
1UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC (Unified Parallel C) Tutorial
June 15, 2011

Based on Materials from Tutorial #S10 at
SuperComputing 2010

by

Alice E. Koniges – NERSC, Lawrence Berkeley National Laboratory (LBNL)
Katherine Yelick – University of California, Berkeley and LBNL

Rolf Rabenseifner – High Performance Computing Center Stuttgart (HLRS), Germany
Reinhold Bader – Leibniz Supercomputing Centre (LRZ), Munich/Garching, Germany

David Eder – Lawrence Livermore National Laboratory
Filip Blagojevic, Robert Preissl and Paul H. Hargrove – LBNL

http://www.nersc.gov/�

2UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Outline

• Basic PGAS concepts
– Execution model, memory model, resource mapping, …
– Comparison with other paradigms

• UPC basic syntax
– Declaration of shared data, synchronization
– Dynamic objects, pointers, allocation

• Advanced topics
– Locks and split-phase barriers, atomic procedures
– Collective operations
– Parallel patterns

• Applications and Hybrid Programming
– As much as time permits…

• BREAK near 3:00pm

3UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Basic PGAS Concepts

o Trends in hardware
o Execution model
o Memory model
o Comparison with other paradigms
o Run time environments
o PGAS application styles
o Resources

4UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Summary of Hardware Trends

• OBERVATIONS
– Moore’s Law maintained via Core count rather than Clock Speed
– Concurrency has long been part of the HPC performance growth
– Relative to Logic, Memory is getting slower and more costly
– Movement of data between processors dominates energy budget

• CONCLUSIONS:
– Nearly all future performance increases will be from concurrency
– Energy is the key challenge in improving performance
– Memory per floating point unit is shrinking

Programming model requirements
• Control over layout and locality to minimize data movement
• Ability to share memory to minimize footprint
• Massive fine and coarse-grained parallelism

5UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Partitioned Global Address Space
(PGAS) Languages

• Coarray Fortran (CAF)
– Compilers from Cray, Rice and PGI (more soon)

• Unified Parallel C (UPC)
– Compilers from Cray, HP, Berkeley/LBNL, Intrepid (gcc), IBM,

SGI, MTU, and others
• Titanium (Java based)

– Compiler from Berkeley

DARPA High Productivity Computer Systems (HPCS) language
project:

• X10 (based on Java, IBM)
• Chapel (Cray)
• Fortress (SUN)

6UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Two Parallel Language Questions

• What is the parallel control model?

• What is the model for sharing/communication?

implied synchronization for message passing, not shared memory

data parallel
(singe thread of control)

dynamic
threads

single program
multiple data (SPMD)

shared memory
load
store

send

receive

message passing

7UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

SPMD Execution Model

• Single Program Multiple Data (SPMD) execution model
– Matches hardware resources: static number of threads for static

number of cores  no mapping problem for compiler/runtime
– Intuitively, a copy of the main function on each processor
– Similar to most MPI applications

• A number of threads working independently in a SPMD fashion
– Number of threads given as program variable, e.g., THREADS
– Another variable, e.g., MYTHREAD specifies thread index
– There is some form of global synchronization, e.g., upc_barrier
– Control flow (branches) are independent – not lock-step

• UPC, CAF and Titanium all use a SPMD model
• HPCS languages, X10, Chapel, and Fortress do not

– They support dynamic threading and data parallel constructs

8UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Data Parallelism – HPF

Real :: A(n,m), B(n,m)

do j = 2, m-1
do i = 2, n-1

B(i,j) = ... A(i,j)
... A(i-1,j) ... A(i+1,j)
... A(i,j-1) ... A(i,j+1)

end do
end do

Loop over y-dimension
Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of A

Data definition

!HPF$ DISTRIBUTE A(block,block), B(...)

• Data parallel languages use array operations (A = B, etc.) and loops
• Compiler and runtime map n-way parallelism to p cores
• Data layouts as in HPF can help with assignment using “owner computes”

• This mapping problem is one of the challenges in implementing HPF that
does not occur with UPC or CAF

9UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

cilk int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync;
return (x+y);

}
}

Dynamic Tasking - Cilk

The computation dag and
parallelism unfold dynamically.

processors are virtualized;
no explicit processor number

• Task parallel languages are typically implemented with shared memory
• No explicit control over locality; runtime system will schedule related

tasks nearby or on the same core
• The HPCS languages support these in a PGAS memory model which

yields an interesting and challenging runtime problem

10UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Partitioned Global Address Space
(PGAS) Languages

• Defining PGAS principles:
1) The Global Address Space memory model allows any thread to

read or write memory anywhere in the system
2) It is Partitioned to indicate that some data is local, whereas other

date is further away (slower to access)

Partitioned Global Array

Local
access

Global
access

Private
data

11UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Two Concepts in the Memory Space

• Private data: accessible only from a single thread
– Variable declared inside functions that live on the program stack are

normally private to prevent them from disappearing unexpectedly
• Shared data: data that is accessible from multiple threads

– Variables allocated dynamically in the program heap or statically at
global scope may have this property

– Some languages have both private and shared heaps or static
variables (UPC is one of these)

• Local pointer or reference: refers to local data
– Local may be associated with a single thread or a shared memory

node
• Global pointer or reference: may refer to “remote” data

– Remote may mean the data is off-thread or off-node
– Global references are potentially remote; they may refer to local data

12UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Other Programming Models

• Message Passing Interface (MPI)
– Library with message passing routines
– Unforced locality control through separate address spaces

• OpenMP
– Language extensions with shared memory worksharing directives
– Allows shared data structures without locality control

OpenMP UPC CAF MPI

• UPC / CAF data accesses:
– Similar to OpenMP but with locality control

• UPC / CAF worksharing:
– Similar to MPI

13UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Understanding Runtime Behavior
- Berkeley UPC Compiler

Compiler-generated C code

UPC Runtime system

GASNet Communication System

Network Hardware

Platform-
independent

Network-
independent

Language-
independent

Compiler-
independent

UPC Code UPC Compiler
Used by bupc and

gcc-upc

CrayXT UPC & CAF,
Rice CAF,

Chapel, Titanium,
and others

14UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC Pointers

• UPC pointers to shared objects have (conceptually) three fields:
– thread number
– local address of block
– phase (specifies position in the block) so that pointer arithmetic

operations (like ++) move through the array correctly

• Example implementation

Phase Thread Virtual Address

03738484963

15UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

One-Sided vs Two-Sided
Communication

• A one-sided put/get message can be handled directly by a
network interface with RDMA support

