
1

Performance Tuning of Scientific Applications

David H Bailey, Lawrence Berkeley National Lab, USA (speaker)
DHB’s website:

http://crd.lbl.gov/~dhbailey!

2

Why performance is important

!  Highly-parallel scientific computing is widely used in science and technology:
!  Climate modeling – exploring scenarios for global warming.
!  Materials science – photovoltaics, batteries and nanoelectronics.
!  Astrophysics – supernova explosions, cosmology, data processing.
!  Physics – tests of standard model and alternatives.
!  Biology – model biochemical processes, develop new drugs.
!  Combustion – test designs for greater efficiency and less pollution.

!  However, achieved performance is often poor – typically only 1-5% of peak.
Common reasons include:
!  Limited parallel concurrency in key loops, resulting in poor load balance.
!  Suboptimal structure of loops and blocks.
!  Subtle interference effects in data communication channels.

!  Low performance is unacceptable, not only because of the high purchase
cost of state-of-the-art systems, but also because of the increasing cost of
providing electrical power for these systems.

3

The Performance Engineering
Research Institute (PERI)

!  Performing research in theory, techniques and application of performance
tuning for scientific computing.

!  Funded by U.S. Dept. of Energy, Office of Science (SciDAC program).
!  Participating members:

!  University of Southern Cal. (lead) Lawrence Berkeley Natl. Lab. (asst. lead)
!  Argonne National Lab. Oak Ridge National Lab.
!  Lawrence Livermore National Lab. Rice University
!  University of California, San Diego University of Maryland
!  University of North Carolina/RENCI University of Tennessee, Knoxville
!  University of Utah

!  Principal research thrusts:
!  Performance modeling and analysis.
!  Automatic performance tuning.
!  Application analysis.

4

PERI performance modeling

!  Semi-automated performance modeling methodology:
!  Performance trace runs obtain profiles of applications.
!  Performance probes obtain profiles of computer systems.
!  A “convolution” approach combines application and system profiles to

produce quantitative predictions of performance.
!  Uses:

!  Permits scientists to understand the bottlenecks in their codes and future
potential for parallel scalability.

!  Permits computing facility managers to plan future requirements and improve
the selection process of large systems.

!  Recent advances include:
!  Techniques to significantly reduce the volume of trace data required.
!  Techniques to extrapolate models to larger future systems.
!  Extensions of modeling methods to encompass energy consumption.
!  Applications to both DOD and DOE computational workloads.

Credit: Allan Snavely, UCSD

5

Performance modeling at LBNL

!  Erich Strohmaier’s ApexMAP: A simple modeling framework based on dataset
size, spatial locality and temporal locality.

!  Samuel Williams’ “roofline” model: Compares achieved performance to a
“roofline” graph of peak data streaming bandwidth and peak flop/s capacity.

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
F

lo
p
/s

Arithmetic Intensity

1

peak performance (73.6 Gflop/s)

Opteron 2356

(Barcelona)

Kernel #1

Kernel #2

Kernel #3
processor-bandwidth

roofline

(slope is bandwidth)

each kernel’s
range in

arithmetic
intensity

performance roofline
(Y-coordinate is

performance)

each kernel’s
performance

bound

1

2

3

4

6

PERI automatic performance tuning

!  Background: We have found that most computational scientists are
reluctant to learn and use performance tools in day-to-day research work.

!  Solution: Extend semi-automatic performance tuning techniques, such as
those developed for specialized libraries like FFTW (FFTs) and ATLAS
(dense matrix computation), to the more general area of large-scale
scientific computing.

7

HPC Toolkit (Rice)"
ROSE (LLNL)"

CHiLL (USC/ISI and Utah)"
ROSE (LLNL)"
Orio (Argonne)" {

OSKI (LBNL)"

Active Harmony (UMD)"
GCO (UTK)"

PerfTrack (LBNL, SDSC, RENCI)"

The PERI autotuning framework

8

Applications of PERI research

!  PERI research tools and expertise have been applied to numerous
scientific application codes, in many cases with notable results.

!  Even modest performance improvements in widely-used, high-profile
codes can save hundreds of thousands of dollars in computer time.

