline
Core technique: symbolic reasoning
Binary-level bug-finding
Binary-level influence measurement
Real-time URL spam filtering

Strings and JavaScript vulnerabilities

Basic idea

) Choose some of state (eq., program or
function input) to be symbolic:
introduce variables for their values

) Computations on symbolic state
produce formulas rather than concrete
(e, integer) values

) Construct queries with these formulas,
solve to answer questions about
possible program behavior

Why symbolic reasoning?

+ Precise: formulas can capture exact
program behavior without
approximation

+ Complete solver. (i.e. decision
procedure) will always produce a
correct solution without human help

+ Flexibility.: Formulas independent of
particular form of query

Why not symbolic reasoning?

- Precise, but often not complete: don't
prove that a given behavior can never
happen

- Complete solver, but solution not
guaranteed within reasonable
space/time

- Flexibility, but may be be less efficient
than more specialized approach

Possible approaches

Weakest precond./ . Trace based/
verif. cond./ Online/ concolic/
all-paths proper dynamic
symb. exec. symb. exec. symb. exec.
All paths, One path, One path,
all branches each branch one branch

< < more symbolic < jmmmm— > more concrete > [

Applications

Vulnerability signatures [Oakland'06,CSF'O7] Protocol replay
[CCS'06] Deviation discovery [USENIX'07] Patch-based exploit
generation [Oakland'08] Modeling content sniffing [Oakland'09]
Influence measurement [PLAS'09] Loop-extended SE
[ISSTA'09] Protocol-level exploration [RAID'0O9] Kernel API
exploration Decomposing crypto functions [CCS10] Fixing
under-tainting [NDSS'11] Protocol-model assisted SE [USENIX1]
JavaScript SE [Oakland'10] Static-quided test generation
[ISSTAN] Emulator verification [submitted)]

Applications

Vulnerability signatures [Oakland'06,CSF'O7] Protocol replay
[CCS'06] Deviation discovery [USENIX'07] Patch-based exploit
generation [Oakland'08] Modeling content sniffing [Oakland'09]
Influence measurement [PLAS'09] Loop-extended SE
[ISSTA'09] Protocol-level exploration [RAID'0O9] Kernel API
exploration Decomposing crypto functions [CCS10] Fixing
under-tainting [NDSS'11] Protocol-model assisted SE [USENIX1]
JavaScript SE [Oakland'10] Static-qguided test generation
[ISSTAN] Emulator verification [submitted)]

Challenges of binary symbolic reasoning

) Instruction set complexity
® Rewrite to simpler intermediate language

£) Variable-size memory accesses

® Lazy conversion with mixed-granularity
storage

£) No type distinction between integers

and pointers
® Analyze symbolic expression structure

Outline
Core technique: symbolic reasoning
Binary-level bug-finding
Binary-level influence measurement
Real-time URL spam filtering

Strings and JavaScript vulnerabilities

Setting: vulnerability finding

o Find exploitable bugs in software, before the bad
quys do
o Many bugs found by independent researchers,
without benefit of source code
o Example vulnerability type: buffer overflow
sIncorrect or missing bounds check allows
malicious input to overwrite other sensitive state
=Despite extensive research, and some progress
in practice, still a major bug category in C/C+
programs

Static analysis

©) Widely used at source-code level

©) Can be sound (report all potential problems), at
cost of false positives (imprecision)

©) Challenge 1. more difficult at binary level
® Soundness/precision tradeoff less favorable

©) Challenge 2: developers have a low tolerance for
false positives
® Won't use a tool that wastes their time

Combined static/dynamic approach

’ Dynamic tracing }—){ Static analysis }—){ Symbolic execution ‘

©) Before static analysis, use dynamic traces to help
where static binary analysis has trouble (eq.,
indirect control flow)

©) Design and optimize static analysis for
binary-level challenges (e.g., variable identification,
overlapping memory accesses)

0 After static analysis, prioritize true positives by
searching for test cases with symbolic execution

Combined static/dynamic approach

’ H H Symbolic execution l

@ Before static analysis, use dynamic traces to help
where static binary analysis has trouble (e.q.,
indirect control flow)

@ Design and optimize static analysis for
binary-level challenges (e.g., variable identification,
overlapping memory accesses)

