
Google Prediction API and 
Distributed Machine Learning

Max Lin
Software Engineer | Google

HPC and Cloud Computing Workshop | LBNL & CITRIS
UC Berkeley | June 22nd, 2011

Wednesday, June 22, 2011



Outline

• What is Machine Learning?

• Why Machine Learning on the Cloud?

• What is Google Prediction API?

• How to scale up machine learning 
algorithms?
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“Machine Learning is a study 
of computer algorithms that 

improve automatically 
through experience.”
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The quick brown fox jumped over the lazy dog.

Linear Classifier
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‘a’ ‘aardvark’...

[ 0,
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1,...
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]x

0.1,[ 132,... ... 150, 200,... ... -153, ... ]w

f(x) = w · x =
P�

p=1
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Training Data

...

...

...

... ... ... ... ... ...

...

N
P

Input X Ouput Y
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http://www.flickr.com/photos/mr_t_in_dc/5469563053/

Typical machine learning 
data at Google

N: 100 billions / 1 billion
P: 1 billion / 10 million
(mean / median)
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Classifier Training

• Training: Given {(x, y)} and f, minimize the 
following objective function

argmin
w

N�

n=1

L(yi, f(xi;w)) +R(w)
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http://www.flickr.com/photos/visitfinland/5424369765/

Use Newton’s method?
wt+1 ← wt −H(wt)−1∇J(wt)
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Why Machine Learning 
in the Cloud?

http://www.flickr.com/photos/turtlemom_nancy/2046347762/sizes/l/in/photostream/
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Prediction API

• Machine learning as a web service

• Use Google’s machine learning algorithms

• Use Google’s computing infrastructure

• Beta in 2010, generally available in 2011
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Step 1: Upload

• Training data: inputs to outputs

• Data format: Comma-Separated Value
english, “to err is human, but to really ...”
spanish, “no hay mal que por bien no benga. “

• Upload to Google Storage
$ gsutil cp my_data gs://my/data
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Step 2: Train
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Step 2: Train

• To train a model
POST prediction/v1.2/training

{id: ‘my/data’}
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Step 2: Train

• To train a model
POST prediction/v1.2/training

{id: ‘my/data’}

• To see if a training job is finished
GET prediction/v1.2/training/my%2Fdata
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Step 3: Predict
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Step 3: Predict
• Make a prediction

POST prediction/v1.2/training/my%2Fdata

{input:
  {csvInstance: [“To be or not to be ...”]}}

• {outputLabel: “english”,
 outputMulti: [{“label”: “english”,
                “score”: 0.92},
               {“label”: “spanish”,
                “score”: 0.08}]}
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Step 4: Adapt

• Stream new data to new model
PUT prediction/v1.2/training/my%2Fdata

{classLabel: “french”,
  csvInstance: [“J’aime X! C’est le meiller”]} 
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• Sign up the Google Prediction API
Google APIs Console
http://code.google.com/apis/console

• More info about the Prediction API
http://code.google.com/apis/predict
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Subsampling
Big Data

Shard 1 Shard 2 Shard MShard 3
...
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Shard 1Reduce N
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Shard 1Reduce N
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Subsampling
Big Data

Shard 1

Reduce N
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Machine

Subsampling
Big Data

Shard 1

Model

Reduce N
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Why not Small Data?

[Banko and Brill, 2001]
Wednesday, June 22, 2011



• Why big data?

• Parallelize machine learning algorithms

• Embarrassingly parallel

• Parallelize sub-routines

• Distributed learning

Scaling Up
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Parallelize Optimization

argmin
w

N�

i=1

exp(
�P

p=1 wp ∗ xi
p)

yi

1 + exp(
�P

p=1 wp ∗ xi
p)
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Parallelize Optimization

• Maximum Entropy Classifiers

• Good: J(w) is concave
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Parallelize Optimization

• Maximum Entropy Classifiers

• Good: J(w) is concave

• Bad: no closed-form solution like NB

argmin
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exp(
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Parallelize Optimization

• Maximum Entropy Classifiers

• Good: J(w) is concave

• Bad: no closed-form solution like NB

• Ugly: Large N

argmin
w

N�

i=1

exp(
�P

p=1 wp ∗ xi
p)

yi

1 + exp(
�P

p=1 wp ∗ xi
p)
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Gradient Descent

http://www.cs.cmu.edu/~epxing/Class/10701/Lecture/lecture7.pdf
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http://www.cs.cmu.edu/~epxing/Class/10701/Lecture/lecture7.pdf
http://www.cs.cmu.edu/~epxing/Class/10701/Lecture/lecture7.pdf


Gradient Descent
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• Calculate gradients
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• Calculate gradients
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wt+1 ← wt − η∇J(w)
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Gradient Descent

• w is initialized as zero

• for t in 1 to T

• Calculate gradients

•  

∇J(w)

wt+1 ← wt − η∇J(w)

∇J(w) =
N�

i=1

P (w, xi, yi)
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Distribute Gradient

• w is initialized as zero

• for t in 1 to T

• Calculate gradients in parallel

• Training CPU: O(TPN) to O(TPN / M)
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Distribute Gradient

