
Pig Programming
12-2pm

- 2 - Yahoo! Confidential

Agenda
•  Introduction to PIG

 Overview

 Architecture

•  Pig Latin
•  Pig Examples

 Writing your own UDF’s

•  Pig Streaming and Parameter Substitution

•  Translating SQL Queries into Pig Latin

- 3 - Yahoo! Confidential

What is PIG?
•  SQL-like language (PIG Latin) for processing large

semi-structured data sets using Hadoop M/R
–  PIG is an Hadoop (Apache) sub-project
–  ~30 % Grid users in Yahoo! use PIG

•  PIG Latin
–  PIG is a procedural (data flow) language:

•  Lets users to specify explicit sequence of steps for data processing
•  Think of it as: a scripting harness to chain together multiple map-

reduce jobs

–  Supports relational model:
•  But NOT strongly typed
•  Supports primitive relational operators like FILTER, PROJECTIONS,

JOIN, GROUPING, etc.

- 4 - Yahoo! Confidential

Why use Pig over Hadoop

Hadoop is great for distributed computation but..

1. Several simple, frequently-used operations
Filtering, projecting, grouping, aggregation, joining, & sorting are
commonly functions

2. Users’ end-goal typically requires several Map-
Reduce jobs
This makes it hard to maintain, extend, debug, optimize

- 5 - Yahoo! Confidential

Advantages of Using PIG

•  PIG can be treated as a higher-level language
–  Increases programmer productivity

•  smaller learning curve

–  Decreases duplication of effort

–  Opens the M/R (Hadoop) programming system to more users

•  PIG insulates against Hadoop complexity
–  Hadoop version upgrades

–  JobConf configuration tuning

- 6 - Yahoo! Confidential

Pig: Making Hadoop Easy

•  How to find the top 100 most
visited sites by users aged 18 to
25??

•  Using Native Hadoop Java code
requires 20x more lines of code
than a Pig script

•  Native Hadoop Java code requires
16x more development time than
Pig

•  Native Hadoop Java code takes
11 min to run, while Pig requires
20 min

Users = LOAD ‘users’ AS (name, age);

Fltrd = FILTER Users by age >= 18 and age <= 25;

Pages = LOAD ‘pages’ AS (user, url);

Jnd = JOIN Fltrd BY name, Pages BY user;

Grpd = GROUP Jnd by url;

Smmd = FOREACH Grpd GENERATE group, COUNT(Jnd) AS
clicks;

Srtd = ORDER Smmd BY clicks;

Top100 = LIMIT Srtd 100;

STORE Top100 INTO ‘top100sites’;

Solution in Native Hadoop
M/R program

Solution
using Pig
Script

- 7 - Yahoo! Confidential

(SQL)

Pig

Map-Reduce

 cluster

automatic
rewrite +
optimize

or

or

user

Logical Plan

Physical Plan

M/R Plan

A high-level language to
express computation and
execute it over Hadoop

Pig Architecture: Map-Reduce as
Backend

- 8 - Yahoo! Confidential

SQL Operators to M/R
•  Select a, UPPER(b), COUNT(c) -- projection, scalar, aggregate

•  Where a > 10 -- filter expression

•  Group by a; -- group by

Map

Map

Map

Map

Reducer

Reducer

projection

Filter, transform
 per record

<aggregate globally per group key> I/P files

Part-00000

Part-00001

PIG LOAD PIG STORE

combine

Aggregate locally
 per group key

combin
e

combin
e

<group key, val>

combin
e

Hadoop M/R provides Distributed Group by Aggregate

Shuffle
&

Sorting

GROUP BY

- 9 - Yahoo! Confidential

•  Parsing

•  Semantic checking

•  Planning

•  Runs on user machine or
gateway

•  Script execution

•  Runs on grid

Pig Architecture

Front End Back End

- 10 - Yahoo! Confidential

Query Parser

Pig Latin

Logical Plan

Semantic Checking Logical Plan

Logical Optimizer Optimized Logical Plan

Logical to Physical Translator Physical Plan

Physical To M/R Translator MapReduce Plan

Map Reduce Launcher

Create a job jar to be submitted to Hadoop cluster

Front End Architecture
Pig Latin Programs

- 11 - Yahoo! Confidential

Logical Plan
•  Consists of DAG of Logical Operators as nodes and Data

Flow represented as edges

–  Logical Operators contain list of i/p’s o/p’s and schema

•  Logical operators
–  Aid in post parse stage checking (type checking)

–  Optimization

–  Translation to Physical Plan Proj(0) Load

Filter

Store

>

Const(5)

a = load ‘myfile’;
b = filter a by $0 > 5;
store b into ‘myfilteredfile’;

