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GO ,(g le when was nsa founded Search

About 3,110,000 results (0.23 seconds) Advanced search

“4 Everything » Best guess for NSA Founded is 1952 - Feedback
) Images Mentioned on at least 5 websites including infoplease.com, historycommons.org and answers.com -
i + Show sources
Videos
National Security Agency — Infoplease.com
National Security Agency (NSA), an independent agency within the U.S. Dept. of Defense.
Shopping Founded by presidential order in 1952, its primary function is to ...

www.infoplease.com/ce6/history/A0834370.html - Cached - Similar

Context of '"1952: NSA Founded'
Mountain View, CA It contains events related to the event 1952: NSA Founded. You can narrow or broaden the
Change location context of this timeline by adjusting the zoom level. ...
www.historycommons.org/context.jsp?item=civilliberties 88 - Cached - Similar

v More

All results National Security Agency: Information from Answers.com

Timeline National Security Agency (NSA), an independent agency within the U.S. Dept. of Defense.
Founded by presidential order in 1952, its primary function is to ...

Organization - Effect on non-governmental ... - NSANet - NSA programs
www.answers.com/topic/national-security-agency - Cached - Similar

More search tools
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4 Everything
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Bl Videos
= News

Shopping
¥ More

Mountain View, CA
Change location

when was nsa founded

About 3,110,000 results (0.23 seconds)

» Best guess for NSA Founded is 1952 - Feedback

Mentioned on at least 5 websites including infoplease.com, hist
+ Show sources

National Security Agency — Infoplease.com
National Security Agency (NSA), an independent agency withi
Founded by presidential order in 1952, its primary function is ¢
www.infoplease.com/ce6/history/A0834970.html - Cached - Si

Context of "1952: NSA Founded’

It contains events related to the event 1952: NSA Founded. Yo
context of this timeline by adjusting the zoom level. ...
www.historycommons.org/context.jsp?item=civilliberties 88 - C
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® 4. Google Translate

€& - (C () translate.google.com/#

Web Images Videos Maps News S}ioooinq émail more v

Go glc translate

From: English v | £4 To: Chinese... Y| ' Translate English to Chinese (Traditional) translation

to be or not to be -{that is the question tzﬁ%%gﬁ‘ - E%ﬂﬂ Fp‘ﬂ,—?:E
o J -2

J Listen =8 Read phonetically

New! C
0 Listen Dismiss

‘my: Q Searches g Videos Email |} Phone ® Chat @l Business

About Google Translate Tum off instant translation Privacy Help
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Training

Input X Output Y

Model f(x)
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Linear Classifier

The quick brown fox jumped over the lazy dog.

x [0, .. 0 o I, o I, .. 0

w [0.0,.. 132, .. 150, .. 200, .. -I53

P
f(ZIZ):W°X:pr>I<CIZp
p=1
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Training Data

Input X Ouput Y

< : >
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- Typical machine learning

,’_”ﬂs "

- " data at Google

N: 100 billions / | billion

'P: | billion / 10 million
(mean / median)

— ‘.l
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http://www.flickr.com/photos/mr_t_in_dc/5469563053/
http://www.flickr.com/photos/mr_t_in_dc/5469563053/

Classifier Training

® Training: Given {(x, y)} and f, minimize the
following objective function

arg nin > L(yi, f(xi;w)) + R(w)

n=1




4

Use Newton’s method!?
wit — wt —H(w") ™ ' VI (w?

% ‘ ‘
\\ . ‘ -

5 N - http://www.flickr.comiphdtos/visitfirfandis:
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http://www.flickr.com/photos/visitfinland/5424369765/sizes/z/
http://www.flickr.com/photos/visitfinland/5424369765/sizes/z/

VWhy Machine't
N th - C | oud¢

oy

) -Ac"‘:",’ S {T
A ‘“.‘w';“., vy =
e e p

.-flic'kr.c photos/turtlemom nancy/2046347762/sizes/l/in/photostream/
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Prediction AP]

® Machine learning as a web service
® Use Google’s machine learning algorithms
® Use Google’s computing infrastructure

® Beta in 2010, generally available in 201 |
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1. Upload Upload your training data to Google Storage

2 Train Build a model from your data

3 Predict Make new predictions
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® T[raining data: inputs to outputs
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® T[raining data: inputs to outputs

® Data format: Comma-Separated Value
english, “to err is human, but to really ...”
spanish, “no hay mal que por bien no benga. *
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Step |: Upload

® T[raining data: inputs to outputs

® Data format: Comma-Separated Value
english, “to err is human, but to really ...”

