
http://ftg.lbl.gov/checkpoint

Berkeley Lab’s

Checkpoint Restart

(BLCR)

Eric Roman and Paul Hargrove
June 17, 2011

http://ftg.lbl.gov/checkpoint

Introduction

Checkpoint. Save a process's state to a file.

Restart. Reconstruct the process from a file.

BLCR. Berkeley Lab's Checkpoint Restart for Linux.

Project goals. What is BLCR's approach to CR?

 Why use checkpoint/restart?

System design. How does BLCR work?

Status. What does BLCR do now?

Plans. Where is BLCR going?

http://ftg.lbl.gov/checkpoint

Project Goals

Provide checkpoint/restart for Linux clusters running scientific workloads.

Checkpoint and restart shell scripts running MPI applications.

Fit easily into production systems

Run unmodified application source.

Run unmodified binaries. If possible, users should not have to relink codes.

Run on unpatched kernels.

Run with unmodified system libraries. (e.g. libc)

Unrelated features (ptrace, Unix domain sockets) have low implementation priority

Why checkpoint?

 We see three main scenarios: scheduling, fault tolerance and debugging.

http://ftg.lbl.gov/checkpoint

Scheduling

Preempt running jobs.
Drain queues quickly for maintenance.
Increase system throughput by switching between long and wide jobs.
Increase system utilization by allowing the scheduler to correct earlier decisions.
Gang scheduling. Divide system time up into slots.
Priority scheduling. Run jobs with the highest priority.

Migrate jobs.
Pack jobs for optimal network performance.
Move jobs to faster nodes.
More scheduling flexibility if preemption is used.

http://ftg.lbl.gov/checkpoint

Fault Tolerance

Rollback recovery
Not every application can checkpoint itself.
BLCR tries to make every process checkpointable.

Periodic checkpoints
Checkpoint the job at regular intervals.
On system startup, restart jobs from their last complete checkpoint.
Useful for systems with long jobs, fast I/O, and/or high node failure rates.
In normal processing, the periodic checkpoints are an expensive waste of time.

CIFTS
Coordinated Infrastructure for Fault Tolerant Systems
Parent project. Building a notification infrastructure for BLCR.
http://www.mcs.anl.gov/research/cifts/

http://www.mcs.anl.gov/research/cifts/

http://ftg.lbl.gov/checkpoint

Debugging

Roll back execution to a state saved before an error, and
restart with a debugger.

Attaching a debugger to a restarted process.
cr_restart –-stop: restart a job in a suspended state.

We used this heavily while porting BLCR to PPC64.
Save your bugs (e.g. race conditions or issues that take

hours to reproduce) for later inspection.

http://ftg.lbl.gov/checkpoint

Implementation

BLCR provides single node checkpoint/restart through a kernel module and runtime
library.
libcr.so: registers handlers, requests checkpoints
libcr_run.so: Stub library with a default checkpoint handler
blcr.ko: coordinates the process checkpoints, saves (restores) kernel data

structures, interfaces with library and command line tools.
blcr_insmod.ko: provides kernel symbols

We don’t support distributed operating system features
No built-in support for TCP sockets, namespaces, etc.

We provide the hooks to allow parallel runtimes/libraries to coordinate checkpoints
and restart the processes through handlers.

The MPI library must know how to checkpoint; the user application does not.

http://ftg.lbl.gov/checkpoint

Example: Migrating A Process

http://ftg.lbl.gov/checkpoint

Basic operation

Rough idea: Send the application a signal that tells it to call into BLCR.

$ cr_run counting (or use LD_PRELOAD)

 call cr_init() (either directly or through libcr_run.so) to register default handler.

$ cr_checkpoint <pid-of-counting>

 ioctl(CR_CHECKPOINT_REQUEST)

 kernel sends signal to counting process and its children

 the thread handlers in each child runs and invoke cr_checkpoint()

 the signal handlers in each child runs and invoke cr_checkpoint()

 once each child has called cr_checkpoint(), blcr.ko dumps all of the process state
into a context file.

 once all the checkpoints are complete, control returns to handlers.

 the signal handlers finish, and control is returned to the application.

 cr_checkpoint blocks waiting for all of this to happen.

http://ftg.lbl.gov/checkpoint

Extending BLCR with
Callbacks

Applications and libraries can use callbacks to save and restore
unsupported objects, or receive notification of checkpoint, restart, and
continue events.