- 12 - Yahoo! Confidential

Physical Plan
•  Layer to map Logical Plan to multiple back-ends, one such

being M/R (Map Reduce)

–  Chance for code re-use if multiple back-ends share same
operator

•  Consists of operators which Pig will run on the backend

•  Currently most of the physical plan is placed as operators in
the map reduce plan

•  Logical to Physical Translation
–  1:1 correspondence for most Logical operators

–  except Cross, Distinct, Group, Co-group and Order

- 13 - Yahoo! Confidential

Logical to Physical Plan for Co-Group
operator

•  Logical operator for co-group/group is converted to 3
Physical operators

–  Local Rearrange (LR)

–  Global Rearrange (GR)

–  Package (PKG)

•  Example:
–  cogroup A by Acol1, B by Bcol1

PKG

GR

LR LR

A B

(1,R)

(2,G)

{1,(1,R)}1

{2,(2,G)}1

(1,B)

(2,Y)

Tuples

{Key,(Value)}(table no)

{1,{(1,R)1, (1,B)2}}

{2,{(2,Y)2, (2,G)2}}

{1,(1,B)}2

{2,(2,Y)}2

{Key,{ListofValues}}

{1,{(1,R)1}, {(1,B)2}}

{2,{(2,G)1}, {(2,Y)2}}

Acol1 Bcol1

- 14 - Yahoo! Confidential

Map Reduce Plan
•  Physical to Map Reduce (M/R) Plan conversion happens

through the MRCompiler

–  Converts a physical plan into a DAG of M/R operators

•  Boundaries for M/R include cogroup/group, distinct, cross,
order by, limit (in some cases)
–  Push all subsequent operators between cogroup to next

cogroup into reduce

–  order by is implemented as 2 M/R jobs

•  JobControlCompiler then uses the M/R plan to construct a
JobControl object

load filter group cogroup

map1 reduce1

C1 Ci

cogroup

Ci+1

mapi reducei

- 15 - Yahoo! Confidential

Pig operators are placed in a pipeline and
each record is then pulled through.

A = load …
B = foreach …
C = filter …
D = group …
…

Map phase will
have for each
& filter For each

Filter

Prep for
reduce

record from Hadoop

 collect

Back End Architecture

- 16 - Yahoo! Confidential

Lazy Execution

•  Nothing executes until you request output

•  M/R execution takes place on your cluster only
when the store or dump command is
encountered

•  Advantages:
•  In-memory pipelining
•  Filter re-ordering across multiple commands

Pig Latin

- 18 - Yahoo! Confidential

Introduction to Pig Latin
•  Pig Latin is a dataflow language through which users

can write programs in Pig
•  Pig Latin consists of the following datatypes:

–  Data Atom
Simple atomic data value (e.g. alice or 1.0)

–  Tuple
Tuple is a row w/ one or more fields of any data type, consists of a sequence

of “fields” e.g. (alice,lakers) or (alice,kings)

–  Data Bag
Set of Tuples equivalent to a “table” in SQL terminology
Can have tuples w/ different number of fields & even fields can have

different data types
Can have duplicate tuples: e.g.
 {(alice,lakers), (alice,kings)}

–  Data Map
A set of key value pairs [likes#(lakers,kings),age#22]

- 19 - Yahoo! Confidential

Pig Latin: Data Types
Type Example

1. Data Atom
an atomic value

‘alice’

2. Tuple
a record

(alice,lakers)

3. Data Bag
collection supporting scan

4. Data Map
collection with key

lookup

(alice,lakers)
(alice,kings)

‘likes’# [
(lakers),
(kings)

‘age’#22]

- 20 - Yahoo! Confidential

Pig Types
•  Pig supports the following types in addition to map,

bag, and tuples
–  int: 32-bit integer, signed type

–  long: 64-bit for unsigned type

•  (alice,25,6L)

–  float: 32-bit floating point

•  (alice,25, 5.6f),(alice,25,1.92e2f)

–  double: 64-bit floating point

•  (alice,22,1.92),(alice,22,1.92e2)

–  chararray: set of characters stored in Unicode (Java String)

•  (‘alice’, ‘bob’)

–  bytearray: array of bytes (Java DataByteArray)

•  default type if you do not specify the type of the field

Pig Latin: Basic Operations
& Expressions

- 22 - Yahoo! Confidential

Expressions

(1, (2,3),
(4,6)

, [‘yahoo’#‘mail’]) Sample tuple of a

a (f1:int , f2:bag{t:tuple (n1:int, n2:int)}, f3: map
[])

(2,3),
(4,6)

f1or $0 f2 or $1 f3 or $2

f2 =

(2,3),
(4,6)

$1 =

$0 = 1

Field referred to by position Field referred to by name Projection of a data item

f2.$0 =
(2),
(4)

f3# ‘yahoo’ = ‘mail’