spanish, “no hay mal que por bien no benga. *

® Upload to Google Storage
$ gsutil cp my_data gs://my/data
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Step 2:Train

® Jo train a model
POST prediction/vl.2/training

{1d: ‘my/data’}
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Step 2:Train

® Jo train a model
POST prediction/vl.2/training

{1d: ‘my/data’}

® TJo see if a training job is finished
GET prediction/vl.2/training/my%Z2Fdata
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Step 3: Predict
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Step 3: Predict

® Make a prediction
POST prediction/vl.2/training/my%2Fdata

{1nput:
{csvInstance: [“To be or not to be ...”]}}

e {outputlLabel: “english”,
outputMulti: [{“label”: “english”,
“score”: 0.92%,
{“Llabel”: “spanish”,
“score”: 0.08}]%
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Step 4:Adapt

Stream new data to new model
PUT prediction/vl.2/training/my%2Fdata

{classLabel: “french?”,
csvinstance: [“J’aime X! C’est le meiller”]}
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Customer Transaction Species Message Diagnostics
Sentiment Risk |dentification Routing

Chum Legal Docket Suspicious Work Roster Inappropriate
Prediction Classification Activity Assignment Content

Recommend Political Uplift Email Career
Products Bias Marketing Filtering Counselling
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® Sign up the Google Prediction API
Google APIs Console

http://code.google.com/apis/console

® More info about the Prediction API
http://code.google.com/apis/predict



http://code.google.com/apis/console
http://code.google.com/apis/console
http://code.google.com/apis/predict
http://code.google.com/apis/predict
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® Parallelize machine learning algorithms
® Embarrassingly parallel
® Parallelize sub-routines

® Distributed learning
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Shard | Shard 2 Shard 3 Shard M
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Subsampling

Reduce N

Machine

Shard |
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Subsampling

Reduce N

Machine

Shard |

\/
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Why not Small Data?

1.0 -

0.95

A

o

.90 -

.85 o

Test Accuracy
o

0.80 -
—6— Memory-Based
0.75 . —¢—Winnow
—A— Perceptron
—a—Nalve Bayes
0.70 . ' ' \
0.1 1 10 100 1000

Millions of Words

[Banko and Brill, 2001 ]
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Scaling Up

® Why big data?

® Parallelize machine learning algorithms
® Embarrassingly parallel
® Parallelize sub-routines

® Distributed learning
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Parallelize Optimization

Wy * xh)Y

exp(D
arg mm H 1
71+ exp Z | Wy * xp)

eeeeeeeeeeeeeeeeeeeee



Parallelize Optimization

® Maximum Entropy Classifiers
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P N
. eXp(szl Wp * TV
arg min H

® Good:|(w) is concave

® Bad: no closed-form solution like NB
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Parallelize Optimization

® Maximum Entropy Classifiers

P N
. eXp(szl Wp * TV
arg min | |

® Good:|(w) is concave
® Bad: no closed-form solution like NB

® Ugly:Large N
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radient Descent

Gradient
OF OF OF

owy, Ow;’  Ow,

VE[W] =

Training rule:
Aw = —nV E|[w]

1.e.,

OF
8’(1),’

Aw; = —n

http://www.cs.cmu.edu/~epxing/Class/10701/Lecture/lecture?.pdf
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Gradient Descent
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Distribute Gradient

® w is initialized as zero
® fortinl toT

® (Calculate gradients in paraliel

witl « wt — nVJ(w)

® Training CPU: O(TPN) to O(TPN / M)
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Distribute Gradient

Shard | Shard 2 Shard 3 Shard M
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Distribute Gradient

Big Data

Machine | Machine 2 Machine 3
Map Shard | Shard 2 Shard 3

(dummy key, partial gradient sum)

Machine M

Shard M
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Distribute Gradient

Big Data

Machine | Machine 2 Machine 3
Map Shard | Shard 2 Shard 3

(dummy key, partial gradient sum)

Reduce Sum and
Update w

Machine M

Shard M
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Distribute Gradient

Big Data
Machine | Machine 2 Machine 3
Map Shard | Shard 2 Shard 3
(dummy key, partial gradient sum)

Reduce Sum and
Update w

Repeat M/R

until converge

Machine M

Shard M
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Scaling Up

® Why big data?