– Avoid interrupting the CPU or storing data from CPU (preposts)
• A two-sided messages needs to be matched with a receive to

identify memory address to put data
– Offloaded to Network Interface in networks like Quadrics
– Need to download match tables to interface (from host)
– Ordering requirements on messages can also hinder bandwidth

address

message id

data payload

data payload

one-sided put message

two-sided message

network
interface

memory

host
CPU

16UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

FFT Performance on BlueGene/P

 Three UPC implementations
consistently outperform MPI

 Leveraging
communication/computation
overlap yields best
performance
 More collectives in flight

and more communication
leads to better
performance

 At 32k cores, overlap
algorithms yield 17%
improvement in overall
application time

0

500

1000

1500

2000

2500

3000

3500

256 512 1024 2048 4096 8192 16384 32768

G
Fl

op
s

Num. of Cores

Slabs
Slabs (Collective)
Packed Slabs (Collective)
MPI Packed Slabs

G
O
O
D

17UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

FFT Performance on Cray XT4
• 1024 Cores of the Cray XT4

– Uses FFTW for local FFTs
– Larger the problem size the more effective the overlap

G
O
O
D

18UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Programming styles with PGAS

• Data is partitioned among the processes, i.e., without halos
– Fine-grained access to the neighbor elements when needed
 Compiler expected to implement automatically (and together)

 pre-fetches
 bulk data transfer (instead of single-word remote accesses)

 May be very slow if compiler’s optimization fails
• Application implements halo storage

– Application organizes halo updates with bulk data transfer
 Advantage: High speed remote accesses
 Drawbacks: Additional memory accesses and storage needs

Partitioned Global Array

Local
access
Global
access
Local
data

19UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Irregular Applications

• The SPMD model is too restrictive for some “irregular”
applications

– The global address space handles irregular data accesses:
 Irregular in space (graphs, sparse matrices, AMR, etc.)
 Irregular in time (hash table lookup, etc.): for reads, UPC handles this

well; for writes you need atomic operations
– Irregular computational patterns are more difficult:

 Not statically load balanced (even with graph partitioning, etc.)
 Some kind of dynamic load balancing needed (e.g. a task queue)

• Design considerations for dynamic scheduling UPC
– For locality reasons, SPMD still appears to be best for regular

applications; aligns threads with memory hierarchy
– UPC serves as “abstract machine model” so dynamic load

balancing as an add-on may be written in portable UPC

20UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

// allocate a distributed task queue
taskq_t * all_taskq_alloc();

// enqueue a task into the distributed queue
int taskq_put(upc_taskq_t *, upc_task_t*);

// dequeue a task from the local task queue

// returns null if task is not readily available
int taskq_get(upc_taskq_t *, upc_task_t *);

// test whether queue is globally empty
int taskq_isEmpty(bupc_taskq_t *);

// free distributed task queue memory
int taskq_free(shared bupc_taskq_t *);

Distributed Tasking API for UPC
(a work in progress)

sh
ar

ed

pr
iv

at
e

enqueue dequeue

internals are hidden from
user, except that dequeue
operations may fail and
provide hint to steal

21UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC Tasking on 8-core Nehalem node

0
1
2
3
4
5
6
7
8
9

Sp
ee

du
p

N
or

m
al

iz
ed

 to
 S

er
ia

l E
xe

c.

Ti
m

e

UPC Tasking
OpenMP Tasking

22UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Multi-Core Cluster Performance
Random vs. Locality-aware work-stealing

UTS (T1XL)FIB (48) NQueen (15x15)

39.5 40.1 43.1 43.0

58.7 59.566.5 71.4
82.9 84.1

113.6 116.9

80.3
96.1

152.7
161.7

128.2

172.8

Speedup 16.5 % 5.6% 25.9%

0

20

40

60

80

100

120

140

160

180

200

RANDOM LOCALITY RANDOM LOCALITY RANDOM LOCALITY

Sp
ee

du
p

re
la

tiv
e

to
 S

er
ia

l E
xe

c.

Ti
m

e

64 (8 nodes) 128 (16 nodes) 256 (32 nodes)

23UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Support

• PGAS in general
– http://en.wikipedia.org/wiki/PGAS
– http://www.pgas-forum.org/  PGAS conferences

• UPC
– http://en.wikipedia.org/wiki/Unified_Parallel_C
– http://upc.gwu.edu/  Main UPC homepage
– http://upc.gwu.edu/documentation.html  Language specs
– http://upc.gwu.edu/download.html  UPC compilers

25UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC Basic Syntax

o Declaration of shared data
o Handling shared data and work sharing
o Synchronization:

- motivation – race conditions;
- rules for access to shared data by different threads

o Dynamic data and their management:
- UPC pointers and allocation calls

26UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Example 0

• Shows a generalization of a classic first C program
• Contains a bug – can you spot it?

#include <upc.h>
#include <stdio.h>
shared int x[THREADS];
int main(int argc, char** argv)
{
x[MYTHREAD] = MYTHREAD;
if (MYTHREAD == 0)

printf("hello world\n");
printf("I am thread number %d of %d threads\n",

MYTHREAD, THREADS);
if (MYTHREAD > 0)

printf("I see x[0] = %d\n", x[0]);
return 0;

}

27UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Distributed 1D Array

• Declaration:
– shared float x[THREADS]; // statically allocated outside of functions

• Data distribution:

x[0] x[1] x[2] x[3] x[4] x[5]

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5

28UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Distributed 2D Array

• Declaration:
– shared float x[3][THREADS]; // statically allocated outside of functions

• Data distribution:

x[0][0]
x[1][0]
x[2][0]

x[0][1]
x[1][1]
x[2][1]

x[0][2]
x[1][2]
x[2][2]

x[0][3]
x[1][3]
x[2][3]

x[0)[4]
x[1][4]
x[2][4]

x[0][5]
x[1][5]
x[2][5]

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5

29UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Distributed arrays with UPC

• UPC shared objects may be statically allocated
• Definition of shared data:

– shared [blocksize] type variable_name;
– shared [blocksize] type array_name[dim1];
– shared [blocksize] type array_name[dim1][dim2];
– …

• Default: blocksize=1 if no “[…]” given (different from “[]” which we see later)
• The distribution is round robin with chunks of blocksize elements
• Blocked distribution is achieved if last dimension==THREADS and blocksize==1

the dimensions
define which
elements exist

See next slides

30UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC shared data – examples

a[0]
a[4]
a[8]
a[12]
a[16]

a[1]
a[5]
a[9]
a[13]
a[17]

a[2]
a[6]
a[10]
a[14]
a[18]

a[3]
a[7]
a[11]
a[15]
a[19]