Register callbacks as needed, usually at startup.

Callbacks run at checkpoint time, then resume at restart/continue

Can protect critical sections against callback execution.

BLCR interacts with the MPI library through callbacks.

BLCR coordinates within a node, handlers work between nodes.

Signal handler context
no thread-safety needed, but

Callbacks are limited to signal-safe functions (small subset of POSIX)

Thread context
Can call any function

Code needs to be thread-safe

http://ftg.lbl.gov/checkpoint

Callback functions

my_callback {

 /* cr_checkpoint() returns twice. */

ret = cr_checkpoint(0);

 if (ret > 0) {

 checkpoint_status = restart;

 } else if (ret == 0) {

 checkpoint_status = continue;

 } else {

 checkpoint_status = error;

 }

 return 0;

}

http://ftg.lbl.gov/checkpoint

Status

Processes, process groups and sessions
Shell scripts (bash, tcsh, python, perl, ruby, ...)
Multithreaded processes (pthreads with standard NPTL)
Resources shared between processes are restored.
Restore PID and parent PID.

Files
Reopen files during restart: open, truncate, and seek.
Pipes and named FIFOs
Files must exist in same location on filesystem
Memory mapped files are remapped.
New option to save shared libraries and executable.
File path relocation

http://ftg.lbl.gov/checkpoint

Supported Platforms

Linux kernel 2.6
test with kernels from kernel.org,

Fedora, SuSE, and Ubuntu
support of custom patched

kernels through autoconf

Architectures
x86, x86-64, ppc, ppc64 and

ARM
Xen dom0 and domU

MPI
MVAPICH2
MPICH-V 1.0.x with sockets
OpenMPI
Cray Portals

Queue Systems
Torque support available in

recent snapshots.
qhold, qrls, and periodic

checkpoints tested.
BLCR, Condor and Parrot

HOWTO available.

http://ftg.lbl.gov/checkpoint

MPI

Normal execution with Open MPI

http://ftg.lbl.gov/checkpoint

MPI: Checkpoint/Restart

http://ftg.lbl.gov/checkpoint

Work in progress

Queue system support
BLCR, Torque, and OpenMPI
Preemptive scheduling via priority queues under Maui
Perodic checkpoints

Incremental checkpoints
Collaboration with Frank Mueller at NCSU

Improved IO
Runtime compression and decompression of context files

http://ftg.lbl.gov/checkpoint

Conclusions

Future Work
Interested in other queue systems (LSF, SGE, SLURM, etc.)
More MPI implementations
MPICH 2 support anticipated

Torque support available.

You should be able to install BLCR on your system and checkpoint your MPI
applications with it.

We would like you to download BLCR and try it!

http://ftg.lbl.gov/checkpoint

For More Information

http://ftg.lbl.gov/checkpoint

Papers (available from website):
● “Design and Implementation of BLCR”: high-level system

design, including description of user API
● “Requirements for Linux Checkpoint/Restart”: exhaustive list

of Unix features we will support (or not).
● “A Survey of Checkpoint/Restart Implementations”: focusing

on open source versions that run on Linux
● “The LAM/MPI Checkpoint/Restart Framework: System-

Initiated Checkpointing”: implementation with LAM/MPI

http://ftg.lbl.gov/checkpoint

Other Approaches

Application-based checkpointing
Efficient: save only needed data as step completes
Good for fault tolerance: bad for preemption
Requires per-application effort by programmer

Library-based checkpointing
Portable across operating systems
Transparent to application (but may require relink, etc.)
Can't (generally) restore all resources (ex: process IDs)
Can’t checkpoint shell scripts

Hypervisor (similar arguments for software suspend)
Granularity is a full virtual machine
Administrators have to maintain one VM per checkpoint
Rollback. What happens to the disk state?
Debugging?
Coordination between multiple machines still necessary.
Scheduler integration

http://ftg.lbl.gov/checkpoint

Reactive checkpoints
If a node failure is imminent, checkpoint jobs affected by the failure.
Migrate the jobs away from the failing node, or wait for the node to be repaired.

