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Why performance is important 

!  Highly-parallel scientific computing is widely used in science and technology: 
!  Climate modeling – exploring scenarios for global warming. 
!  Materials science – photovoltaics, batteries and nanoelectronics. 
!  Astrophysics – supernova explosions, cosmology, data processing. 
!  Physics – tests of standard model and alternatives. 
!  Biology – model biochemical processes, develop new drugs. 
!  Combustion – test designs for greater efficiency and less pollution. 

!  However, achieved performance is often poor – typically only 1-5% of peak.  
Common reasons include: 
!  Limited parallel concurrency in key loops, resulting in poor load balance. 
!  Suboptimal structure of loops and blocks. 
!  Subtle interference effects in data communication channels. 

!  Low performance is unacceptable, not only because of the high purchase 
cost of state-of-the-art systems, but also because of the increasing cost of 
providing electrical power for these systems. 
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The Performance Engineering 
Research Institute (PERI) 

!  Performing research in theory, techniques and application of performance 
tuning for scientific computing. 

!  Funded by U.S. Dept. of Energy, Office of Science (SciDAC program). 
!  Participating members: 

!  University of Southern Cal. (lead)  Lawrence Berkeley Natl. Lab. (asst. lead) 
!  Argonne National Lab.   Oak Ridge National Lab. 
!  Lawrence Livermore National Lab.  Rice University 
!  University of California, San Diego  University of Maryland 
!  University of North Carolina/RENCI  University of Tennessee, Knoxville 
!  University of Utah 

!  Principal research thrusts: 
!  Performance modeling and analysis. 
!  Automatic performance tuning. 
!  Application analysis. 
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PERI performance modeling 

!  Semi-automated performance modeling methodology: 
!  Performance trace runs obtain profiles of applications. 
!  Performance probes obtain profiles of computer systems. 
!  A “convolution” approach combines application and system profiles to 

produce quantitative predictions of performance. 
!  Uses: 

!  Permits scientists to understand the bottlenecks in their codes and future 
potential for parallel scalability. 

!  Permits computing facility managers to plan future requirements and improve 
the selection process of large systems. 

!  Recent advances include: 
!  Techniques to significantly reduce the volume of trace data required. 
!  Techniques to extrapolate models to larger future systems. 
!  Extensions of modeling methods to encompass energy consumption. 
!  Applications to both DOD and DOE computational workloads. 

 
Credit:  Allan Snavely, UCSD 
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Performance modeling at LBNL 

!  Erich Strohmaier’s ApexMAP:  A simple modeling framework based on dataset 
size, spatial locality and temporal locality. 

!  Samuel Williams’ “roofline” model:  Compares achieved performance to a 
“roofline” graph of peak data streaming bandwidth and peak flop/s capacity. 
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PERI automatic performance tuning 

!  Background:  We have found that most computational scientists are 
reluctant to learn and use performance tools in day-to-day research work. 

!  Solution:  Extend semi-automatic performance tuning techniques, such as 
those developed for specialized libraries like FFTW (FFTs) and ATLAS 
(dense matrix computation), to the more general area of large-scale 
scientific computing. 
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HPC Toolkit (Rice)"
ROSE (LLNL)"

CHiLL (USC/ISI and Utah)"
ROSE (LLNL)"
Orio (Argonne)" { 

OSKI (LBNL)"

Active Harmony (UMD)"
GCO (UTK)"

PerfTrack (LBNL, SDSC, RENCI)"

The PERI autotuning framework 
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Applications of PERI research 

!  PERI research tools and expertise have been applied to numerous 
scientific application codes, in many cases with notable results. 

!  Even modest performance improvements in widely-used, high-profile 
codes can save hundreds of thousands of dollars in computer time.   

Examples: 
!  S3D (Sandia code to model turbulence): 

!  Improved exp routine (later supplanted by improved exp from Cray). 
!  Improved set of compiler settings. 
!  Achieved 12.7% overall performance improvement. 
!  S3D runs consume 6,000,000 CPU-hours of computer time per year, so 

762,000 CPU-hours are potentially saved each year. 
!  PFLOTRAN (LANL code to subsurface reactive flows): 

!  Two key PETSc routines (17% of run time) and a third routine (7% of run 
time) were each accelerated by more than 2X using autotuning. 

!  40X speedup in initialization phase, and 4X improvement in I/O stage. 
!  Overall 5X speedup on runs with 90,000 or more cores. 
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SMG2000 

!  SMG2000:  A semicoarsening multigrid solver code, used for various 
applications including modeling of groundwater diffusion. 

!  PERI researchers integrated several tools, then developed a “smart” 
search technique to find an optimal tuning strategy among 581 million 
different choices. 

!  Achieved 2.37X performance improvement on one key kernel. 
!  Achieved 27% overall performance improvement. 
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Outlined code (from ROSE outliner)"
for (si = 0; si < stencil_size; si++) "
    for (kk = 0; kk < hypre__mz; kk++) "
        for (jj = 0; jj < hypre__my; jj++) "
            for (ii = 0; ii < hypre__mx; ii++) "
                rp[((ri+ii)+(jj*hypre__sy3))+(kk*hypre__sz3)] -= "
                    ((Ap_0[((ii+(jj*hypre__sy1))+ (kk*hypre__sz1))+"
                     (((A->data_indices)[i])[si])])* "
                     (xp_0[((ii+(jj*hypre__sy2))+(kk*hypre__sz2))+(( *dxp_s)[si])])); "

CHiLL transformation recipe "
permute([2,3,1,4])"
tile(0,4,TI)"
tile(0,3,TJ)"
tile(0,3,TK) "
unroll(0,6,US) "
unroll(0,7,UI)"
"
Credit:  Mary Hall, Utah"

Constraints on search"
0 ≤ TI , TJ, TK ≤ 122 "
0 ≤ UI ≤ 16 "
0 ≤ US ≤ 10 "
compilers  {gcc, icc} "
"
Search space: "
1223x16x10x2 = 581,071,360 points"

Autotuning the central SMG2000 kernel 
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Selected parameters: 
TI=122,TJ=106,TK=56,UI=8,US=3,Comp=gcc 
Performance gain on residual computation: 
2.37X  
Performance gain on full application:  
27.23% improvement 

Parallel heuristic search (using Active Harmony) evaluates 490 total points and 
converges in 20 steps. 