Thread 0 Thread 1 Thread 2 Thread 3

shared [1] float a[20]; // or
shared float a[20];

a[0]
a[1]
a[2]
a[3]
a[4]

a[5]
a[6]
a[7]
a[8]
a[9]

a[10]
a[11]
a[12]
a[13]
a[14]

a[15]
a[16]
a[17]
a[18]
a[19]

Thread 0 Thread 1 Thread 2 Thread 3

shared [5] float a[20]; // or
define N 20
shared [N/THREADS] float a[N];

a[0][0]
a[1][0]
a[2][0]
a[3][0]
a[4][0]

Thread 0 Thread 1 Thread 2 Thread 3

shared [1] float a[5][THREADS];
// or
shared float a[5][THREADS];

a[0][1]
a[1][1]
a[2][1]
a[3][1]
a[4][1]

a[0][2]
a[1][2]
a[2][2]
a[3][2]
a[4][2]

a[0][3]
a[1][3]
a[2][3]
a[3][3]
a[4][3]

a[0][0]
a[0][1]
a[0][2]
a[0][3]
a[0][4]

Thread 0 Thread 1 Thread 2 Thread 3

shared [5] float a[THREADS][5];

identical at compile timeTHREADS=1st dim!

a[1][0]
a[1][1]
a[1][2]
a[1][3]
a[1][4]

a[2][0]
a[2][1]
a[2][2]
a[2][3]
a[2][4]

a[3][0]
a[3][1]
a[3][2]
a[3][3]
a[3][4]

Courtesy of Andrew Johnson

31UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC shared data – examples (continued)

a[0] a[1] a[2] a[3]

Thread 0 Thread 1 Thread 2 Thread 3

shared float a[THREADS]; // or
shared [1] float a[THREADS];

a[0]
a[1]
a[8]
a[9]
a[16]
a[17]

a[2]
a[3]
a[10]
a[11]
a[18]
a[19]

a[4]
a[5]
a[12]
a[13]

a[6]
a[7]
a[14]
a[15]

Thread 0 Thread 1 Thread 2 Thread 3

shared [2] float a[20];

a

Thread 0 Thread 1 Thread 2 Thread 3

shared float a;
// located on thread 0

a[0]
a[1]
a[2]
…
a[9]

Thread 0 Thread 1 Thread 2 Thread 3

shared [] float a[10]; //or [0]

Blank blocksize located entirely on thread 0
upc_threadof(&a[15]) == 3

Courtesy of Andrew Johnson

32UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Integration with the type system
(static type components)

– compare this with effort needed implement the same with MPI
(dispense with all of MPI_TYPE_* API)

– what about dynamic type components?  later in this talk

typedef struct {
float mass;
float coor[3];
float velocity[3];

} Body;

declare and use entities of this type:

shared [100] Body asteroids[THREADS][100];
Body s;
⁞
if (MYTHREAD == 1) {

s = asteroids[0][4];
}

33UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Local access to local part
of distributed variables

• *x_local now equals x[MYTHREAD]
• Can be used in its place for

– Clearer code
– More efficient code
– Passing to C libraries (e.g. standard numerical libraries)

shared float x[THREADS];
float *x_local;
⁞
x_local = (float *) &x[MYTHREAD];

34UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Querying affinity

upc_threadof(address) yields thread containing that location

// Examples from an earlier slide
shared [1] float a[5][THREADS];
shared [5] float b[THREADS][5];

for (int i=0; i<5; ++i)
for (int j=0; j<THREADS; ++j)
assert(upc_threadof(&a[i][j]) == j);

for (int i=0; i<THREADS; ++i)
for (int j=0; j<5; ++j)
assert(upc_threadof(&b[i][j]) == i);

35UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Work sharing:
naïve versions of „owner computes“

• All three loops iterate over the elements that are local to each thread
• New syntax introduced in blocked example:

shared [*] int a[N];

is equivalent to
shared [(N+THREADS-1)/THREADS] int a[N];

and is valid for arrays but not for pointers (which have no N).

shared [1] int a[N]; // cyclic array layout
for (int i=MYTHREAD; i<N; i+=THREADS)

{ /* do work on a[i] */ }

shared [*] int a[N]; // blocked array layout – see below
int bs = (N+THREADS-1)/THREADS;
for (int i=bs*MYTHREAD; i<bs*(MYTHREAD+1); ++i)

{ /* do work on a[i] */ }

// generic for any array layout
for (int i=0; i<N; ++i)

if (upc_threadof(&a[i]) == MYTHREAD)
{ /* do work on a[i] */ }

36UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Work sharing with upc_forall

Notice that all 3 versions iterate i the over full range 0…(N-1).
Fourth expression in upc_forall is the “affinity expression”
• Type is shared address  execute a given interation

if (upc_threadof(expr) == MYTHREAD)

• Type is integer  execute a given iteration
if ((expr % THREADS) == MYTHREAD)

Special rules for nesting – you should avoid nesting upc_forall

// generic for any array layout using upc_forall
upc_forall (int i=0; i<N; ++i; &a[i])

{ /* do work on a[i] */ }

// generic for any array layout – naive version again
for (int i=0; i<N; ++i)

if (upc_threadof(&a[i]) == MYTHREAD)
{ /* do work on a[i] */ }

// valid/equivalent for cyclic array layout only:
upc_forall (int i=0; i<N; ++i; i)

{ /* do work on a[i] */ }

37UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Parallel execution with access epochs a.k.a
synchronization phases

*x_local = 17.0;

Barrier synchronization

printf(… , x[1])

Barrier synchronization

x[0] = 29.0;
…

Thread 0
*x_local = 33.0;

Barrier synchronization

printf(… , x[0])

Barrier synchronization

x[1] = 78.0;
…

Thread 1
1. Local accesses to

shared data

Both notations
are equivalent

2. Barrier until all
processes have finished
their local accesses

4. Barrier until all
processes have finished
their remote accesses

3. Remote accesses

5. Local accesses to shared data

Barrier synchronization is required to ensure
•Local writes in step 1 precede remote reads in step 3
•Remote reads in step 3 precede local writes in step 5

38UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Parallel execution –
same with remote write / local read

x[1] = 33.0;

Barrier synchronization

printf(…, *x_local)

Barrier synchronization

x[1] = 78.0;
…

Thread 0
x[0] = 17.0;

Barrier synchronization

printf(…, *x_local)

Barrier synchronization

x[0] = 29.0;
…

Thread1

Previous example with local/remote exchanged:
Barrier synchronization is required to ensure
•Remote writes in step 1 precede local reads in step 3
•Local reads in step 3 precede remote writes in step 5

39UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Synchronization

• Between a write access and a (subsequent or preceding) read or write
access of the same data from different processes,
a synchronization of the processes must be done!