) After static analysis, prioritize true positives by
searching for test cases with symbolic execution

Key challenge: quiding the search

) Increase the chances that the paths we

explore will lead to a bug

® Path must reach the code location of the
bug

® Program state at that location must
trigger the bug

) Combination of two approaches:

1. Data-flow slice and control-flow distance
to direct paths toward a potential bug

2. Explore patterns of loop body paths to
cover cases likely to overflow

Key challenge: quiding the search

) Increase the chances that the paths we

explore will lead to a bug
® Path must reach the code location of the
bug
® Program state at that location must
trigger the bug

) Combination of two approaches:
1. Data-flow slice and control-flow distance

to direct paths toward a potential bug
2.

Guidance toward a bug

Guidance toward a bug

Guidance toward a bug

Guidance toward a bug

Guidance toward a bug

Guidance toward a bug

Guidance toward a bug

Guidance toward a bug

Guidance toward a bug

o

-«

Guidance toward a bug

Guidance toward a bug

Guidance toward a bug

Guidance toward a bug

Sub-problem: control-flow distance

£) An interprocedural control-flow graph has

nodes for statements, and edges between
statements and for calls and returns

) However, we can't use a reqular graph distance
measure (Dijkstra’s algorithm), because of call
and return matching

® Exclude: £ calls g, g returns to h

) Instead, new two-phase distance algorithm that
first computes entry-to-exit distances bottom
up, then adds unmatched returns and calls

Guidance results

Unguided Guided

Benchmark | Paths Time (s) | Paths Time (S)
BIND/b4 1 1.9 1 1.8
Sendmail/s5 3 19.0 3 22.9
BIND/b1 54 2.8 20 3.6
BIND/b2 137 13.3 72 25.1
BIND/b3 9 1.6 4 2.6
Sendmail/s2 16 2.9 9 97.0
Sendmail/s7 56 6.9 1 1.9
WU-FTPD/£1 309 8.1 11 1.1
WU-FTPD/£2 | 1455 65.8 11 1.4
WU-FTPD/£3 143 60.0 18 114
Sendmail/s5 T/0 > 21600.0 332 200.4
Sendmail/s6 T0 > 21600.0 86 11.3
Sendmail/s1 T0 > 21600.0 | 7297 74744
Sendmail/s3 T/0 > 21600.0 T/0 > 21600.0

Guidance results

Unguided Guided
Benchmark | Paths Time (s) | Paths Time (s)
— BIND/b4 1 1.9 1 1.8
— Sendmail/s5 3 19.0 3 22.9
BIND/b1 54 2.8 20 3.6
BIND/b2 137 13.3 72 25.1
BIND/b3 9 1.6 4 2.6
Sendmail/s2 16 2.9 9 97.0
Sendmail/s7 56 6.9 1 1.9
WU-FTPD/£1 309 8.1 11 1.1
WU-FTPD/£2 | 1455 65.8 11 14
WU-FTPD/£3 143 60.0 18 114
Sendmail/s5 T/0 > 21600.0 332 200.4
Sendmail/s6 T/0 > 21600.0 86 11.3
Sendmail/s1 T0 > 21600.0 | 7297 7474 4
Sendmail/s3 T/0 > 21600.0 T/0 > 21600.0

Guidance results

Unguided Guided
Benchmark | Paths Time (s) | Paths Time (s)
BIND/b4 1 1.9 1 1.8
Sendmail/s5 3 19.0 3 22.9
— BIND/b1 54 2.8 20 3.6
— BIND/b2 137 13.3 72 25.1
— BIND/b3 9 1.6 4 2.6
— Sendmail/s2 16 2.9 9 97.0
Sendmail/s7 56 6.9 1 1.9
WU-FTPD/£1 309 8.1 11 1.1
WU-FTPD/£2 | 1455 65.8 11 14
WU-FTPD/£3 143 60.0 18 11.4
Sendmail/s5 T/0 > 21600.0 332 200.4
Sendmail/s6 T/0 > 21600.0 86 11.3
Sendmail/s1 T0 > 21600.0 | 7297 7474 4
Sendmail/s3 T/0 > 21600.0 T/0 > 21600.0

