,glll
TIT amazon
© webservices™

Amazon Web Services Overview
Jinesh Varia

Amazon

Elastic Amazon 53
MapReduce QN AN

= Premium

Notification Service

)UI[eas o1y

Amazon Simple

The “Living and Evolving” AWS Cloud

Your Application

Parallel Payments Content Workforce Messaging Email foi;:l%’;blocks

Processing Amazon Delivery Amazon Amazon SNS Amazon SES
Amazon Elastic DevPay Amazon Mechanical Amazon SQS
MapReduce Amazon FPS CloudFront Turk
Infrastructure
Compute Storage Network Database building blocks
Amazon EC2 Amazon S3 Amazon VPC Amazon RDS
Amazon EBS Elastic LB Amazon SimpleDB

Amazon Route 53

Amazon Global Physical Infrastructure

(Geographical Regions, Availability Zones, Edge Locations)

amazon
webservices™

A —

Amazon SNS
(notifications)

H—

Amazon SimpleDB
(Catalog and Config data)

_

Amazon CloudWatch
(Monitoring)

n4—

Amazon Simple Email Service
(SendMail)

www.myphpwebsite.com
(dynamic data)

@ Amazon Route 53

T (DNS)

Elastic Lo
Balancer

- - Logs
I ! Static Data

Auto Scaling group Web App

Amazon EC2 r

Amazon RLW Backups

Availability Zone #1

media.myphpwebsite.com

(static data)

—g—b

Illlllllllllll‘ﬂ.

Amazon
" CloudFront

Amazon S3

amazon
webservices™

J

Netflix Deployed on AWS

TLT

“ieramazon
“" webservices"
Content Logs Play API
| Video - 53 — DRM . Search | Metadata
Masters
a £C2 | EMR .~ CDN | | Movie | Device
Hadoop routing Choosing Config
— S3 — Hive — Bookmarks — Ratings || TV Movie
Choosing
Business | / \ / \ f i
— CDN — _ — lLogging — Similars — MObIIe
Intelligence iPhone

AWS Elastic Beanstalk

“Put your application on Auto Pilot”

amazon
webservices™
/

Create Upload Launch Manage
Application Version Environment Environment
I Myapp.elasticbeanstalk.com
L J
v oy v
Elastic Load
Balancer e

. - *Deploy Versions
: Edit Configuration
—— . *Monitor Health

App Amazon S3

|
|
|
[
' Server e *View Logs
| | Amazon EC2 \\ / g
I Micro Instance | * |
o 1 *Restart App Server
L] i ' I i
: . .A:to_sf"':g _G".NP_ L *Rebuild Infrastructure
l ; ; : Terminate
|
[8GB Roofllll2GB Dat *
| Volume Volume I Snapshots .
I NS . g
IAvailability Zone #1 . “.“ amaZ,Oll
_________ - "7 webservices”

J

Elastic Beanstalk “under the hood”

myapp-integration.elasticbeanstalk.com Amazon S3

myapp_v3.war

optional: log files

Amazon EC2 Instance(s)

Apache (Web Server)

Tomcat (App Server)
myapp_v3.war

Amazon Linux AMI
< - . g
8GB Root 2GB Data .l.. amazon
Volume Volume .- websemc%‘
J

1SOH jjeisueag Jnse|3

_—_F____

Auto-Scaling Group

AWS CloudFormation

“Provision your infrastructure stack using one script”

amazon
webservices™
/

AWS CloudFormation: Provisioning cloud
resources made easy

 Fully declarative system
« Document based infrastructure specification
 Logical naming convention

« Atomically creates / destroys groups of AWS objects
together

« Deploy multi-tier and multi-AZ stacks

 Handles the bookkeeping and muck of provisioning
multiple related resources

« Focuses on AWS resources, while sys admins and
developers focus on OS and application provisioning