• Most simple synchronization:
 barrier between all processes

• Simple:

• Split-phase:

Accesses to distributed data by some/all processes
upc_barrier;
Accesses to distributed data by some/all processes

Accesses to distributed data by some/all processes
upc_notify;
// do work that does not require synchronization
upc_wait;
Accesses to distributed data by some/all processes

Otherwise
race condition!

40UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Example 0 revisited

• Repairs the bug (data race) present in the original example

#include <upc.h>
#include <stdio.h>
shared int x[THREADS];
int main(int argc, char** argv)
{
x[MYTHREAD] = MYTHREAD;
upc_notify;
if (MYTHREAD == 0)

printf("hello world\n");
printf("I am thread number %d of %d threads\n",

MYTHREAD, THREADS);
upc_wait;
if (MYTHREAD > 0)

printf("I see x[0] = %d\n", x[0]);
return 0;

}

41UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Another Example:

shared float x[THREADS];
while (!converged(x)) {
float tmp = 0.5*x[MYTHREAD]

- 0.25*x[(MYTHREAD-1)%THREADS]
- 0.25*x[(MYTHREAD+1)%THREADS];

upc_barrier;
x[MYTHREAD] = tmp;
upc_barrier;

}

read

sync

sync
write

read

Note that real applications must do more work between
synchronizations or performance would be horrible.

42UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Dynamic entities: Pointers

• Remember C pointer semantics

• Pointers and PGAS memory categorization
– Both pointer (ptr) and pointee (var) may be either private or shared
 4 combinations theoretically possible

– In UPC three of these combinations are useful in practice

<type> *ptr;

ptr = &var; // ptr holds address of var

Topics:
pointer arithmetic
pointer-to-pointer
pointer-to-void / recast

43UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Pointers continued …

// variables in private space: p1, p2 and a
int *p1;
shared int *p2;
int a[N];

// variables in shared space: p3, p4 and b
shared int *shared p3;
int *shared p4;
shared int b[N];

p3
p4

p1 a[0] p2 p2 a [0]

issue:
Where does p4 point?
Other threads must not
rereference p4.

b[1]

44UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Pointer-to-shared: local views
of shared data (review)

• Cast from a pointer-to-shared to a pointer-to-private:

• May have performance advantages
• May improve code readability
• Required when passing to non-UPC numerical libraries

• Breaking the local-affinity rule results in undefined behavior
– Cannot count on the compiler to inform you of your mistakes

shared float a[5][THREADS];
float *a_local;

a_local = (float *) &a[0][MYTHREAD];

a_local[0] is identical with a[0][MYTHREAD]
a_local[1] is identical with a[1][MYTHREAD]
…
a_local[4] is identical with a[4][MYTHREAD]

address must have affinity
to local thread

pointer arithmetic
selects local part

45UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Pointer-to-shared: blocking and casting

• Assume 4 threads:

• Block size is a part of the variable‘s type
• One may cast between pointer w/ different block sizes

– Pointer arithmetic follows blocking („phase“) of pointer
– Cast changes the view but does not move any data

shared [2] int A[10];
shared int *p1;
shared [2] int *p2;

if (MYTHREAD == 1) {
p1 = (shared int *)&A[0];
p1 += 4;
p2 = &A[0];
p2 += 4;

}

A[0]
A[1]
A[8]
A[9]

A[2]
A[3]

A[4]
A[5]

A[6]
A[7]

Thread 0 1 2 3

p2p1 after pointer increment

46UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC dynamic Memory Allocation

• upc_all_alloc
– Collective over all threads (i.e., all threads must call)
– All threads get a copy of the same pointer to shared memory

– Similar result as with static allocation at compile time:

shared void *upc_all_alloc(size_t nblocks, size_t nbytes)

Shared data allocated by upc_all_alloc

Global
access

shared [nbytes] char[nblocks*nbytes];

Run time arguments

47UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC dynamic Memory Allocation (2)

• upc_global_alloc
– Only the calling thread gets a pointer to shared memory

shared void *upc_global_alloc(size_t nblocks, size_t nbytes)

Shared data allocated by upc_global_alloc

Global
access

48UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC dynamic Memory Allocation (3)

• upc_alloc
– Allocates memory in the local thread that is accessible by all threads
– Only on calling processes

– Similar result as with static allocation at compile time:

shared void *upc_alloc(size_t nbytes)

Global
access

shared [] char[nbytes]; // but with affinity to the calling thread

49UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Common mistakes with dynamic allocation

• shared int *p1 = upc_alloc(…);
– p1 is cyclic, but the allocation is indefinite (all on calling thread)
– Use of p1[1]might crash or might silently access wrong datum
– Probably meant either of the following:
shared int *p1 = upc_global_alloc(…); //cyclic
shared [] int *p1 = upc_all_alloc(…); //indefinite

• shared [2] int *p2 = upc_all_alloc(2, N*sizeof(int))

– Not always an error, but pretty often:
first 2 is the size of a block, second 2 is the number of blocks

– Probably meant either of the following:
upc_all_alloc(N, 2*sizeof(int)); // 2*N elements
upc_all_alloc(N/2, 2*sizeof(int)); // N elements

• Multiple calls to upc_free()for memory allocated by upc_all_alloc()
– Even though all threads call upc_all_alloc(), only one object is

allocated and it must be freed (at most) once.

52UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Integration of the type system
UPC pointer components

• Type definition

– Must avoid undefined results
when transferring data
between threads

• Example step-by-step:

1. Local (on thread p) memory
allocation initializes pointer p2

2. Synchronization
3. Remote (on thread q) initialization of

memory located on thread p.

typedef struct {
shared int *p2;

} Ctr;

dynamically allocated
entity should be in
shared memory area

shared [1] Ctr o[THREADS];
#define SZ …

int main() {
if (MYTHREAD == p) {
o[MYTHREAD].p2 = (shared int *)

upc_alloc(SZ*sizeof(int));
}
upc_barrier;
if (MYTHREAD == q) {
for (i=0; i<SZ; i++) {
o[p].p2[i] = … ;

}
}

}

o[0].p2 o[1].p2 o[2].p2 o[3].p2

X

53UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Major Features of UPC

– Global view of data
– Shared arrays are distributed and array indices mapped to threads.
– Index mapping is part of the type system
– Block-wise distributions can be hard to handle

 Last index x[……][THREADS] implies round robin distribution
 Possibility of asymmetric distribution ([*] can be helpful)

– Allocation is part of the runtime library
– Multiple variants of dynamic allocation

54UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Advanced Topics

o Partial synchronization
− mutual exclusion
− memory fences and atomic subroutines
− split-phase barrier

o Collective operations
o Some parallel patterns and hints on library design:

- parallelization concepts with and without halo cells
- work sharing; distributed structures
- procedure interfaces

55UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Locks – a mechanism for
mutual exclusion

• Coordinate access to shared (= sensitive) data
– sensitive data represented as “red balls”

• Use a shared lock variable
– modifications are guaranteed to be atomic
– consistency across threads

56UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Simplest examples for usage of locks

• single pointer lock variable
• thread-individual lock

generation is also possible
(non-collective)

• lock/unlock imply memory
fence (next slide)

#include <upc.h>

upc_lock_t *lock; // private pointer
// to a shared entity

lock = upc_all_lock_alloc();

// Blocking example
upc_lock(lock);
// play with red balls

upc_unlock(lock);
upc_barrier; // separates examples

// Non-blocking example
for (;;) {

if (upc_lock_attempt(lock)) break;
// go climb that mountain

}
// play with red balls
upc_unlock(lock);
upc_barrier; // separates examples

// Single free call from arbitrary thread
if (MYTHREAD == THREADS-1)

upc_lock_free(lock);

collective call
same result on

each thread

57UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Memory fence

• Goal: allow implementation of user-defined synchronization
• Requirement: ensure memory operations are observed in-order
• UPC solution: upc_fence provides a „null strict access“

• Assurance given by upc_fence :
– operations on x[Q] and y[Q] via statements on P
– action on x[Q] precedes action on y[Q]

 reordering by compiler and runtime are prohibited
– P is subdivided into two segments / access epochs
– but: segment on Q is unordered with respect to both segments on P

thread P

thread Q
memory fence

x[Q] y[Q]

Note:
A memory fence is
implied by most
other synchronization
statements

58UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Atomic operations

• Berkeley UPC extension:

• Berkeley UPC extensions:

– (signed/unsigned) int, long, plus 64- and 32-bit integer types available
– „_relaxed“ indicates relaxed (default) memory model
– „_strict“ model also available (more info on later slides)

Remember synchronization rule for relaxed memory model:
A shared entity may not be modified and read from two different threads
in unordered access epochs
Atomic subroutines allow a limited exception to this rule

Semantics:
• location always has a well-defined value if only the above subroutines are used
• for multiple updates on the same location, no assurance is given about the order

in which updates are observed  programmers‘ responsibility

shared int64_t *ptr;
int64_t value;
bupc_atomicI64_set_relaxed(ptr, value);
value = bupc_atomicI64_read_relaxed(ptr);
value = bupc_atomicI64_fetchadd_relaxed(ptr, op);
...and more...

59UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Example: Producer/Consumer
using BUPC Extensions

• Fences
– in producer ensures data written before increment of ready
– in consmer ensures data reads are not reordered before read of ready

• Additional atomic functions:
– swap, compare-and-swap, fetch-and-<logical-operation>

shared int ready = 0;
int val;

if (MYTHREAD == p) {
// produce data
upc_fence;
bupc_atomicI_fetchadd_relaxed(&ready, 1);

} else if (MYTHREAD == q) {
do {

val = bupc_atomic2_read_relaxed(&ready);
} while (!val);
bupc_atomicI_fetchadd_relaxed(&ready, -1);
upc_fence;
// consume data

}

60UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Recommendation

• Functionality from the last three slides (fences and atomics)
– should be used only in exceptional situations
– can easily be used in an unportable way

(works on one system, fails on another)  beware

61UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC split-phase barrier

• Already seen in „Example 0 revisited“
• Separate barrier completion point from waiting point

– this allows threads to continue computations once all others have
reached the completion point  reduce impacts of load imbalance

– completion of upc_wait once all threads reach upc_notify
– collective – all threads must execute both calls in same order

for (…) a[n][i]= …;
upc_notify;
// do work (on b?) not
// involving a
upc_wait;
for (…) b[i]= b[i]+a[q][i];

execution sequence

Completion
point

Waiting
point

62UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC memory consistency modes

• How are shared entities accessed?
– relaxed mode  program assumes no concurrent accesses from different threads
– strict mode  program ensures that accesses from different threads are separated,

and prevents code movement across these synchronization points
– relaxed is default; strict may have large performance penalty

• Options for synchronization mode selection
– variable level:

(at declaration
or in a cast)

– code block level:

strict shared int flag = 0;
relaxed shared [*] int c[THREADS][3];

c[q][i] = …;
flag = 1;

while (!flag) {…};
… = c[q][j];

Th
re

ad
 q

Th
re

ad
 p

{ // start of block
#pragma upc strict
… // block statements

}
// return to default mode

− file level
#include <upc_strict.h>
// or upc_relaxed.h

consistency mode on variable declaration overrides
code block or file level specification

q has same
value on
thread p as
on thread q

example for
a spin lock

63UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

What strict memory consistency
does and doesn‘t do for you

• „strict“ cannot prevent all race conditions
– example: „ABA“ race

• „strict“ does not make a[i]+=j atomic (read/modify/write)
• „strict“ does assure that changes on (complex) objects appear in

the same order on other threads

strict shared int flag;
int val, val1, val2;

flag = 0;
upc_barrier;
flag = 1;
flag = 0;

thread 0

upc_barrier;
val = flag;

thread 1

may end up
with 0 or 1

flag = 0;
upc_barrier;
flag = 1;
flag = 2;

upc_barrier;
val1 = flag;
val2 = flag;

may obtain (val1 <= val2),
but not (val1 > val2).
e.g. (2,1), (2,0) and

(1,0) are not possible.

64UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Collective functions (1)

• Two types:
– data redistribution

(scatter, gather, ...)
– computation operations

(reduce, prefix)

• Separate include file:

• Synchronization mode:
– constants of type upc_flag_t

• IN/OUT:
– refers to whether the specified

synchronization applies at the entry or
exit to the call

• Synchronization:
– NOSYNC – threads do not synchronize

at entry or exit
– MYSYNC – start processing of data

only if owning threads have entered
the call / exit function call only if all
local read/writes complete

– ALLSYNC – synchronize all threads at
entry / exit to function

• Combining modes:
– UPC_IN_NOSYNC | UPC_OUT_MYSYNC

– UPC_IN_NOSYNC same as
UPC_IN_NOSYNC | UPC_OUT_ALLSYNC

– 0 same as
UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC

NOSYNC
UPC_ _ MYSYNC

ALLSYNC

IN
OUT

#include <upc_collective.h>

65UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Collectives (2): Example of redistribution

• Scatter

– src has affinity to a single thread
– i-th block of size nbytes is copied to portion of dst with affinity to thread i

void upc_all_scatter (
shared void *dst,
shared const void *src,
size_t nbytes,
upc_flag_t sync_mode); al

ls
ca

tte
r

execution sequence

0

1

2

3

66UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Collectives (3): Reductions

• Reduction concept:
– distributed set of objects
– operation defined on type

– destination resides in
shared space

• Reduction type codes

• Operations:

– are constants of type
upc_op_t

+

al
lre

du
ce

C/UC – signed/unsigned char L/UL – signed/unsigned long

S/US – signed/unsigned short F/D/LD – float/double/long double

I/UI – signed/unsigned int

Numeric Logical User-defined function

UPC_ADD UPC_AND UPC_FUNC

UPC_MULT UPC_OR UPC_NONCOMM_FUNC

UPC_MAX UPC_XOR

UPC_MIN UPC_LOGAND

UPC_LOGOR

execution sequence

0

1

2

3

67UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Collectives (4): Reduction prototype

• src and dst may not be aliased
• replace T by type code (C, UC, etc.)
• function argument will be NULL

unless op specifices a user-defined
function

void upc_all_reduceT(

shared void *restrict dst,

shared const void *restrict src,

upc_op_t op,

size_t nelems,

size_t blk_size,

T(*func)(T, T),

upc_flag_t flags);

destination and source, respectively

number of elements of type T

source pointer block size
or 0 for indefinate

68UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

• Prefix reductions
– upc_all_prefix_reduceT()
– semantics:

for UPC_ADD,
thread i gets
(thread-dependent result)

Collectives (5): further functions

• Redistribution functions
– upc_all_broadcast()
– upc_all_gather_all()
– upc_all_gather()
– upc_all_exchange()
– upc_all_permute()

 consult the UPC language
specification for details

+

al
l_

pr
ef

ix
_r

ed
uc

e

execution sequence

0

1

2

3

+

∑
=

i

k
ksrc

0

][

69UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

One-sided bulk memory transfers

• Available for efficiency
– operate in units of bytes
– use restricted pointer

arguments

src dst

src dst

thread p thread qupc_memcpy()

upc_memget() (on q)upc_memput() (on p)

(char) int

upc_memset()

shared

private

void upc_memcpy(shared void *dst,
shared const void *src, size_t n);

void upc_memget(void *dst,
shared const void *src, size_t n);

void upc_memput(shared void *dst,
void *src, size_t n);

void upc_memset(shared void *dst,
int c, size_t n);

prototypes from upc.h

70UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Work sharing:
data exchange avoiding haloed shared data

• Use following data layout

• does not require entire data
field to be shared

• Communication code

• maintains one-sided semantics, but one
more copy needed

• memcpy() could replace upc_memget()
in this example with the addition of casts

MYTHREAD

MYTHREAD+1

MD

double a[N][MD]; // private
shared [MD] double

a_top[THREADS][MD],
a_bot[THREADS][MD];

size_t sz = MD*sizeof(double);

N

if (MYTHREAD+1 < THREADS) {
upc_memput(&a_bot[MYTHREAD+1][0],

&a[N-2][0], sz);
}
if (MYTHREAD-1 > 0) {
upc_memput(&a_top[MYTHREAD-1][0],

&a[1][0], sz);
}
upc_barrier;
if (MYTHREAD > 0) {
upc_memget(&a[0][0],

&a_bot[MYTHREAD][0], sz);
}
if (MYTHREAD < THREADS) {
upc_memget(&a[N-1][0],

&a_top[MYTHREAD][0], sz);
}

Note:
for 2-D blocking this is not fun. A strided
block transfer facility is a BUPC extension.

71UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Subroutine/function interface design

– subr assumes local size is n
– cast to local pointer for safety of use

and performance if only local
accesses are required

– declarations with fixed block size > 1
also possible (default is 1, as usual)

– cast to cyclic to match the prototype
– This approach of passing cyclic pointer

and blocksize as arguments is a common
solution to UPC library design.

– cyclic is “good enough” in most cases
because function can recover actual
layout via pointer arithmetic

– in this example w[i] aliases a[i][0]

void subr(int n, shared float *w)
{
int i;
float *wloc;
wloc = (float *) &w[MYTHREAD];
for (i=0; i<n; i++) {

… = w[i] + …
}
// exchange data
upc_barrier;
// etc.

}

shared [*] float x[THREADS][NDIM]

int main(void) {
// initialize x[][]
upc_barrier;
subr(NDIM, (shared float *) x);

}

a[0][0]
a[0][1]

⁞

Thread 0 Thread 1 Thread 2 Thread 3

a[1][0]
a[1][1]

⁞

a[2][0]
a[2][1]

⁞

a[3][0]
a[3][1]

⁞

w[0] w[1] w[2] w[3]

72UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Factory procedures

• Function returning pointer-to-shared

– use of upc_all_alloc() means this must be called collectively
– remember: allocation functions do not synchronize

shared *float factory(…) {
// determine size, n, to allocate
wk = (shared float *)upc_all_alloc(THREADS, sizeof(float)*n);
// fill wk with data
return wk;

}

73UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Distributed Structures (1)

• Irregular data distribution
– use a data structure
– recursive processing

• Binary tree example:

– prerequisite: ordering relation

• Constructor for Tree object
– To be called by one thread

– initializes storage for lock and data
components, NULL for children

typedef struct tree {
upc_lock_t *lk;
shared struct tree *left;
shared struct tree *right;
shared Content *data;

};
typedef struct tree Tree;

int lessthan(shared Content *a,
Content *b);

shared Tree *Tree_init() {
shared Tree *this;
this = (shared Tree *)

upc_alloc(sizeof(Tree));
this->lk = upc_global_lock_alloc();
this->data = (shared Content *)

upc_alloc(sizeof(Content));
this->left = this->right = NULL;
return this;