Guidance results

Unguided Guided
Benchmark | Paths Time (s) | Paths Time (s)
BIND/b4 1 1.9 1 1.8
Sendmail/s5 3 19.0 3 22.9
BIND/b1 54 2.8 20 3.6
BIND/b2 137 13.3 72 25.1
BIND/b3 9 1.6 4 2.6
Sendmail/s2 16 2.9 9 97.0
— Sendmail/s7 56 6.9 1 1.9
—WU-FTPD/£1 309 8.1 11 1.1
—WU-FTPD/£2 | 1455 65.8 11 14
—WU-FTPD/£3 143 60.0 18 11.4
Sendmail/s5 T/0 > 21600.0 332 200.4
Sendmail/s6 T/0 > 21600.0 86 11.3
Sendmail/s1 T/0 > 21600.0 | 7297 7474 4
Sendmail/s3 T/0 > 21600.0 T/0 > 21600.0

Guidance results

Unguided Guided
Benchmark | Paths Time (s) | Paths Time (s)
BIND/b4 1 1.9 1 1.8
Sendmail/s5 3 19.0 3 22.9
BIND/b1 54 2.8 20 3.6
BIND/b2 137 13.3 72 25.1
BIND/b3 9 1.6 4 2.6
Sendmail/s2 16 2.9 9 97.0
Sendmail/s7 56 6.9 1 1.9
WU-FTPD/£1 309 8.1 11 1.1
WU-FTPD/£2 | 1455 65.8 11 14
WU-FTPD/£3 143 60.0 18 114
— Sendmail/s5 T/0 > 21600.0 332 200.4
— Sendmail/s6 T/0 > 21600.0 86 11.3
Sendmail/s1 T0 > 21600.0 | 7297 7474 4
Sendmail/s3 T/0 > 21600.0 T/0 > 21600.0

Guidance results

Unguided Guided
Benchmark | Paths Time (s) | Paths Time (s)
BIND/b4 1 1.9 1 1.8
Sendmail/s5 3 19.0 3 22.9
BIND/b1 54 2.8 20 3.6
BIND/b2 137 13.3 72 25.1
BIND/b3 9 1.6 4 2.6
Sendmail/s2 16 2.9 9 97.0
Sendmail/s7 56 6.9 1 1.9
WU-FTPD/£1 309 8.1 11 1.1
WU-FTPD/£2 | 1455 65.8 11 14
WU-FTPD/£3 143 60.0 18 11.4
Sendmail/s5 T/0 > 21600.0 332 200.4
Sendmail/s6 T/0 > 21600.0 86 11.3
— Sendmail/s1 T/0 > 21600.0 | 7297 7474 4
Sendmail/s3 T/0 > 21600.0 T/0 > 21600.0

Guidance results

Unguided Guided
Benchmark | Paths Time (s) | Paths Time (s)
BIND/b4 1 1.9 1 1.8
Sendmail/s5 3 19.0 3 22.9
BIND/b1 54 2.8 20 3.6
BIND/b2 137 13.3 72 25.1
BIND/b3 9 1.6 4 2.6
Sendmail/s2 16 2.9 9 97.0
Sendmail/s7 56 6.9 1 1.9
WU-FTPD/£1 309 8.1 11 1.1
WU-FTPD/£2 | 1455 65.8 11 14
WU-FTPD/£3 143 60.0 18 11.4
Sendmail/s5 T/0 > 21600.0 332 200.4
Sendmail/s6 T/0 > 21600.0 86 11.3
Sendmail/s1 T0 > 21600.0 | 7297 7474 4
— Sendmail/s3 T/0 > 21600.0 T/0 > 21600.0

Outline
Core technigue: symbolic reasoning
Binary-level bug-finding
Binary-level influence measurement
Real-time URL spam filtering

Strings and JavaScript vulnerabilities

Due and undue influence

£) How much influence should network
inputs have on a program?
) For instance, on an indirect jump target

® Some influence — select a legal behavior
® Too much influence — control flow
hijacking attack

High and low influence examples

void (¥func_ptr) (void);
func_ptr = untrusted_input();
(*func_ptr) O ;

void (*func_ptr) (void);

switch (untrusted_input()) {
case CMD_OPEN: func_ptr = &open_file;
case CMD_READ: func_ptr = &read_file;
default: func_ptr = &error;

}
(*func_ptr) O ;

Channel capacity as influence

0 8 16
Lottt b rc b rrre b e

©) For a given variable, how many values
can an attacker produce?