 11 
Credit:  Mary Hall, Utah 

Search for optimal tuning parameters  
for SMG kernel 
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Autotuning the triangular solve kernel  
of the Nek5000 turbulence code 

Compiler Original Active Harmony Exhaustive 

Time Time (u1,u2) Speedup Time (u1,u2) Speedup 

pathscale 0.58 0.32 (3,11) 1.81 0.30 (3,15) 1.93 

gnu 0.71 0.47 (5,13) 1.51 0.46 (5,7) 1.54 

pgi 0.90 0.53 (5,3) 1.70 0.53 (5,3) 1.70 

cray 1.13 0.70 (15,5) 1.61 0.69 (15,15) 1.63 

Credit: Jeff Hollingsworth, Maryland 
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!  LBMHD (left):  Implements a lattice Boltzmann method for magnetohydrodynamic 
plasma turbulence simulation. 

!  GTC (right):  A gyrokinetic toroidal code for plasma turbulence modeling. 
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Autotuning LBMHD and GTC 
(LBNL work) 
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LS3DF 
(LBNL work) 

!  LS3DF:  “linearly scaling 3-dimensional fragment” method. 
!  Developed at LBNL by Lin-Wang Wang and several collaborators. 
!  Used for for electronic structure calculations – numerous applications in 

materials science and nanoscience. 
!  Employs a novel divide-and-conquer scheme including a new approach 

for patching the fragments together. 
!  Achieves nearly linear scaling in computational cost versus size of 

problem, compared with n3 scaling in many other comparable codes. 
!  Potential for nearly linear scaling in performance versus number of cores. 
 
Challenge: 
!  Initial implementation of LS3DF had disappointingly low performance and 

parallel scalability. 
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Credit:  Lin-Wang Wang, LBNL 
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LBNL’s performance analysis of LS3DF 

LBNL researchers (funded through PERI) applied performance monitoring 
tools to analyze run-time performance of LS3DF.  Key issues uncovered: 
!  Limited concurrency in a key step, resulting in a significant load 

imbalance between processors. 
!  Solution:  Modify code for two-dimensional parallelism. 

!  Costly file I/O operations were used for data communication between 
processors. 
!  Solution:  Replace all file I/O operations with MPI send-receive operations. 
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Resulting performance of tuned LS3DF 

!  135 Tflops/s on 36,864 cores of the 
Cray XT4 Franklin system at LBNL. 
!  40% efficiency on 36,864 cores. 

!  224 Tflops/s on 163,840 processors of 
the BlueGene/P Intrepid system at 
Argonne Natl. Lab. 
!  40% efficiency on 163,840 cores. 

!  442 Tflops/s on 147,456 processors of 
the Cray XT5 Jaguar system at Oak 
Ridge Natl. Lab. 
!   33% efficiency on 147,456 cores. 

 
The authors of the LS3DF paper were 
awarded the 2008 ACM Gordon Bell 
Prize in a special category for “algorithm 
innovation.” 
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Near-linear parallel scaling for up to 
163,840 cores and up to 442 Tflop/s 
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ZnTe bottom of cond. band state Highest O induced state 

Solar cell application of tuned LS3DF 

!  Single-band material 
theoretical photovoltaic 
efficiency is limited to 30%. 

!  With an intermediate state, 
the photovoltaic efficiency 
may increase to 60%. 

!  Proposed material: ZnTe:O. 
!  Is there really a gap? 
!  Is there sufficient 

oscillator strength? 
!  LS3DF calculation used for 

3500 atom 3% O alloy [one 
hour on 17,000 cores of 
Franklin system]. 

!  Result:  There is a gap, and O 
induced states are highly 
localized. 

 
 
 
Credit:  Lin-Wang Wang, LBNL 
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For additional details: 
Performance Tuning of Scientific Applications 

Editors:  Bailey (LBNL), Lucas (USC/ISI), Williams (LBNL); 
numerous individual authors of various chapters. 

Publisher: CRC Computational Science, Jan 2011. 
Contents: 
1.  Introduction 
2.  Parallel computer architecture 
3.  Software interfaces to hardware counters 
4.  Measurement and analysis of parallel program performance using TAU 

and HPCToolkit. 
5.  Trace-base tools 
6.  Large-scale numerical simulations on high-end computational platforms 
7.  Performance modeling: the convolution approach 
8.  Analytic modeling for memory access patterns based on Apex-MAP 
9.  The roofline model 
10.  End-to-end auto-tuning with active harmony 
11.  Languages and compilers for auto-tuning 
12.  Empirical performance tuning of dense linear algebra software 
13.  Auto-tuning memory-intensive kernels for multicore 
14.  Flexible tools supporting a scalable first-principles MD code 
15.  The community climate system model 
16.  Tuning an electronic structure code 

  