}
regular „serial“ type

definition

74UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Distributed Structures (2)

• Concurrent population
– locking ensures race-free processing

void insert(shared Tree *this, Content *stuff) {
upc_lock(this->lk);
if (this->left) { // Interior node (contains data)
upc_unlock(this->lk);
if (lessthan(this->data, stuff)) {
insert(this->left, stuff);

} else {
insert(this->right, stuff);

}
} else { // Leaf node (no data value yet)
this->left = Tree_init();
this->right = Tree_init();
upc_memput(this->data, stuff, sizeof(Content));
upc_unlock(this->lk);

}
}

copy object to
(remote) shared entity

invoke
constructor

color ↔ thread number

75UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Distributed Structures (3)

• Assumptions
– structure is written once or rarely
– many operations performed on entries, in access epochs separated from

insertions

– To be complete, traverse() must be executed by all threads which
called insert(), but not necessarily collectively.

void traverse(shared Tree *this, Params *op) {
if (this->left) { // Non-empty node
if (upc_threadof(this->data) == MYTHREAD) {
process((Content *)this->data, op);

}
traverse(this->left, op);
traverse(this->right, op);

}
}

guarantees
locality

76UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Real Applications and
Hybrid Programming

o NAS parallel benchmarks
− Optimization strategies
− Hybrid concepts for optimization

o Hybrid programming
- MPI allowances for hybrid models
- Hybrid PGAS examples

77UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

The eight NAS parallel benchmarks (NPBs) have been
written in various languages including hybrid for three

MG Multigrid Approximate the solution to a three-
dimensional discrete Poisson equation using
the V-cycle multigrid method

CG Conjugate
Gradient

Estimate smallest eigenvalue of sparse SPD
matrix using the inverse iteration with the
conjugate gradient method

FT Fast Fourier
Transform

Solve a three-dimensional PDE using the
fast Fourier transform (FFT)

IS Integer Sort Sort small integers using the bucket sort
algorithm

EP Embarrassingly
Parallel

Generate independent Gaussian random
variates using the Marsaglia polar method

BT
SP
LU

Block Tridiagonal
Scalar Pentadiag
Lower/Upper

Solve a system of PDEs using 3 different
algorithms

MZ

78UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

The NPBs in UPC are useful for
studying various PGAS issues

• Using customized communication to avoid hot-spots
– UPC Collectives do not support certain useful communication patterns

• Blocking vs. Non-Blocking (Asynchronous) communication
– In FT and IS using non-blocking gave significantly worse performance
– In MG using non-blocking gave small improvement

• Benefits of message aggregation depends on the arch./interconnect
– In MG message aggregation is significantly better on Cray XT 5 w/

SeaStar2 interconnect, but almost no difference is observable on Sun
Constellation Cluster w/ InfiniBand

• UPC – Shared Memory Programming studied in FT and IS
– Less communication but reduced memory utilization

• Mapping BUPC language-level threads to Pthreads and/or Processes
– Mix of processes and pthreads often gives the best performance

79UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Using customized communication to
avoid hot-spots

• UPC Collectives might not support certain type of communication
patterns (for example, vector reduction)

• Customized global communication is sometimes necessary!
• Collective communication naïve approach (FT example):

for (i=0; i<THREADS; i++)
upc_memget(… thread i …);

• Same communication ordered to avoid hot-spots:
for (i=0; i<THREADS; i++){

peer = (MYTHREAD + i) % THREADS;
upc_memget(… thread peer …);

}

• Communication performance difference can exceed 50%
(observed on Carver/NERSC – 2 quad-core Intel Nehalem cluster
with InfiniBand Interconnect)

80UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Blocking vs. Non-Blocking
(Asynchronous) communication

• Berkeley UPC includes extensions for non-blocking bulk
transfers (for efficient computation/communication overlap):
– upc_handle_t bupc_memget_async(void *dst, shared
const void *src, size_t nbytes);

– starts communication
– void bupc_waitsync(upc_handle_t handle);

– waits for completion
– Asynchronous versions of memcpy and memput also exist

• Not always beneficial:
– Non-blocking communication can inject large number of messages

into the network causing congestion
– Lower levels of the network stack (firmware, switches) may then

employ internal flow-control which reduces the effective bandwidth

81UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Blocking vs. Non-Blocking
(Asynchronous) communication (cont.)

• FT – no communication/computation overlap possible, but non-
blocking communication can be used:

bupc_handle_t handles[THREADS];
for(i = 0; i < THREADS; i++) {

peer = (MYTHREAD+i) % THREADS; // avoids hot-spots
handles[i] = bupc_memget_async(… thread peer …);

}
for(i=0; i < THREADS; i++)

bupc_waitsync(handles[i]);

• Using non-blocking communication, FT (also IS) experiences up to
60% communication performance degradation. For MG we
observed ~2% performance improvement.

• Slowdown is caused by a large number of messages injected into
the network (there is no computation that could overlap
communication and thus reduce the injection rate)

82UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

In addition to asynchronous, one can study strided
communication and message aggregation

• Using strided communication is generally an improvement
– Again BUPC has extensions for this purpose

• Message aggregation reduces the number of messages,
but introduces some packing/unpacking overhead

• Message aggregation increases programming effort.
• Example:

Fine-grained Communication
Thread A → Thread B
for(i=0; i<n1; i++)
upc_memput(

&k[i], &u[i],
n2 * sizeof(double));

Message Aggregation
Thread A:
buff = pack(u);
upc_memput(

&k[0], &buff,
n1*n2*sizeof(double));

upc_barrier;

Thread B:

upc_barrier;
unpack(k);

83UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

MG message aggregation is significantly
better on Cray SeaStar2 interconnect

0
1
2
3
4
5
6
7
8

MG UPC MG UPC
Async

MG UPC
Async +

Strided Comm

MG UPC
Async +
Message

Aggregation

Ex
ec

ut
io

n
Ti

m
e

(s
)

MG Class C Optimizations - Cray XT
64 Cores (8 Nodes)

Communication

Computation

• MG message
aggregation
had almost no
difference on
Ranger
InfiniBand
interconnect

84UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC – Hierarchical Shared Memory
Programming reduces communication time

• UPC designed for pure distributed
or pure shared memory systems

• UPC capable of exploiting shared
memory (OMP-like) programming
style within a node (thus avoiding
some explicit communication)

Master
thread

Parallel region –
worker threads

Master
thread

OMP – Shared
Memory style

MPI – Explicit
Communication

All-To-All
Communication

• Drawback: reduced memory utilization (large fraction unusable)
• In the UPC hierarchical model, only the shared heap allocated by the
master thread is used
• In BUPC all threads have equally sized shared-heaps
• In any UPC upc_{all,global}_alloc() allocate across all threads
• Can result in large fraction of node memory potentially unusable
• Careful data placement capable of increasing memory utilization
• Berkeley is working on enabling uneven heap distribution in BUPC

85UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Use of UPC shared memory to remove a
transpose operation in FT

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

OMP MPI UPC -
Explicit
Comm.