Map lookup

SUM(f2.$0) = 6 (2+4)
COUNT(f2) = 2L

Function application

a = name of alias
which contains types
int, tuple and map

NOTE: bag, tuple keywords are optional

- 23 - Yahoo! Confidential

Conditions (Boolean Expressions)

  ==, !=, >, >=, <, <= for numerical comparison
  only f1==1 works as f1 is type integer
 eq, neq, gt, gte, lt, lte for string comparisons
  f3#‘yahoo’ gt ‘ma’
  matches for regular expression matching
  f3#‘yahoo’ matches ‘(?i)MAIL’

(1, (2,3),
(4,6)

 ,[‘yahoo’#‘mail’]) Sample tuple of a

f1or $0 f2 or $1 f3 or $2

a = name of alias
which contains types
int, tuple and map

a (f1:int , f2:bag{t:tuple (n1:int, n2:int)}, f3: map[])

- 24 - Yahoo! Confidential

Pig Latin Operators & Conditional
Expressions

  Logical Operators
  AND, OR, NOT
  f1==1 AND f3#‘yahoo’ eq ‘mail’

  Conditional Expression (aka BinCond)

  (Condition?exp1:exp2)
  f3#‘yahoo’matches ‘(?i)MAIL’ ? ‘matched’: ‘notmatched’

(1, (2,3),
(4,6)

,
 [‘yahoo’#‘mail’]) Sample tuple of a

f1or $0 f2 or $1 f3 or $2

a = name of alias that
contains types int, tuple
and map

a (f1:int , f2:bag{t:tuple (n1:int, n2:int)}, f3: map[])

Pig Latin Language by
Example

- 26 - Yahoo! Confidential

Examples

1.  Word Count

2.  Compute average number of page visits by user

3.  Identify users who visit highly-ranked or good
pages

4.  Namenode Audit Log processing via UDF’s in
Chukwa (User Defined Functions)

- 27 - Yahoo! Confidential

Word Count Using Pig

program program

pig pig

program pig

hadoop pig

latin latin

latin latin

wc.txt

•  Count frequency of each word in a text file
•  Basic idea:

–  Load this file using a loader
–  Foreach record generate word token
–  Group by each word
–  Count number of words in a group
–  Store to file

- 28 - Yahoo! Confidential

Word Count Using Pig
myinput = load '/user/viraj/wc.txt' USING TextLoader() as (myword:chararray);

words = FOREACH myinput GENERATE FLATTEN(TOKENIZE(myword));

grouped = GROUP words BY $0;

counts = FOREACH grouped GENERATE group, COUNT(words);

store counts into ‘/user/viraj/pigoutput’ using PigStorage();

Write to HDFS /user/viraj/pigoutput/part-* file

- 29 - Yahoo! Confidential

Compute Average Number of Page
Visits by User

user url time

Amy www.cnn.com 8:00

Amy www.crap.com 8:05

Amy www.myblog.com 10:00

Amy www.flickr.com 10:05

Fred

Fred

cnn.com/index.htm

cnn.com/index.htm

12:00

1:00

Visits log

. . . •  Logs of user visiting a webpage consists of (user,url,time)
•  Fields of the log are tab-separated and in text format
•  Basic idea:

–  Load the log file
–  Group based on the user field
–  Count the group
–  Calculate average for all users

- 30 - Yahoo! Confidential

How to Program This in Pig Latin
VISITS = load ‘user/viraj/visits' as (user, url, time);

USER_VISITS = group VISITS by user;

USER_CNTS = foreach USER_VISITS generate group as user, COUNT(VISITS) as numvisits;

ALL_CNTS = group USER_CNTS all;

AVG_CNT = foreach ALL_CNTS generate AVG(USER_CNTS.numvisits);

dump visits;

- 31 - Yahoo! Confidential

Identify Users Who Visit “Good Pages”

url pagerank

www.cnn.com 0.9

www.flickr.com 0.9

www.myblog.com 0.7

www.crap.com 0.2

Pages log

. . .
user url time

Amy www.cnn.com 8:00

Amy www.crap.com 8:05

Amy www.myblog.com 10:00

Amy www.flickr.com 10:05

Fred

Fred

cnn.com/index.htm

cnn.com/index.htm

12:00

1:00 . . .