Examples:
!  S3D (Sandia code to model turbulence):

!  Improved exp routine (later supplanted by improved exp from Cray).
!  Improved set of compiler settings.
!  Achieved 12.7% overall performance improvement.
!  S3D runs consume 6,000,000 CPU-hours of computer time per year, so

762,000 CPU-hours are potentially saved each year.
!  PFLOTRAN (LANL code to subsurface reactive flows):

!  Two key PETSc routines (17% of run time) and a third routine (7% of run
time) were each accelerated by more than 2X using autotuning.

!  40X speedup in initialization phase, and 4X improvement in I/O stage.
!  Overall 5X speedup on runs with 90,000 or more cores.

9

SMG2000

!  SMG2000: A semicoarsening multigrid solver code, used for various
applications including modeling of groundwater diffusion.

!  PERI researchers integrated several tools, then developed a “smart”
search technique to find an optimal tuning strategy among 581 million
different choices.

!  Achieved 2.37X performance improvement on one key kernel.
!  Achieved 27% overall performance improvement.

10

Outlined code (from ROSE outliner)"
for (si = 0; si < stencil_size; si++) "
 for (kk = 0; kk < hypre__mz; kk++) "
 for (jj = 0; jj < hypre__my; jj++) "
 for (ii = 0; ii < hypre__mx; ii++) "
 rp[((ri+ii)+(jj*hypre__sy3))+(kk*hypre__sz3)] -= "
 ((Ap_0[((ii+(jj*hypre__sy1))+ (kk*hypre__sz1))+"
 (((A->data_indices)[i])[si])])* "
 (xp_0[((ii+(jj*hypre__sy2))+(kk*hypre__sz2))+((*dxp_s)[si])])); "

CHiLL transformation recipe "
permute([2,3,1,4])"
tile(0,4,TI)"
tile(0,3,TJ)"
tile(0,3,TK) "
unroll(0,6,US) "
unroll(0,7,UI)"
"
Credit: Mary Hall, Utah"

Constraints on search"
0 ≤ TI , TJ, TK ≤ 122 "
0 ≤ UI ≤ 16 "
0 ≤ US ≤ 10 "
compilers {gcc, icc} "
"
Search space: "
1223x16x10x2 = 581,071,360 points"

Autotuning the central SMG2000 kernel

11

Selected parameters:
TI=122,TJ=106,TK=56,UI=8,US=3,Comp=gcc
Performance gain on residual computation:
2.37X
Performance gain on full application:
27.23% improvement

Parallel heuristic search (using Active Harmony) evaluates 490 total points and
converges in 20 steps.

 11
Credit: Mary Hall, Utah

Search for optimal tuning parameters
for SMG kernel

12

Autotuning the triangular solve kernel
of the Nek5000 turbulence code

Compiler Original Active Harmony Exhaustive

Time Time (u1,u2) Speedup Time (u1,u2) Speedup

pathscale 0.58 0.32 (3,11) 1.81 0.30 (3,15) 1.93

gnu 0.71 0.47 (5,13) 1.51 0.46 (5,7) 1.54

pgi 0.90 0.53 (5,3) 1.70 0.53 (5,3) 1.70

cray 1.13 0.70 (15,5) 1.61 0.69 (15,15) 1.63

Credit: Jeff Hollingsworth, Maryland

13

!  LBMHD (left): Implements a lattice Boltzmann method for magnetohydrodynamic
plasma turbulence simulation.

!  GTC (right): A gyrokinetic toroidal code for plasma turbulence modeling.

1.22x

1.35x

1.77x

1.02x

0

5

10

15

20

25

30

35

BGP

Intrepid

XE6

Hopper

Intel

Cluster

Fermi

Cluster

P
e

rf
o

rm
a

n
c

e
 p

e
r

N
o

d
e

 r
e

la
ti

v
e

 t
o

 B
G

P

Optimized

Reference

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

1
G

B

1
G

B

4
G

B

1
G

B

4
G

B

1
6
G

B

Intrepid Franklin Hopper

G
F

lo
p

/s
 p

e
r

C
o

re

threading of stream()

threading of collision()

auto-tuned (ISA-specific)

auto-tuned (portable C)

reference

Credit: Samuel Williams, LBNL

Autotuning LBMHD and GTC
(LBNL work)