© Influence = log, (# values)

) Special case of channel capacity from
information theory

Scalability and precision

) Want to analyze large (e.q,
commercial) software

) Want results with no error
) Our goal: improved trade-off points
between these ideals

Problem statement

) Given:
® A deterministic program with designated
inputs
® An output variable
) Question: how many values of the
output are possible, given different

inputs?

Program to formula example

/* Convert low 4 bits of integer to hex */
char tohex(int i) {
int low = i & Oxf;

char v;
if (low < 10)
v = ’0° + low;
else
v = ’a’ + (low — 10);
return v;

}

Dynamic: (1&15) < 10A (v=48+ (1&15))

Program to formula example

/* Convert low 4 bits of integer to hex */
char tohex(int i) {
int low = i & Oxf;
char v;
if (low < 10)
v = ’0° + low;
else
v = ’a’ + (low — 10);
return v;

}

Static: ((1&15) <10 A (v =48 + (1&15)) V
(1&15) > T10A (v=97+ (1&15) — 10))

Query techniques

0 8 16
Lot b b rr e b e

) Point-by-point exhaustion
) Range exclusion

©) Random output sampling

) Probabilistic model counting

Query techniques

0 8 16
Lottt b b rrre b

) Point-by-point exhaustion
) Range exclusion

© Random output sampling

) Probabilistic model counting

Query techniques

0 8 16
Llteret bt brr v b

£) Point-by-point exhaustion
) Range exclusion

©) Random output sampling

) Probabilistic model counting

Point-by-point exhaustion

0 Is v = f(i) satisfiable?

) Suppose it is, by vi = f(i;)

0ls v =f(i) /A v # v, satisfiable?

£) We repeat up to at most 26 = 64
distinct outputs, so every bound up to
6 bits is exact

Range exclusion

NliIsv=1"f(i) A (a <v < D) satisfiable?
©) If not, a whole range is excluded
©) If so, can subdivide

£) We also use this with binary search to
find the minimum and maximum
outputs

Random output sampling

) Pick v, at random, and check if
v, = f(1) is satisfiable

) By default, our tool uses 20 samples,
and computes a 95% confidence
interval

Probabilistic model counting

) Use XOR streamlining [GSS06] to
probabilistically reduce #SAT to SAT

£) Analogy: counting audience members

) Random parity constraints over enough
bits are effectively independent

) Perform repeated experiments with
different numbers of constraints

Probabilistic model counting

Choose # of constraints so that p(SAT) ~ 0.5

1

0.8

0.6

p(SAT)
0.4

T
I
I
I
I
I
I
I
I
I
I
0.2 :
I
I

0

0 5 10 15 20 25 30 35

parity constraints added

Identity function

v =1

Low | High | Sample | #SAT | Actual

604320 |[318,320] | 320 | 32

D:| Feasible Point
E Infeasible Range

[] ~100% (Probabilistic)
[r==] ~50% (Probabilistic)
[—] < 5% (Probabilistic)

tohex

sprintf (&v, "%x", i & 0xf)

Static:
Low | High | Sample | #SAT | Actual

400 (400 | N/A | N/A 4

Dynamic:
Low | High | Sample | #SAT | Actual
332332 N/A | NA |log, 10 ———
258 1258 | N/A | N/A | log,; 6

Mix and duplicate

f(xoy) =(x@y)o(xDy)
£ (0x00000042) = 0x00420042
f(0x02461111) = 0x13571357
f (Oxcafebebe) 0x74407440

Low | High | Sample | #SAT | Actual

604 320[00,286]| 158 | 16

Results summary

Goal: distinquish attacks from false positives

RPC DCOM (Blaster)

ATPhttpd
SQL Server (SIammer)\ \

0 8 16
[N . N T A Y Y

RPC DCOM %esp
Samba function pointer

Confirming attacks

) Vulnerable Windows and Linux binaries

) Real attacks all have high influence, at

least 26 bits
Program | High | Sample | #SAT | Value Set

RPC DCOM | 320 | [318,320] | 304 | mummmmm=s
SQL Server | 309 | [267, 28.3] | 266 | HiHi——
ATPhttpd 320 | [318,320] | 310 | imwmmwmwms

Reveal false positives

) Examples cause taint analysis warnings

) Measured influence exactly, less than 5
bits
Program | Low | High | Value Set

RPC %esp 381 | 381 | ———
Samba func. ptr | 332 | 332 | —

Directions for improving solving

) Further targeted query strategies
® Eg, two-bit patterns [Meng & Smith,
PLAS]
©) Refined strateqgy for choosing number
of parity constraints
0 Interface with off-the-shelf #SAT

solvers

® Question: how to restrict counting to
output bits?