Visits log

•  Good pages: those pages visited by users whose page rank is greater than 0.5
•  Basic idea:

–  Join tables based on URL
–  Group based on user
–  Calculate average pagerank of user-visited pages
–  Filter user who has average pagerank greater than 0.5
–  Store the result

Good page

- 32 - Yahoo! Confidential

How to Program This in Pig

VISITS = load ‘/user/viraj/visits.txt' as (user:chararray, url:chararray, time:chararray);

PAGES = load '/user/viraj/pagerank.txt' as (url:chararray, pagerank:float);

VISITS_PAGES = join VISITS by url, PAGES by url;

Load files for processing with appropriate types

Join them on URL fields of table

- 33 - Yahoo! Confidential

How to Program This in Pig

USER_VISITS = group VISITS_PAGES by user;

USER_AVGPR = foreach USER_VISITS generate group, AVG(VISITS_PAGES.pagerank)
as avgpr;

GOOD_USERS = filter USER_AVGPR by avgpr > 0.5f;

store GOOD_USERS into '/user/viraj/goodusers';

Group by user; in our case: Amy, Fred

Generate an average pagerank per user

Filter records based on pagerank

Store results in hdfs

- 34 - Yahoo! Confidential

Chukwa Namenode Audit log processing
(1232063871538L, [capp#/hadoop/log/audit.log,ctags#cluster=“cluster2", body#2009-01-15
23:57:51,538 INFO org.apache.hadoop.fs.FSNamesystem.audit: ugi=users,hdfs<tab> ip=/
11.11.11.11<tab>cmd=mkdirs src=/user/viraj/output/part-0000<tab>dst=null<tab>
perm=users:rwx------ ,csource#machine1@grid.com])

(1232063879123L, [capp#/hadoop/log/audit.log,ctags#cluster=“cluster2",body#2009-01-15
23:57:59,123 INFO org.apache.hadoop.fs.FSNamesystem.audit: ugi=users,hdfs ip=/11.12.11.12
<tab>cmd=rename<tab>src=/user/viraj/output/part-0001<tab> dst=/user/viraj/output/
part-0002<tab>perm=users:rw-------, csource#machine2@grid.com])

audit.log generated by Chukwa

•  Count number of HDFS operations that took place
•  Basic idea:

–  Load this file using a custom loader known as ChukwaStorage into a
long column and a list of map fields

–  Extract the value of the body key as it contains the cmd the
namenode executed

–  Cut the body tag on tabs to extract only the cmd value using a UDF
–  Group by cmd value and Count it

- 35 - Yahoo! Confidential

How to Program this in Pig

register chukwa-core.jar
register chukwaexample.jar

A = load '/user/viraj/Audit.log' using
chukwaexample.ChukwaStorage() as (ts: long,fields)

B = FOREACH A GENERATE fields#'body' as log;

C = FOREACH B GENERATE FLATTEN(chukwaexample.Cut
(log)) as (timestamp, ip, cmd, src, dst, perm);

Register the jars which contain your udf’s

Jar internally used by ChukwaStorage

Contains both ChukwaStorage and
Cut classes

Project the right value for key body

Cut the body based on tabs to extract “cmd”

- 36 - Yahoo! Confidential

How to Program this in Pig

D = FOREACH C GENERATE cmd as cmd:chararray;

E = group D by cmd;

F = FOREACH E GENERATE group, COUNT(D) as count;

dump F;

Project the right column for use in group

Group by command type

Count the commands and dump

Commands for
Manipulating Data Sets

- 38 - Yahoo! Confidential

Load Data Using PigStorage

query = load ‘/user/viraj/query.txt’ using PigStorage()
 as (userId, queryString, timestamp)

queries = load ‘/user/viraj/querydir/part-*’ using PigStorage()
 as (userId, queryString, timestamp)

All files under querydir containing part-* are loaded
  Can be a file
  Can be a path with globbing
  userID, queryString, timestamp fields should be tab-separated

- 39 - Yahoo! Confidential

Store Data Using PigStorage &
View Data

store joined_result into ‘/user/viraj/output’ ;
store joined_result into ‘/user/viraj/myoutput/’ using PigStorage(‘\u0001’);
store joined_result into ‘/user/viraj/myoutputbin’ using BinStorage();
store sports_views into ‘/user/viraj/myoutput’ using PigDump();

dump sports_views;

•  Default PigStorage if you do not specify anything
 Result stored as ASCII text in files part-* under output dir

•  Similar to load can use PigStorage (‘{delimiter}’)
 Stores records with fields delimited by Unicode {delimiter}

•  Default is tab i.e. you don’t specify anything
•  Store as Ctrl+A separated by specifying PigStorage(‘\u0001’)

•  BinStorage store arbitrarily nested data
 Used for loading intermediate results that were previously stored using it

•  Dump displays data on terminal
 Use PigDump storage class internally

(alice,lakers,3L)
(alice,lakers, 0.7f)

- 40 - Yahoo! Confidential

Filter Data
queries = load ‘query_log.txt’ using PigStorage(‘\u0001’) as (userId:
chararray, queryString: chararray, timestamp: int);

filtered_queries = filter queries by timestamp > 1;

filtered_queries_pig20 = filter queries by timestamp is not null;

store filtered_queries into ‘myoutput’ using PigStorage();