amazon
webservices™

/

AWS CloudFormation: Provisioning cloud
resources made easy

Signup Create a
!/

JSON Template

Delete the

Stack

Check the

See Stack
Stack » Events .
Status

Load balanced webapp, fault tolerant in 3 AZ, RDS in 2 AZs

"AWSTemplateFormatVersion" : "2010-06-08",
"Parameters"” : { "instanceTvpe" { "Type" : "String", "Default" : "cl.medium" },
"capacity" { "Type" : "String", "Default" : "3" },
"zones" { "Type" : "CommaDelimitedList",
"Default" : "us-east-la,us-east-1b,us-east-1c"},
"dbPort" : { "Type" : "String", "Default" : "8443" },
"dbUser" : { "Type" : "String", "NoEcho" : "true" },
"dbPWD" : { "Type" : "String", "NoEcho" : "true" },
" " { "Type" : "String", "NoEcho" : "true" },
" " { "Type" : "String", "NoEcho" : "true" }
¥
"Resources" : {
"fu
"GroupDescription"” : "instance access for load balancer” }},
"webRule" : {
"GroupName" : {"Ref":"fw"}, "IpProtocol” : "tcp",
"FromPort" : "4242", "ToPort" : "4242", "CidrIp" : "©.0.0.0/0" }},
"sshRule" : {
"GroupName" : {"Ref":"fw"}, "IpProtocol” : "tcp",
"FromPort" : "22", "ToPort" : "22", "CidrIp" : "©.0.0.0/0" }},
"dbfw" : { Legend:
"GroupDescription"” : "backend database instance access" }}, —egenc.
Resources
"dbRule" : { .
Wiring

"DBSecurityGroupName" : {"Ref":"dbfw"},
"EC2SecurityGroupName" : {"Ref":"fw"} }},

Fault tolerance
Application

Cont on next slide ...

Innovative Business Models

On-demand Spot
Instances Instances

* Pay as you go e Onetime e Requested
upfront + Pay Bid Price and
as you go Pay as you go

e Starts from * 556 for 1 e 50.005 /Hour

0.03/Hour year term as of today at
and then 9 AM
S0.01/Hour

For Time-
insensitive
workloads

For Spiky
Workloads

e Standard and
Reserved

e Multi-Tenant
Single
Customer

e S10/Region +
0.105/Hour

Cloud HPC: Cluster Compute Instance

Cloud HPC: Cluster Compute Instance

Cluster 1690 TB local disk
Compute HVM-based virtualization
GPGPU 2 Tesla NVDIA GPGPUs

Low Latency
10G Ethernet —

2 * Xeon 5570
Cluster (Intel “Nehalem”)
Compute 23 GB RAM
EC2 Instances 10 gbps Ethernet

Cluster

Compute
Family

Ccl.4xl = $1.60 / hr
Cgl.4xl = $2.10 /hr

This is how customers leverage the “Big Data Cloud”

A Cluster Elastic
Hadoop Elastic Compute Spot Expand/ Super
MapReduce HPC Instances Shrink computer

Distributed On-demand Each VM = Cost savings Expand or Big Data
Processing Infrastructure 2 Xeon due to lower Shrink a power
Framework (Cloud) + “Nehalem” “Spot price” running house
Automation Quad-core (Time-insensitive |y ster
10G Ethernet ')
2 GPGPUs
~ .I'll’l
rramazon
“7 webservices~

Save more money by using Spot Instances

Spot Instance Pricing History Cancel | X/

Product: LinudUNIX + Instance Type: m1.large v Date Range: 1month ~

$0.2100

$0.2000

$0.1900

$0.1800

$0.1700

$0.1600 | : | |‘

$0.1500
Apr 6 Apr S Apr 12 Apr 15 Apr 18 Apr 21 Apr 24 Apr 27 Apr 30 May 3

'

“h
<)
3

azon
services”

3

Spot Use cases

Use Case Types of Applications

Batch Processing Generic background processing (scale out
computing)

Hadoop Hadoop/MapReduce processing type jobs (e.g.
Search, Big Data, etc.)

Scientific Computing Scientific trials/simulations/analysis in chemistry,
physics, and biology

Video and Image Transform videos into specific formats
Processing/Rendering

Testing Provide testing of software, web sites, etc

Web/Data Crawling Analyzing data and processing it
M Hedgefund analytics, energy trading, etc

HPC Utilize HPC servers to do embarrassingly parallel
jobs

Cheap Compute Backend servers for Facebook games

Basic tactics for Spot Instances

- Try to launch Spot instances first and then on-demand
instances if you don’t get the spot instances in under

Video Transcoding Application Example

Amazon S3 Amazon S3

Amazon
Elastic Compute Cloud

Output

Bucket
Amazon EC2 Bucket

[I
I I
I I
I I
I I
Amazon SQS I I Amazon SQS
> | Comeleted | > Reports
| : Job Website
| Output
Website I : o Queue Amazon EC2
(Job I N
Manager) | Q >
I I O/)&
'\ On-demand + Spot] =_
' 1
: N
Amazon (]]
CloudWatch AmazonESimpIeDB
Amazon EC2 amazon

Intranet webservices™

Use of Amazon SQS in Spot Architectures

VisibilityTimeOut

Amazon EC2
Spot Instance

on I

@ Request Spot Instances

Spot Instances let you pay for compute capacity by the hour at a Spot Price that fluctuates based on supply and
demand. You specify a maximum price you are willing to pay per hour, and your instance only runs when the Spot Price is
at or below that price. This allows for cost reduction on compute tasks with flexible start and end times.