Outline
Core technique: symbolic reasoning
Binary-level bug-finding
Binary-level influence measurement
Real-time URL spam filtering

Strings and JavaScript vulnerabilities

Motivation

il

Social Networks
(Facebook, Twitter)

Blogs, Services
(Blogger, Yelp)

Web Mail
(Gmail, Live Mail)

Motivation

* Existing solutions:
— Blacklists
— Service-specific, account heuristics

* Develop new spam filter service:
— Filter spam: scams, phishing, malware
— Real-time, fine-grained, generalizable

Overview

* Qur system — Monarch:
— Accepts millions of URLs from web service
— Crawls, labels each URL in real-time

* Spam Classification

— Decision based on URL content, page behavior,
hosting

— Large-scale; distributed collection, classification

* Implemented as a cloud service

Monarch in Action

()
Spam Account

Social Network

Monarch in Action

K

e
esc’%%
’L.

Social Network

Monarch in Action

% ?u?\\

Spam Account

Spam URL Content

Monarch in Action

% ?u?\\

Spam Account

1UL1u0) Y2134 "€

Spam URL Content

Monarch in Action

% ?u?\\

Spam Account

JU33U0) Yd3e4 °E

Social Network

Message Recipients Spam URL Content

Challenges

Accuracy
Real-Time
Scalability

Tolerant to Feature Evolution

Outline

Architecture
Results & Performance
Limitations

Conclusion

System Architecture

Dispatch
Queue

URL Aggregation

Training

Blacklists,
User Reports

Live

HTTP/DNS Cache e

Crawling
Instances

Feature
Database

—

Feature
Extractors

¥

Classifier D

Classification

Sparse Feature

Vectors

Feature Extraction

System Architecture

Dispatch
Queue

Training

Blacklists,
User Reports

Live

Crawling Feature
Instances Database

Feature Collection

Feature
Extractors

¥

Sparse Feature

Classifier D

Classification

Vectors

Feature Extraction

System Architecture

Crawiing | gy
Instances

Dispatch

Queue

Feature
Database

Feature Collection

Training

Blacklists,
User Reports

Feature
Extractors

Sparse Feature
Vectors

Classification Feature Extraction

Live

Classifier

System Architecture

HTTP/DNS Cache e

Crawiing | gy
Instances

Dispatch
Queue

Feature
Database

URL Aggregation Feature Collection

Blacklists
User Reports

Feature
Extractors

¥

Sparse Feature
Vectors

Classifier

Classification Feature Extraction

URL Aggregation

Spam email URLs 1.25 million
Blacklisted Twitter URLs 567,000

Non-spam Twitter URLs 9 million

Collection period: 9/8/2010 — 10/29/2010

Feature Collection

* High Fidelity Browser

* Navigation
— Lexical features of URLs (length, subdomains)
— Obfuscation (directory operations, nested encoding)

* Hosting
— IP/ASN
— A, NS, MX records
— Country, city if available

Feature Collection

* Content
— Common HTML templates, keywords
— Search engine optimization
— Content of request, response headers

* Behavior
— Prevent navigating away
— Pop-up windows
— Plugin, JavaScript redirects

Classification

f(@) = Zlog(l + exp|—yi(; - @;)])

* Distributed Logistic Regression
— Data overload for single machine

Classification

f(w) = Zlog(l + exp[—y;(Z; - W;)]) + Al 1.