(alice, iPod, 3)
(alice, lakers, 4)

(alice, lakers, 1)
(alice, iPod, 3)

(alice, lakers, 4)

queries:
 (userId, queryString, timestamp)

filtered_queries:
 (userId, queryString, timestamp)

(alice, lakers, 1)
(alice, iPod, 3)

(alice, lakers, 4)
filtered_queries_pig20:

 (userId, queryString, timestamp)

- 41 - Yahoo! Confidential

Join in Map Reduce

pageid useri
d

time

1 111 9:08:01

2 111 9:08:13

1 222 9:08:14

userid age gender

111 25 female

222 32 male

pageid age

1 25

2 25

1 32

X =

page_view
user

pv_users

- 42 - Yahoo! Confidential

Join in Map Reduce

key value

111 <1,1>

111 <1,2>

222 <1,1>

pageid useri
d

time

1 111 9:08:01

2 111 9:08:13

1 222 9:08:14

useri
d

age gender

111 25 female

222 32 male

page_view

user

pv_users

key value

111 <2,25
>

222 <2,32
>

Map

key value

111 <1,1>

111 <1,2>

111 <2,25
>

key value

222 <1,1>

222 <2,32
>

Shuffle
Sort

pageid

1

2

pageid

1

Reduce reducer 0

reducer 1

- 43 - Yahoo! Confidential

(Co)Group Data

queries = load query.txt as ()..;
sport_views = load sports_views.txt as ….;

team matches = cogroup sports_views by (userId, team),
 queries by (userId, queryString);

Data 1:
queries: (userId: charrarray, queryString : chararray, timestamp: int)

Data 2:
sports_views: (userId: chararray, team: chararray, timestamp: int)

- 44 - Yahoo! Confidential

Example of Cogrouping

(alice, lakers, 3)
(alice, lakers, 7)

(alice, lakers, 1)
(alice, iPod, 3)

(alice, lakers, 4)

sports_views:
(userId, team, timestamp)

queries:
 (userId, queryString, timestamp)

- 45 - Yahoo! Confidential

Example of Cogrouping

(alice, lakers, 3)
(alice, lakers, 7)

(alice, lakers, 1)
(alice, iPod, 3)

(alice, lakers, 4)

sports_views:
(userId, team, timestamp)

team_matches: (group, sports_views, queries)

queries:
 (userId, queryString, timestamp)

cogroup

team matches = cogroup sports_views by (userId, team),
 queries by (userId, queryString);

- 46 - Yahoo! Confidential

Example of Cogrouping

(alice, lakers, 3)
(alice, lakers, 7)

(alice, lakers, 1)
(alice, iPod, 3)

(alice, lakers, 4)

sports_views:
(userId, team, timestamp)

team_matches: (group, sports_views, queries)

queries:
 (userId, queryString, timestamp)

cogroup

(alice, lakers), (alice, lakers, 1)
(alice, lakers, 4)

(alice, lakers, 3)
(alice, lakers, 7) () ,

- 47 - Yahoo! Confidential

Example of Cogrouping

(alice, lakers, 3)
(alice, lakers, 7)

(alice, lakers, 1)
(alice, iPod, 3)

(alice, lakers, 4)

sports_views:
(userId, team, timestamp)

team_matches: (group, sports_views, queries)

queries:
 (userId, queryString, timestamp)

cogroup

((alice, iPod), { },{ (alice, iPod, 3) })

(alice, lakers), (alice, lakers, 1)
(alice, lakers, 4)

(alice, lakers, 3)
(alice, lakers, 7) () ,

- 48 - Yahoo! Confidential

Cogrouping

(alice, lakers, 3)
(alice, lakers, 7)

(alice, lakers, 1)
(alice, iPod, 3)

(alice, lakers, 4)

sports_views:
(userId, team, timestamp)

team_matches: (group, sports_views, queries)

queries:
 (userId, queryString, timestamp)

cogroup

Can operate on grouped data just as on base data using
foreach

((alice, iPod), { },{ (alice, iPod, 3) })

(alice, lakers), (alice, lakers, 1)
(alice, lakers, 4)

(alice, lakers, 3)
(alice, lakers, 7) () ,

- 49 - Yahoo! Confidential

Filter Records of Grouped Data
filtered_matches = filter team_matches

 by COUNT(sports_views) > ‘0’;

team_matches: (group, sports_views, queries)

((alice, iPod), { },{ (alice, iPod, 3) })

(alice, lakers), (alice, lakers, 1)
(alice, lakers, 4)