Current Price: $0.007 Persistent Request?

Max Price: $§ (Ex:0.045 =45 cents/hour) Launch Group: |

Request Valid From: any time edit Availability Zone Group: |

Request Valid Until: any time edit

3

services"

Best Practices for using Spot Instances

ave Your Work Frequently
dd Checkpoints

) > N

[T
=

Case Study: Optimizing Video vimeo
TranSCOding Workloads (On-demand + Spot + Reserved)

Free Offering Premium Offering

= Optimize for reducing = Optimized for Faster
cost response times

= Acceptable Delay Limits = No Delays

Implementation Implementation

= Set Persistent Requests * Investin RIs

= Use on-demand = Use on-demand for
Instances, if delay Elasticity
Maximum Bid Price Maximum Bid Price
< On-demand Rate >= On-demand Rate
Get your set reduced Get Instant Capacity for

' higher price

price for your workload g P amazon

webservices™

Basic recommendations on Instance Type

- Choose the EC2 instance type that best matches the
resources required by the application

—

§§

azon
services”

Tip — Instance Optimizer

Free Memory ®
Free CPU PUT 2 weeks
» Free HDD > >
At 1-min
intervals Amazon CloudWatch Alarm
Instance 7
Custom Metrics
v

“You could save a bunch of money by switching
to a small instance, Click on CloudFormation Script to
Save”

amazon
webservices™

—

Thank you!

jvaria@amazon.com
Twitter: @jinman

—

amnazZon
webservices™

http://aws.amazon.com

Optimize by Implementing Elasticity

Infrastructure
Cost $

A

Large
Capital
Expenditure

Predicted
Demand

Opportunity e— Traditional
Cost Hardware
Wastage

Actual
Demand

Cloud
Automated
Elasticity

'?mazon
time webservices™

Optimize by time of the day

14
12
10

Load

o N B~ O ©

Daily CPU Load

25% Savings

12 3 456 7 8 9101112131415161718192021222324
Hour

amazon
webservices™

/

1L 1%

Auto Scaling group : web lier

lllll!lllllll‘ll!llllll
|
Amazon RDS

Availability Zone #1

|
I Amazon

Optimize by seasonal cycles

Load

12

10

Yearly CPU Load

1 5 9 13 17 21 25 29 33 37 41 45 49

Weeks of the Year

amazon
webservices™

J

Auto scaling : Types of Scaling

- Scaling by Schedule

= Use Scheduled Actions in Auto Scaling Service
* Date

Optimize during the month

DB Instance Type

End of the Month Scaling

9’
o

o = N
o (@) - (@) N (@) w
| |

1

3

5

7 9 1 13 15 17 19 21
Days of the Month

23 25 27 29

amazon
webservices™

J

End of the month processing

- Expand the cluster at the end of the month

= Expand/Shrink feature in Amazon Elastic MapReduce

Steady State Usage

Total Cost for 1 Year-term of 2 application servers

_

Option 1 $1493 $1493

On-Demand only

Option 2
On-Demand + $1008 $227 $1234 ~20%

Reserved

Option 3 $528 $455 $983 ~35%

All reserved

Total Cost for 3 Year-term of the same 2 application servers

_

Option 1 $4479 $4479

On-Demand only

Option 2
On-Demand + $3024 $350 $3374 ~30%

Reserved

Option 3 $1584 $700 $2284 ~50%

All reserved _._.nazon
webservices™

450,000

==0n Demand ===1-year Rl 3-yearRI

400,000

350,000 /

300,000 /

250,000 /

200,000 [//
J\/l,/ 7

150,000

100,000 /A

50,000

0 T 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1-year Rl versus On Demand:
cost savings realized after first 6 months of usage

3-year RI versus On Demand:
cost savings realized after first 9 months of usage.

3-year Rl versus 1-year RI:
Net savings of 3-year RI versus 1-year Rl begin by month 13 and

continue throughout the RI term (additional 23 months of amazon
savings) webservices™

Recommendations

- Steady State Usage : Use All Reserved

Common Pattern: Reserved + On-Demand

Average Instances Running per Hour

On Demand
Reserved

Optimal Number of
Reserved Instances

Month

amazon
webservices™

J

Recommendations

- Steady State Usage : Use All Reserved

= If you plan on running for at least 6 months, invest in RI
for 1-year term

|

‘
}

W

—

§§

azon
services”