* Distributed Logistic Regression
— Data overload for single machine

* L1-regularization
— Reduces feature space, over-fitting
— 50 million features -> 100,000 features

Implementation

* System implemented as a cloud service on
Amazon EC2
— Aggregation: 1 machine

— Feature Collection: 20 machines
* Firefox, extension + modified source

— Classification & Feature Extraction: 50 machines
* Hadoop - Spark, Mesos

 Straightforward to scale the architecture

Result Overview

* High-level summary:
— Performance
— Overall accuracy
— Highlight important features
— Feature evolution
— Spam independence between services

Performance

* Rate: 638,000 URLs/day
— Cost: $1,600/mo

* Process time: 5.54 sec
— Network delay: 5.46 sec

* Can scale to 15 million URLs/day
— Estimated $22,000/mo

Measuring Accuracy

* Dataset: 12 million URLs (<2 million spam)
— Sample 500K spam (half tweets, half email)
— Sample 500K non-spam

* Training, Testing
— 5-fold validation
— Vary training folds non-spam:spam ratio
— Test fold equal parts spam, non-spam

Overall Accuracy

Training Accuracy False Positive | False Negative
Ratio Rate Rate

94% 4.23% 7.5%
4:1 91% 0.87% 17.6%
10:1 87% 0.29% 26.5%
\ J \ J
CorrectIyYIabeIed Non-srxn labeled Spam labeled

samples as spam as non-spam

Overall Accuracy

Training Accuracy False Positive | False Negative
Ratio Rate Rate

94% 4.23% 7.5%
4:1 91% 0.87% 17.6%
10:1 87% 0.29% 26.5%
\ J \ J
CorrectIyYIabeIed Non-srxn labeled Spam labeled

samples as spam as non-spam

Error by Feature
&
N C‘)Q'

o O o o o o
n < oo N -

(%) 40443

M False Positive Rate

¥ Error

Error = 1 - Accuracy

Error by Feature
&
&

o O o o o o
n < oo N -

(%) 40443

M False Positive Rate

¥ Error

Error = 1 - Accuracy

Error by Feature

o O o o
n < oo N

(%) 40443

M False Positive Rate

¥ Error

Error = 1 - Accuracy

Feature Evolution — Retraining Required

98
__ 96
xR 9 A
)
c 92
5 \
$ 90 —u
88
86
12-Sep 16-Sep 20-Sep 24-Sep

==\\Vith Retraining “®@=Without Retraining

Spam Independence

* Unexpected result: Twitter, email spam
gualitatively different

Twitter Twitter 94% 22%
Twitter Email 81% 88%
Email Twitter 80% 99%

Email Email 99% 4%

Spam Independence

* Unexpected result: Twitter, email spam
gualitatively different

Twitter Twitter 94% 22%
Twitter Email 81% 88%
Email Twitter 80% 99%

Email Email 99% 4%

Distinct Email, Twitter Features

Association between email, tweets, and nonspam

''''' tweet & nonspam
40} | = = = email & nonspam
email & tweet

Percentage of features (CDF)

0 0.5 1 15 2 25 3
Log odds ratio of feature frequency

Email Features Shorter Lived

Feature Persistance

100 I
o = = = emall !
a 80t "= =" tweet II
g nonspam -
>
= 60
Qo
©
o 40
o)

8
c
g 20
o)
o

0 10 20 30 40
Length of time feature exists (days)

Limitations

* Adversarial Machine Learning
— We provide oracle to spammers
— Can adversaries tweak content until passing?

e Time-based Evasion
— Change content after URL submitted for verification

* Crawler Fingerprinting
— Identify IP space of Monarch, fingerprint Monarch
browser client

— Dual-personality DNS, page behavior

Outline
Core technigue: symbolic reasoning
Binary-level bug-finding
Binary-level influence measurement
Real-time URL spam filtering

Strings and JavaScript vulnerabilities

Example attack: gadget overwrite

® Firefox File Edit View History Tools Window Help
800 iGoogle

(31 (&) GO A ’
Google @ no| 5~ M- 3 Bookmarks = § Autolink §] Autoril [Send o = &
e Loading.

Web Images Videos Maps News Shopping Gmail mor

(Google Search)((Tm Feeling Lucky)

New! Introducing nature themes for your iGoogle page.

= Home
e TVGuide.com
© Links TVGuide iGoogle gadget now integrated with iGoogle!
Please login to view the TVGuide listings.
Enable chat

Sign in to iGoogle with your
Google Account
Email:
Password:
™ Stay signed in
(signin)

Cant access vour account?