UPC -
Shared
Mem.

OMP MPI UPC -
Explicit
Comm.

UPC -
Shared
Mem.

IS FT

UPC,MPI Execution Time Normalized to OMP, 16 Cores AMD

comm

comp

86UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

BUPC language-level threads can be
mapped to Pthreads and/or Processes

• Pthreads – shared memory communication through shared
address space

• Processes – shared memory communication through shared
memory segments (POSIX, SysV or mmap(file)) called PSHM

• NPBs performance depends on Pthreads/Processes
– Pthreads share one network endpoint; PSHM has network

endpoint per process
– Due to sharing of one network endpoint, pthreads experience

messaging contention, resulting in throttled injection rate
– Processes (PSHM) can inject messages into the network faster

(but large messages count may decrease effective bandwidth)
– PSHM avoids contention overhead when interacting with external

libraries/drivers
– Contention and injection rate compete for dominance

87UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Mix of both processes and pthreads often
achieves the best performance

0
0.2
0.4
0.6
0.8

1
1.2
1.4

PSHM Hybrid (1
Proc. Per
socket)

Pthreads PSHM Hybrid (1
Proc. Per
socket)

Pthreads PSHM Hybrid (1
Proc. Per
socket)

Pthreads

IS Class C MG Class C FT Class C

Ti
m

e
N

or
m

al
iz

ed
 to

 P
th

re
ad

s

Ranger (AMD 4 Sockets x 4 Cores per node)
Performance Normalized to Pthreads on 128 Cores

Coarse-Grained Comm. Fine-Grained Comm. Computation

For FT the hybrid approach (1 process per socket and
pthreads within a socket) is best and is a “reasonable”
approach for the other NPBs

88UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Some NAS Parallel Benchmarks have been written in
multi-zone hybrid versions (currently with OpenMP)

• Multi-zone versions of the NPSs
LU,SP, and BT are available from:

www.nas.nasa.gov/Resources/Software/software.html

MPI/OpenMP Version

Time step Sequential

Inter-zones MPI Processes

Exchange boundaries Call MPI

Intra zones OpenMP

Figure adapted from Gabriele Jost, et al., ParCFD2009 Tutorial

http://www.nas.nasa.gov/Resources/Software/software.html�

89UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

• BT-MZ: (Block-tridiagonal Solver)
– Size of the zones varies widely:

• large/small about 20
• requires multi-level parallelism to achieve a good load-balance

• LU-MZ: (Lower-Upper Symmetric Gauss Seidel Solver)
– Size of the zones identical:

• no load-balancing required
• limited parallelism on outer level

• SP-MZ: (Scalar-Pentadiagonal Solver)
– Size of zones identical

• no load-balancing required

Hybrid coding can yield improved
performance for some benchmarks

Load-balanced on MPI
level: Pure MPI should

perform best

Pure MPI: Load-
balancing problems!

Good candidate for
MPI+OpenMP

Limited MPI
Parallelism:

MPI+OpenMP
increases

Parallelism

Adapted from Gabriele Jost, et al., ParCFD2009 Tutorial

90UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

PGAS languages can also be
combined with MPI for hybrid

• MPI is designed to allow coexistence with other parallel
programming paradigms and uses the same SPMD model:
 MPI and UPC (or CAF) can exist together in a program

• When mixing communications models, each will have its own
progress mechanism and associated rules/assumptions

• Deadlocks can happen if some processes are executing blocking
MPI operations while others are in “PGAS communication mode”
and waiting for images (e.g. sync all)
 "MPI phase" should end with MPI barrier, and a "PGAS phase"

should end with a PGAS barrier to avoid communication deadlocks

91UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

We give one example of hybrid
MPI and Cray CAF interoperability

program MPI_and_CAF

integer :: ntasks,ierr,rank,size
integer,pointer,dimension(:) :: array

call MPI_Init(ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD,ntasks,ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD,rank,ierr)

size = 1000
allocate(array(1:size))
array = 1

call mpi_routine1(array)

call MPI_BARRIER(MPI_COMM_WORLD,ierr)

call caf_routine(rank,size,array)

call MPI_BARRIER(MPI_COMM_WORLD,ierr)

call mpi_routine2(array)

deallocate(array)
call MPI_FINALIZE(ierr)

end program MPI_and_CAF

subroutine caf_routine(mpi_rank,size,mpi_array)

integer :: mpi_rank,size,world_rank,world_size
integer,dimension(size) :: mpi_array
integer,allocatable :: co_array(:)[:]

SYNC ALL ! Full barrier; wait for all images

world_rank = THIS_IMAGE() ! equal to mpi_rank
world_size = NUM_IMAGES()

… ! some computation on mpi_array and co_array

SYNC ALL

end subroutine caf_routine

main.F90

caf.F90

building for Hopper/Franklin @ NERSC:
module swap PrgEnv-pgi PrgEnv-cray
ftn –static –O3 –h caf caf.F90
ftn –static –O3 mpi.F90
ftn –static –O3 main.F90
ftn –static –o exec caf.o mpi.o main.o

subroutine mpi_routine1…
subroutine mpi_routine2 … mpi.F90

92UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Hybrid MPI and UPC

• Hybrid MPI and UPC still an area of active research/development
• Works on many clusters but not yet on Cray or IBM BG/P
• Most significant hurdle is those systems’ custom job launchers

• There are three hybrid models† in the literature that vary the level of
nesting and number of instances of each models
• Flat model: provides a non-nested common MPI and UPC execution

where each process is a part of both the MPI and the UPC execution
• Nested-funneled model: provides an operational mode where only the

master thread per group (of one of more compute nodes) gets an MPI
rank and can make MPI calls

• Nested-multiple model: provides a mode where every UPC thread in
each group gets its own MPI rank and can make MPI calls
independently

† from “Hybrid Parallel Programming with MPI and Unified Parallel C”
by James Dinan, Pavan Balaji, Ewing Lusk, P. Sadayappan, and Rajeev Thakur

93UPC Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Thank you.