14

LS3DF
(LBNL work)

!  LS3DF: “linearly scaling 3-dimensional fragment” method.
!  Developed at LBNL by Lin-Wang Wang and several collaborators.
!  Used for for electronic structure calculations – numerous applications in

materials science and nanoscience.
!  Employs a novel divide-and-conquer scheme including a new approach

for patching the fragments together.
!  Achieves nearly linear scaling in computational cost versus size of

problem, compared with n3 scaling in many other comparable codes.
!  Potential for nearly linear scaling in performance versus number of cores.

Challenge:
!  Initial implementation of LS3DF had disappointingly low performance and

parallel scalability.

15

 "

 "

 "(i,j,k)
Fragment (2x1)

Interior area

Artificial surface
passivation

Buffer area

Boundary effects are (nearly) cancelled out between the fragments:

 "

Total = !F {

F F

}
F F

{ }! """"+++=
kji

FFFFFFFFSystem
,,

111122212221112121211222

2-D domain patching scheme in LS3DF

Credit: Lin-Wang Wang, LBNL

16

LBNL’s performance analysis of LS3DF

LBNL researchers (funded through PERI) applied performance monitoring
tools to analyze run-time performance of LS3DF. Key issues uncovered:
!  Limited concurrency in a key step, resulting in a significant load

imbalance between processors.
!  Solution: Modify code for two-dimensional parallelism.

!  Costly file I/O operations were used for data communication between
processors.
!  Solution: Replace all file I/O operations with MPI send-receive operations.

17

Resulting performance of tuned LS3DF

!  135 Tflops/s on 36,864 cores of the
Cray XT4 Franklin system at LBNL.
!  40% efficiency on 36,864 cores.

!  224 Tflops/s on 163,840 processors of
the BlueGene/P Intrepid system at
Argonne Natl. Lab.
!  40% efficiency on 163,840 cores.

!  442 Tflops/s on 147,456 processors of
the Cray XT5 Jaguar system at Oak
Ridge Natl. Lab.
!  33% efficiency on 147,456 cores.

The authors of the LS3DF paper were
awarded the 2008 ACM Gordon Bell
Prize in a special category for “algorithm
innovation.”

18

Near-linear parallel scaling for up to
163,840 cores and up to 442 Tflop/s

0

50

100

150

200

250

300

350

400

450

500

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000

TF
lo

p/
s

.

Cores

LS3DF

Jaguar
Intrepid
Franklin

19

ZnTe bottom of cond. band state Highest O induced state

Solar cell application of tuned LS3DF

!  Single-band material
theoretical photovoltaic
efficiency is limited to 30%.

!  With an intermediate state,
the photovoltaic efficiency
may increase to 60%.

!  Proposed material: ZnTe:O.
!  Is there really a gap?
!  Is there sufficient

oscillator strength?
!  LS3DF calculation used for

3500 atom 3% O alloy [one
hour on 17,000 cores of
Franklin system].

!  Result: There is a gap, and O
induced states are highly
localized.

Credit: Lin-Wang Wang, LBNL

20

For additional details:
Performance Tuning of Scientific Applications

Editors: Bailey (LBNL), Lucas (USC/ISI), Williams (LBNL);
numerous individual authors of various chapters.

Publisher: CRC Computational Science, Jan 2011.
Contents:
1.  Introduction
2.  Parallel computer architecture
3.  Software interfaces to hardware counters
4.  Measurement and analysis of parallel program performance using TAU

and HPCToolkit.
5.  Trace-base tools
6.  Large-scale numerical simulations on high-end computational platforms
7.  Performance modeling: the convolution approach
8.  Analytic modeling for memory access patterns based on Apex-MAP
9.  The roofline model
10.  End-to-end auto-tuning with active harmony
11.  Languages and compilers for auto-tuning
12.  Empirical performance tuning of dense linear algebra software
13.  Auto-tuning memory-intensive kernels for multicore
14.  Flexible tools supporting a scalable first-principles MD code
15.  The community climate system model
16.  Tuning an electronic structure code