Don't have a Google Account?
Create an account now

Example attack: explanation

o Cross-site scripting can exist entirely in
client-side JavaScript

o Unsanitized data passed to HTML
creation (document .write) or eval

o In the example, a malicious link injects
code into the TVGuide gadget, turning it
into a phishing vector

What's new here?

) Source/sink problem, somewhat like

SQL injection or server-side XSS, but:
® JS code takes many kinds of inputs as
unstructured strings, requiring custom
parsing
® Sanitization is not standardized, and often
application-specific

— More difficult challenges for string
reasoning

Exploration overview

Two kinds of exploration:

) Event space: GUI actions such as
clicking check-boxes or links
) Value space: contents of form,

message, and URL inputs
® Explore new program paths
®m Check whether sanitization is sufficient
(compare to attack grammar)

Kudzu system overview

INPUT FEEDBACK SYSTEM REACHABILITY (ot feedback)
DYNAMIC PATH CONDITION ;
WEB IS SYMBOLIC | __,CONSTRAINT|__FORMULA
GUl BROWSER INTERPRETER| INTERPRETER |EXTRACTOR BB
EXPLORER| ‘
ﬁXECUTION
TRACE
ULNERABILITY
CONDITION EXPLOIT
******************* smBoc ~ T el
‘ SOURCE - SINK LTS ‘
| o o L |
SINK INFORMATION ERIFICATION™!
| IDENTIFICATIO SINK.SPECIFIC—> EXTRACTOR [BUG REPORT |
! APPLICATION-SPECIFIC COMPONENTS ATTACK GRAMMAR ATrACK&sTRINd

L L _______—C 3

Usage of string operations

Match / Test Substr /
/ Split Substring /
1% CharAt/
CharCodeAt
5%

Replace /

EncodeURI/

DecodeURI
8%

Expressiveness

HAMPI CFGs

(undecidable) (zfs!:xzx?:a CJ Regular expreSSiOn

\ membership

(PSPACE)

Word Eqn's

| wi |) Arbitrary concatenation

Boolean Comb. (= NP)
of RegExps

(word equations)

(= NP,

=< PSPACE)

) String length function

Single RegExp
(P)

(Complexities are for unbounded
variants)

£) Can also mix in boolean and (31-bit)
integer constraints

Nested architecture

Approach overview

) Flatten concatenations to a linear
sequence

) Abstract to length constraints

©) For each length assignment:

® Expand regexps (HAMPI code)
® Combine in single bitvector query
® bitvector SAT — string SAT

) Exhausted lengths — string UNSAT

Approach details

(s1) () M GDem
L R L R
L R
(2,2) (3, 3) (4 4)
S1=52.S3 S2 = S2_COPY
S4 =S53.S2 S3 = S3_COPY
INPUT CONCAT CONSTRAINTS
DI REATION

NEW CONSTRAINTS
T0 (

© Real JavaScript “regexes” are more
complex that textbook ones

o Regexp lengths — ultimately periodic set

o Translate replace with fixed number of
occurrences

Kaluza performance results

50
°
o o
°
° °
0% 4R
° 0% °
° & e o °
s S Po®
O<> CR <
S ©
o 9 <>§<><> AV EPN o
o & 3 ®
ogoo&o@ooo RS ¢ °
3 S
&Z‘?%Q <><> % © ¢ @ ¢ 0&0 i}
R o
0 o o o 6% R ¢ ° 90 ¥
R PONS 0oEQ o o o R &%
05 ™
| |
| | | |

A i, i3 At 2 2 2= T

200

250

50

T
100

W Solve Time (SAT cases) ¢ Solve Time(UNSAT cases)

T
150

Overall results

) Tested 5 AJAX applications and 13
iGoogle gadgets (all live)
) Event and value space exploration both

contribute to coverage

® But some code and events not yet
covered

©) Found vulnerabilities in 11 apps, including
2 missed by our previous taint-directed
fuzzer

Summary, and for more info

) Symbolic exploration and reasoning
enable a wide variety of security tools

) Many security problems need lots of
computing, but are naturally
parallelizable

£) http://bitblaze.cs.berkeley.edu/
) http://bit.ly/muahjS

http://bitblaze.cs.berkeley.edu/
http://bit.ly/muahjS

Thank you

Backup slides

Web browser content sniffing

£) An HTTP response contains a content
type header

®mEg, text/html Or image/png
) But sometimes (~1%) the content type
IS missing or invalid
) Thus browsers sometimes attempt to
sniff (Quess) the type from the content
or URL

When content sniffing goes bad

) Content type matters because it
affects privilege

® Some types of content (HTML, Flash) can
contain code

) An unexpected upgrade can allow an
untrusted user to inject JavaScript
® le, a kind of cross-site scripting (XSS)
) Usually a mismatch between the
browser and another filter

HotCRP attack example

) Conference site allows authors to upload
PostScript papers

) What if the site accepts this file as PS, but the
reviewer's browser considers it HTML?