• w is initialized as zero

• for t in 1 to T

• Calculate gradients in parallel

• Training CPU: O(TPN) to O(TPN / M)

wt+1 ← wt − η∇J(w)
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Distribute Gradient
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Distribute Gradient
Big Data
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Distribute Gradient
Big Data

Shard 1 Shard 2 Shard 3 Shard M...
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Distribute Gradient

Map

Big Data

Machine 1

Shard 1

Machine 2

Shard 2

Machine 3

Shard 3

Machine M

Shard M

(dummy key, partial gradient sum)

...
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Distribute Gradient

Map

Reduce

Big Data

Machine 1

Shard 1

Machine 2

Shard 2

Machine 3

Shard 3

Machine M

Shard M

(dummy key, partial gradient sum)

Sum and 
Update w

...
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Distribute Gradient

Map

Reduce

Big Data

Machine 1

Shard 1

Machine 2

Shard 2

Machine 3

Shard 3

Machine M

Shard M

(dummy key, partial gradient sum)

Sum and 
Update w

...

Model
Repeat M/R 

until converge
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• Why big data?

• Parallelize machine learning algorithms

• Embarrassingly parallel

• Parallelize sub-routines

• Distributed learning

Scaling Up
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Parallelize Subroutines

• Support Vector Machines

• Solve the dual problem
s.t. 1− yi(w · φ(xi) + b) ≤ ζi, ζi ≥ 0

arg min
w,b,ζ

1

2
||w||22 + C

n�

i=1

ζi

argmin
α

1

2
αTQα− αT1

s.t. 0 ≤ α ≤ C,yTα = 0
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http://www.flickr.com/photos/sea-turtle/198445204/

The computational 
cost for the Primal-
Dual Interior Point 

Method is O(n^3) in 
time and O(n^2) in 

memory 
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Parallel SVM

√
N

[Chang et al, 2007]
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Parallel SVM
• Parallel, row-wise incomplete Cholesky 

Factorization for Q

√
N

[Chang et al, 2007]
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Parallel SVM
• Parallel, row-wise incomplete Cholesky 

Factorization for Q

• Parallel interior point method

• Time O(n^3) becomes O(n^2 / M)

• Memory O(n^2) becomes O(n        / M)
√
N

[Chang et al, 2007]
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Parallel SVM
• Parallel, row-wise incomplete Cholesky 

Factorization for Q

• Parallel interior point method

• Time O(n^3) becomes O(n^2 / M)

• Memory O(n^2) becomes O(n        / M)

• Parallel Support Vector Machines (psvm) http://
code.google.com/p/psvm/

• Implement in MPI

√
N

[Chang et al, 2007]
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• Why big data?

• Parallelize machine learning algorithms

• Embarrassingly parallel

• Parallelize sub-routines

• Distributed learning

Scaling Up
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Big Data
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Majority Vote

Big Data

Shard 1 Shard 2 Shard 3 Shard M...
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Majority Vote

Map

Big Data

Machine 1

Shard 1

Machine 2

Shard 2

Machine 3

Shard 3

Machine M

Shard M...
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Majority Vote

Map

Big Data

Machine 1

Shard 1

Machine 2

Shard 2

Machine 3

Shard 3

Machine M

Shard M...

Model 1 Model 2 Model 3 Model 4
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Majority Vote

• Train individual classifiers independently

• Predict by taking majority votes

• Training CPU: O(TPN) to O(TPN / M) 
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Parameter Mixture
[Mann et al, 2009]
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Parameter Mixture
Big Data

[Mann et al, 2009]
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Parameter Mixture
Big Data

Shard 1 Shard 2 Shard 3 Shard M...

[Mann et al, 2009]
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Parameter Mixture

Map

Big Data

Machine 1

Shard 1

Machine 2

Shard 2

Machine 3

Shard 3

Machine M

Shard M

(dummy key, w1)

...

(dummy key, w2) ...

[Mann et al, 2009]
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Parameter Mixture

Map

Reduce

Big Data

Machine 1

Shard 1

Machine 2

Shard 2

Machine 3

Shard 3

Machine M

Shard M

(dummy key, w1)

Average w

...

(dummy key, w2) ...

[Mann et al, 2009]
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Parameter Mixture

Map

Reduce

Big Data

Machine 1

Shard 1

Machine 2

Shard 2
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http://www.flickr.com/photos/annamatic3000/127945652/

Much Less network 
usage than 
distributed gradient 
descent
O(MN) vs. O(MNT)
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Iterative Param Mixture
[McDonald et al., 2010]
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Iterative Param Mixture
Big Data

[McDonald et al., 2010]
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Iterative Param Mixture
Big Data
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[McDonald et al., 2010]
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“Machine Learning is a study 
of computer algorithms that 

improve automatically 
through experience.”
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Google Prediction API
Machine Learning as a Web Service
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Parallelize ML 
Algorithms
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Parallelize ML 
Algorithms

• Embarrassingly parallel

• Parallelize sub-routines

• Distributed learning
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Google APIs

Wednesday, June 22, 2011



Google APIs

• Prediction API

• machine learning service on the cloud

• http://code.google.com/apis/predict
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Google APIs

• Prediction API

• machine learning service on the cloud

• http://code.google.com/apis/predict

• BigQuery

• interactive analysis of massive data on the cloud

• http://code.google.com/apis/bigquery
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