(alice, lakers, 3)
(alice, lakers, 7) () ,

(alice, lakers), (alice, lakers, 1)
(alice, lakers, 4)

(alice, lakers, 3)
(alice, lakers, 7) () ,

- 50 - Yahoo! Confidential

Per-Record Transformations Using
FOREACH

times_and_counts = foreach team_matches
 generate group,
 COUNT(sports_views),
 MAX(queries.timestamp);

team_matches: (group, sports_views, queries)

times_and_counts: (group, -, -)

((alice, iPod), { },{ (alice, iPod, 3) })

(alice, lakers), (alice, lakers, 1)
(alice, lakers, 4)

(alice, lakers, 3)
(alice, lakers, 7) () ,

((alice, iPod), 0, 3)
((alice, lakers), 2, 4)

- 51 - Yahoo! Confidential

Give Names to Output Fields in
FOREACH

times_and_counts = foreach team_matches
 generate group,
 COUNT(sports_views) as count,
 MAX(queries.timestamp) as max;

((alice, iPod), 0, 3)
((alice, lakers), 2, 4)

times_and_counts: (group, count, max)

((alice, iPod), { },{ (alice, iPod, 3) })

(alice, lakers), (alice, lakers, 1)
(alice, lakers, 4)

(alice, lakers, 3)
(alice, lakers, 7) () ,

- 52 - Yahoo! Confidential

Eliminate Nesting: FLATTEN

expanded_queries1 = foreach queries
 generate userId, expandQuery(queryString);

expanded_queries2 = foreach queries
 generate userId, flatten(expandQuery

(queryString));

(alice, lakers, 1)
(bob, iPod, 3)

queries:
 (userId, queryString,

timestamp)

()

(lakers rumors)
(lakers news)

(iPod nano)
(iPod shuffle)

() alice,

bob,

(alice, lakers rumors)
(alice, lakers news)
(bob, iPod nano)

(bob, iPod shuffle)

(alice, lakers, 1)
(bob, iPod, 3)

queries:
 (userId, queryString,

timestamp)

expanded_queries1

expanded_queries2

flatten(expandQuery(queryString))

- 53 - Yahoo! Confidential

Flatten Multiple Items Resulting from
COGROUP

team matches = cogroup sports_views by (userId, team),
 queries by (userId, queryString);

joined_result = foreach team_matches generate flatten(sports_views),
 flatten(queries);

(alice, lakers, 3, alice, lakers, 1)
(alice, lakers, 3, alice, lakers, 4)
(alice, lakers, 7, alice, lakers, 1)
(alice, lakers, 7, alice, lakers, 4)

team_matches: (group, sports_views, queries)

((alice, iPod), { },{ (alice, iPod, 3) })

(alice, lakers), (alice, lakers, 1)
(alice, lakers, 4)

(alice, lakers, 3)
(alice, lakers, 7) () ,

(alice, lakers, 3)
(alice, lakers, 7)

(alice, lakers, 1)
(alice, iPod, 3)

(alice, lakers, 4)

sports_views:
(userId, team, timestamp)

queries:
 (userId, queryString, timestamp)

joined_result

cogroup

flatten

- 54 - Yahoo! Confidential

Syntax Shortcut: JOIN = COGROUP +
FLATTEN

joined_result = join sports_views by (userId, team),
 queries by (userId, queryString);

(alice, lakers, 3, alice, lakers, 1)
(alice, lakers, 3, alice, lakers, 4)
(alice, lakers, 7, alice, lakers, 1)
(alice, lakers, 7, alice, lakers, 4)

(alice, lakers, 3)
(alice, lakers, 7)

(alice, lakers, 1)
(alice, iPod, 3)

(alice, lakers, 4)

sports_views:
(userId, team, timestamp)

queries:
 (userId, queryString, timestamp)

join

- 55 - Yahoo! Confidential

Eliminate Duplicates with DISTINCT

queries = load 'queries.txt' as (userId, queryString: chararray,
timestamp);

query_strings = foreach queries generate queryString as qString;

distinct_queries = distinct query_strings as dString;

(alice, lakers, 1)
(alice, iPod, 3)

(alice, lakers, 4)
(iPod)

(lakers)

distinct_queries:
(dString)

Duplicate detection done as bytearrays if type is not specified

queries:
 (userId, queryString, timestamp)

(lakers)
(iPod)

(lakers)

query_strings:
(qString)

- 56 - Yahoo! Confidential

Order Data with ORDER BY
queries = load 'queries.txt' as (userId: chararray, queryString: chararray,
timestamp: int);

ordered_timestamp_desc = order queries by timestamp desc;
ordered_qs_desc = order queries by queryString desc;

ordered_qsts_asc = order queries by queryString, timestamp parallel 7;

(alice,lakers,4)
(alice,ipod,3)