%! PS-Adobe
%hCreator: <script>submitReview("A+");

£) Your paper gets accepted :-)

Modeling content sniffing

) To understand such attacks, we want a
formal model of the sniffer's behavior

0 Eg, M"(c) = true if the file contents c
are sniffed as HTML
£) Boolean combinations correspond to

possible mismatch attacks
s M¥(c) AMY(c)

Model extraction

£) The content-sniffing strategies of

closed-source browsers are often un-
or under-documented

®m We look at IE 7, Safari 3.1
) Extract from the binary using white-box
exploration (symbolic execution)
) Model is a disjunction of path
conditions from accepting paths

Abstracting string functions

©) Sniffing code makes heavy use of
string routines

) Reason about their semantics, not their
implementation

+ Summarize multiple paths
+ SKip implementation details

+ Take advantage of specialized solvers
(future)

Translating string functions

. Recognize over 100 binary-level
functions (mostly documented)

. Canonicalize to 14 semantic classes

. Express in terms of a core constraint
language

. Reduce core constraints to STP bit
vectors

Exploration advantage of strings

Block coverage for Safari:

200
190 r
180 |
170 |
160
150
140 r
130 r
120 K
110
100
90

Number of blocks

strings —=— |
bytes —=&—

0 5000 10000 15000 20000
Time(seconds)

Summary of attacks found

) Tool finds attacks to upgrade 6 content

types each in IE and Safari to HTML.

® But which pass a common server-side
filter

® Wikipedia has a more complex filter, but it
can also be bypassed

) Automatically generated PS — HTML
example:

%!t ?HPTw\nOtKoCglD<HeadswssssRsD

Happy ending: safe sniffing

) Our models can be used to create
matching server-side filters
) We propose client-side design

principles for safe sniffing

® Avoid privilege escalation
m Prefix-disjoint signatures

) Adopted by IE 8 (partial), Chrome, and
HTML 5

Guidance (2): loop patterns

© Observation: triggering a loop-related bug often requires a
specific execution pattern within a loop

char buf[20], *p = buf;
int mode = 0;
while (p >= buf) {
switch (read_char()) {
case ’a’:
if (mode == 1) {
*p++ = ’x’; mode = 0; // path 1

} else { // path 2
} break;
case ’b’:
mode = !mode; break; // path 3
default: p = max(buf, p--); // path 4

Guidance (2): loop patterns

) Approach: cover a variety of patterns

during symbolic execution
® Don't try to find the right pattern statically

) Statically number paths through a loop
body

) Try patterns in inverse relation to their
length

£) Interleave use of patterns with
discovering which paths are feasible

Guidance (2): loop patterns

What do our formulas look like?

) The key theory is fixed-size bit-vectors,

representing machine integers

® Exact treatment of overflow, signs, etc.
important for binaries

) Could use arrays for general memory,

lookup tables, but usually don't

® Instead, fix memory layout to be concrete
(or unconstrained symbolic)

) Usually easy to solve, whether SAT or
UNSAT

Solver performance

For easy formulas, mundane changes matter (sample
of 84355 formulas, not a general tool comparison)

6000
5000
4000

3000

Runtime (s)

2000

1000

0

STPlibrary, batch, less simp.

STP external, batch, more simp. Z3 library, incremental

Checked/bounded copy

v =1 & 0x0f
v=20; if (1 < 16) v = 1

Low | High | Sample | #SAT | Actual

400400 N/A | NA | 4

Multiplication and division
V=132

Low | High | Sample | #SAT | Actual

658 | 320 |[304, 316]| 315 | 3
v=1/2
Low | High | Sample | #SAT | Actual

658 | 310 |[308,310] | 317 | 3i