® Parallelize machine learning algorithms
® Embarrassingly parallel
® Parallelize sub-routines

® Distributed learning
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Parallelize Subroutines

® SupportVector Machlnes

- C z
arg min o w2 + ZC

st 1 —yi(w-d(zi) +b) < Ci,Cz' > 0
® Solve the dual problem

1
arg min §ozTQoz —all

st. 0<a<C,yla=0
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The computational
cost for the Primal-
Dual Interior Point

Method is O(n”3) in

time and O(n”2) in
memory

DIFFICULT
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http://www.flickr.com/photos/sea-turtle/198445204/
http://www.flickr.com/photos/sea-turtle/198445204/

Para”el SVM [Chang et al, 2007]
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Para”el SVM [Chang et al, 2007]

® Parallel, row-wise incomplete Cholesky
Factorization for Q
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Para”el SVM [Chang et al, 2007]

® Parallel, row-wise incomplete Cholesky
Factorization for Q

® Parallel interior point method
® Time O(n"3) becomes O(n"2 / M)
® Memory O(n”2) becomes O(n/N / M)
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Para”el SVM [Chang et al, 2007]

® Parallel, row-wise incomplete Cholesky
Factorization for Q

® Parallel interior point method
® Time O(n"3) becomes O(n"2 / M)
® Memory O(n”2) becomes O(n/N / M)

® Parallel SupportVector Machines (psvm) http://
code.google.com/p/psvm/

® |mplement in MPI
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Scaling Up

® Distributed learning
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Shard | Shard 2 Shard 3 Shard M
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Majority Vote

MEY = Machine 2 Machine 3 Machine M

Map

Shard | Shard 2 Shard 3 .. Shard M
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Majority Vote

MEY = Machine 2 Machine 3 Machine M

Map

Shard | Shard 2 Shard 3 .. Shard M

Model | Model 2 Model 3

Model 4
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Majority Vote

® Train individual classifiers independently

® Predict by taking majority votes

® Training CPU: O(TPN) to O(TPN / M)
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Parameter Mixture

[Mann et al, 2009]

Shard | Shard 2 Shard 3 Shard M
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Parameter Mixture

[Mann et al, 2009]

Big Data

Machine | Machine 2 Machine 3
Map Shard | Shard 2 Shard 3

(dummy key, wl) (dummy key,w2) ...

Machine M

Shard M
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Much Less network
usage than
distributed gradient
descent

O(MN) vs. O(MNT)

—
.
-

[ ..
s .
v »

L
Bk 2 .
- L v . g ™
.o Sie ."“ -'?.‘:"\ - »

A
» A
»

8% .
} . < LEL
2l A€ y
-y

le

2

AL R
Ve L R
) >
PoR o I -
Ny
L «

¥
- 5 e
/ ~

257 f -
\ -
- g
N5 e

# !_“..._\_
- v .’-&

tp: //www ﬂiokn ¢ mia

£y

ﬁN.A‘

: "(

) JLOS/ Al

o

Wednesday, June 22, 2011 | A ‘



http://www.flickr.com/photos/annamatic3000/127945652/
http://www.flickr.com/photos/annamatic3000/127945652/

Training Method Accuracy | Wall Clock | Cumulative CPU | Network Usage
English POS | Distributed Gradient | 97.60% 175 m 110h 652 GB
(m=100k p=10) Majority Vote 96.80% 125 m 185h 0.686 GB

Mixture Weight 96.80% Sm 11.5h 0.015GB
Sentiment Distributed Gradient | 81.18% 104 m 123 h 367 GB
(m=900k p=10) Majority Vote 81.25% 131 m 168 h 3 GB

Mixture Weight 81.30% 110 m 163 h 9GB
RCVI1-v2 Distributed Gradient | 27.03% 48 m 407 h 479 GB
m=26Mp=10) | Majority Vote 26.89% 54 m 474 h 3 GB

Mixture Weight 27.15% 56 m 473 h 0.108 GB
Speech Distributed Gradient | 34.95% 160 m 511h 200 GB
(m=100k p=499) | Mixture Weight 34.99% 130 m 534 h 158 GB
Deja Distributed Gradient | 64.74% 327 m 733 h 5,283 GB
(m=15Mp=200) | Mixture Weight 65.46% 316 m 707 h 48 GB
Deja 250K | Distributed Gradient | 67.03% 340 m 698 h 17,428 GB
(m=15Mp=200) | Mixture Weight 66.86% 300 m 710 h 65 GB
Gigaword Distributed Gradient | 51.16% 240 m 18,598 h 13,000 GB
(m=1M p=1k) Mixture Weight 50.12% 215 m 17,998 h 21 GB
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Google Prediction API

Machine Learning as a VWeb Service
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Google APls

® Prediction API
® machine learning service on the cloud

® http://code.google.com/apis/predict

® BigQuery
® interactive analysis of massive data on the cloud

® http://code.google.com/apis/bigquery
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