(alice,lakers,1)
ordered_timestamp_desc:

  Parallel use 7 reducers for this operation
 Generates 7-part files

  Pig supports both desc ordering, default is ascending

(alice, lakers, 1)
(alice, iPod, 3)

(alice, lakers, 4)

queries:
 (userId, queryString, timestamp)

(alice,lakers,1)
(alice,lakers,4)
(alice,ipod,3)

ordered_qs_desc:

(alice,ipod,3)
(alice,lakers,1)
(alice,lakers,4)

ordered_qsts_asc:

- 57 - Yahoo! Confidential

Nested Operations
team matches = cogroup sports_views by (userId, team), queries by
(userId, queryString);

answers = foreach team_matches { distinct_qs = DISTINCT queries;
generate flatten(group) as mygroup, COUNT(distinct_qs) as mycount; }

Counts the number of distinct
queries in each group

team_matches: (group, sports_views, queries)

((alice, iPod), { },{ (alice, iPod, 3) })

(alice, lakers), (alice, lakers, 1)
(alice, lakers, 4)

(alice, lakers, 3)
(alice, lakers, 7) () ,

(alice, lakers, 3)
(alice, lakers, 7)

(alice, lakers, 1)
(alice, iPod, 3)

(alice, lakers, 4)

sports_views:
(userId, team, timestamp)

queries:
 (userId, queryString, timestamp)

cogroup

(alice,ipod,1L)
(alice,lakers,2L)

answers:
(mygroup,mycount)

flatten(group), count()

Pig Streaming &
Param Substitution

- 59 - Yahoo! Confidential

Pig Streaming
•  Entire portion of the dataset that corresponds to an alias is sent to the external task

and output streams out
–  Use the stream keyword

•  Example using Python and Unix commands in Pig to process records:

shell> cat data/test10.txt;

Apple is the best fruit. 80

Plum is the best fruit. 20

a = load 'data/test10.txt';

b = stream a through `python -c "import sys; print sys.stdin.read().replace
('Apple','Orange');"`;

dump b;

(Orange is the best fruit., 80)

(Plum is the best fruit., 20)

c = stream a through `cut -f2,2`;

dump c;

(80)

(20)

- 60 - Yahoo! Confidential

•  Invoke a Perl, Python script from Pig and then execute it

py_test.py:

#!/usr/local/bin/python

import sys; print sys.stdin.read().replace('Apple','Orange');

shell> chmod 700 py_test.py

d = stream a through `py_test.py`;

Pig Streaming Using Perl/Python
Programs

- 61 - Yahoo! Confidential

•  Enables you to have parameters within a Pig script & provides values for
these parameters at runtime

•  Provides parameter values in a file or at command line
•  Generates parameter values at runtime by running a binary or a script

$ pig -param date=20080202

$ pig -param_file my_param_file

%default date '20080101'

A = load '/data/mydata/$date';

Using declare:
%declare date '20080101'

%declare CMD `generate_date_script`

This runs a script called generate_date_script

Parameter Substitution in Pig

- 62 - Yahoo! Confidential

Pig 2.0 Support for NULLs

•  Similar to SQL semantic of NULL as unknown, and
not the C/Java semantic of null as unset

•  When/how are NULLS generated??
–  Nulls can be generated by operations, such as dividing by 0

–  Nulls can be generated by User-Defined Functions

–  By de-referencing a map key that doesn't exist in a map
For example:

If map info = [name#fred, phone#555121]

then info#address will return NULL

- 63 - Yahoo! Confidential

Interaction of NULLs with Various
Operators in Pig

Operator Interaction
Comparison operators If either sub-expression is null, then the result of the

equality comparison will be null

Matches If either the string being matched against or the string
defining the match is null, then the result will be null

Is null Will return true if the tested value is null

Arithmetic operators,
concat

If either sub-expression is null, then the resulting
expression will be null

Size If the tested object is null, then size will return null

Dereference of a map
or tuple

If the dereferenced map or tuple is null, then the result
will be null

Cast Casting a null from one type to another will result in a
null

Aggregates Built-in aggregate functions will ignore nulls, just as in
SQL.

However, user-defined aggregates are free to handle
nulls the way they see fit.

- 64 - Yahoo! Confidential

•  Previously, all data fields were represented as chararray – i.e.,
no notion of types

•  Fields can be explicitly cast
 B = FOREACH A GENERATE (int)$0 + 1;

•  Once cast, a field remains that type – it's not automatically cast
back

•  Wherever possible, implicit casts are done
 B = FOREACH A GENERATE $0 + 1, $1 + 1.0

 $0 will be cast to int (regardless of underlying data) and $1 to double

•  Implicit casts used, then declared data types do not match
operation

 A = LOAD ‘data’ as (a: int, b: float);

 B = FOREACH A GENERATE a + b; -- a is converted to float

•  If the underlying data is really int or long, you’ll get better
performance by declaring the type or casting the data

Casts in Pig 2.0

Translating SQL
Queries into Pig Latin

- 66 - Yahoo! Confidential

Constructs

SQL Pig Example

From

 table

Load

 file(s)

SQL: from X;

Pig: A = load ‘mydata’ using PigStorage(‘\t’)

 as (col1, col2, col3);

Select Foreach
…
generate

SQL: select col1 + col2, col3 …

Pig: B = foreach A generate col1 + col2, col3;

Where Filter SQL: select col1 + col2, col3

 from X

 where col2>2;

Pig: C = filter B by col2 > ‘2’;

- 67 - Yahoo! Confidential

SQL Pig Example

Group
by

Group +

foreach
…
generate

SQL: select col1, col2, sum(col3)

 from X group by col1, col2;

Pig: D = group A by (col1, col2);

 E = foreach D generate flatten(group), SUM(A.col3);

Having Filter SQL: select col1, sum(col2) from X group by col1

 having sum(col2) > 5;

Pig: F = filter E by $1 > ‘5’;

Order
By

Order …
By

SQL: select col1, sum(col2)

 from X group by col1 order by col1;

Pig: H = ORDER E by $0;

Constructs

- 68 - Yahoo! Confidential

SQL Pig Example

Distinct Distinct SQL: select distinct col1 from X;

Pig: I = foreach A generate col1;

 J = distinct I;

Distinct
Agg

Distinct
in
foreach

SQL: select col1, count (distinct col2)

 from X group by col1;

Pig: K = foreach D {

 L = distinct A.col2;

 generate flatten(group), SUM(L); }

Constructs

- 69 - Yahoo! Confidential

SQL Pig Example
Join Cogroup +

flatten

(also
shortcut:

JOIN)

SQL: select A.col1, B.col3

 from A join B using (col1);

Pig:

A = load ‘data1’ using PigStorage(‘\t’) as (col1, col2);

B = load ‘data2’ using PigStorage(‘\t’) as (col1, col3);

C = cogroup A by col1 inner, B by col1 inner;

D = foreach C generate flatten(A), flatten(B);

E = foreach D generate A.col1, B.col3;

Constructs

- 70 - Yahoo! Confidential

Pig Built-in Functions
•  Pig has a variety of built-in functions:

–  Storage
•  TextLoader: for loading unstructured text files. Each line is loaded as a

tuple with a single field which is the entire line.

–  Filter
•  isEmpty: tests if bags are empty

–  Eval Functions
•  COUNT: computes number of elements in a bag
•  SUM: computes the sum of the numeric values in a single-column bag
•  AVG: computes the average of the numeric values in a single-column bag
•  MIN/MAX: computes the min/max of the numeric values in a single-

column bag.

•  SIZE: returns size of any datum example map
•  CONCAT: concatenate two chararrays or two bytearrays
•  TOKENIZE: splits a string and outputs a bag of words
•  DIFF: compares the fields of a tuple with arity 2

- 71 - Yahoo! Confidential

Pig Interactive Mode: Grunt Shell
•  Useful for learning Pig & for debugging

–  Invoke grunt on hdfs
•  pig

–  Invoke grunt to use local file system only
•  pig -x local

•  Supports TAB completion and history
•  Supports basic dfs commands

–  cd, ls, cp, mv, pwd, copyToLocal, copyFromLocal

•  set command enables you to set key-value pairs
–  Example: set debug on, set job.name ‘my job’

•  Supports all Pig commands – easy to test & debug
–  describe the alias
–  dump what the alias onto the terminal

grunt>sports_views = load 'sports_views.txt' as (userId:
chararray,team:chararray,timestamp: int);

grunt>group_sports_views = group sports_views by userId;

grunt> describe group_sports_views;

group_sports_views: {group: chararray,sports_views: {userId: chararray,team:
chararray,timestamp: integer}}

grunt> dump sports_views;

(alice,{(alice,lakers,3),(alice,lakers,7)})

- 72 - Yahoo! Confidential

Use EXPLAIN to Understand Logical,
Physical & M/R Plan

grunt>sportsviews = load 'sportsviews.txt' as (userId: chararray,team:chararray,timestamp: int);
grunt>groupsportsviews = group sportsviews by userId;
grunt> describe group_sportsviews;
groupsportsviews: {group: chararray,sports_views: {userId: chararray,team: chararray,timestamp:

integer}}
grunt> dump sportsviews;
(alice,{(alice,lakers,3),(alice,lakers,7)})
grunt> explain groupsportsviews

- 73 - Yahoo! Confidential

