
- 1 - 

MapReduce 
Programming with 

Apache Hadoop 

Viraj Bhat 

viraj@yahoo-inc.com  



- 2 - 

Agenda – Session I and II (8-12pm) 

•  Introduction  

•  Hadoop Distributed File System (HDFS) 

•  Hadoop Map-Reduce Programming 

•  Hadoop Architecture 

•  Q & A – Break – 10:30-10:45 am 

•  Programming for Performance - 11:00am – 12pm 

2 



- 3 - 

About Me 
•  Part of the Yahoo! Grid Team since May 2008 

•  PhD from Rutgers University, NJ 
–  Specialization in Data Streaming, Grid, Autonomic Computing 

•  Worked on streaming data from live simulations executing in 
NERSC (CA), ORNL (TN) to Princeton Plasma Physics Lab 
(PPPL - NJ) 

–  Library introduce less then 5% overhead on computation 

•  PhD Thesis on In-Transit data processing for peta-scale 
simulation workflows 

•  Developed CorbaCoG kit for Globus 

•  Active contributor to Hadoop Apache and developer of 
Hadoop Vaidya 



- 4 - 

The Challenge: 
Very large scale data 
processing 

4 



- 5 - 

Internet Scale Generates BigData 

•  Yahoo is the 3rd most Visited 
Site on the Internet 
–  600M+ Unique Visitors per Month 

–  Billions of Page Views per Day 

–  Billions of Searches per Month 

–  Billions of Emails per Month 

–  IMs, Address Books, Buddy Lists, … 

–  Terabytes of Data per Day! 

•  And we crawl the Web 
–  100+ Billion Pages 

–  5+ Trillion Links 

–  Petabytes of data 

…terabytes, 100s of terabytes, petabytes, 10s of petabytes…	





- 6 - 

A huge amount of work is needed to 
unlock that value in that data… 
•  Search Marketing 

–  Model ad performance and 
query patterns 

–  Use to improve ad and page relevance 

•  Display & Contextual Advertising 
–  Trace user activity to discover short- 

and long-term behavioral trends 

–  Combine with demographic and 
geographic data to select far more 
targeted and effective advertisements 

•  Connect People to Content 
–  Build models from page views 
–  Personalize pages via models (e.g., 

MyYahoo) 
–  Increases engagement, which you then 

monetize (see display advertising) 



- 7 - 

How to Process BigData? 
•  Just reading 100 terabytes of data can be overwhelming 

–  Takes ~11 days to read on a standard computer 

–  Takes a day across a 10Gbit link (very high end storage solution) 

–  But it only takes 15 minutes on 1000 standard computers! 

•  Using clusters of standard computers, you get 

–  Linear scalability 

–  Commodity pricing  



- 8 - 

But there are certain problems… 
•  Reliability problems 

–  In large clusters, computers fail every day 
•  Data is corrupted or lost 

•  Computations are disrupted 

•  Absent a good framework, programming clusters is very hard 
–  A programmer worries about errors, data motion, communication… 

–  Traditional debugging and performance tools don’t apply 

–  Most programs don’t handle hardware failure well 

•  We need a standard set of tools to handle this complexity 
–  Dean and Ghemawat described such a solution 

•  MapReduce: Simplified Data Processing on Large Clusters 

•  http://labs.google.com/papers/mapreduce-osdi04.pdf  



- 9 - 

Apache Hadoop – The solution! 

•  Hadoop brings MapReduce to everyone 

–  It’s an Open Source Apache project 

– Written in Java 
• Runs on Linux, Mac OS/X, Windows, and Solaris 
•  Commodity hardware 

•  Hadoop vastly simplifies cluster programming 
–  Distributed File System - distributes data 

–  Map/Reduce - distributes application 



- 10 - 10 

A Brief History of Hadoop 

•  Pre-history (2002-2004) 
–  Doug Cutting funded the Nutch open source search project 

•  Gestation (2004-2006) 
–  Added DFS &Map-Reduce implementation to Nutch 

–  Scaled to several 100M web pages 

–  Still distant from web-scale (20 computers * 2 CPUs) 

–  Yahoo! hired Doug Cutting 

–  Hadoop project split out of Nutch 

•  Yahoo! commits to Hadoop (2006-2008) 
–  Yahoo commits team to scaling Hadoop for production use (2006) 

•  Eric Baldeschwieler builds team 

–  Hadoop used by science and development teams  (2007) 

–  Web-scale production in early 2008! (2000 computers * 8 CPUs)  



- 11 - 

Hadoop At Yahoo! 
(Some Statistics) 

•  30,000 + nodes in 10+ clusters 

•  Node: 4x1TB Disk, 8 Cores, 16 GB RAM 

•  Largest cluster is 4,000 nodes 

•  6+ Petabytes of data (compressed, un-replicated) 

•  1000+ users 

•  100,000+ jobs/day 



- 12 - 

Sample Applications 

•  Data analysis is the inner loop of Web 2.0 
–  Data ⇒ Information ⇒ Value 

•  Log processing: analytics, reporting, buzz 

•  Search index 

•  Content optimization, Spam filters 

•  Computational Advertising 



- 13 - 

Prominent Hadoop Users 

•  Yahoo! 

•  Amazon 

•  EHarmony 

•  Facebook 

•  Twitter 

•  Google/IBM 

•  Quantcast 

•  LinkedIn 

•  Baidu 

•  Adobe 

•  New York Times 

•  Powerset/Microsoft 



- 14 - 

Yahoo! Search Assist 



- 15 - 

Search Assist 

•  Insight: Related concepts appear close together in text 
corpus 

•  Input: Web pages 
–  1 Billion Pages, 10K bytes each 

–  10 TB of input data 

•  Output: List(word, List(related words)) 



- 16 - 

// Input: List(URL, Text)	
foreach URL in Input :	
    Words = Tokenize(Text(URL));	
    foreach word in Tokens :	
        Insert (word, Next(word, Tokens)) in Pairs;	
        Insert (word, Previous(word, Tokens)) in Pairs;	
// Result: Pairs = List (word, RelatedWord)	
Group Pairs by word;	
// Result: List (word, List(RelatedWords)	
foreach word in Pairs :	
    Count RelatedWords in GroupedPairs;	
// Result: List (word, List(RelatedWords, count))	
foreach word in CountedPairs :	
    Sort Pairs(word, *) descending by count;	
    choose Top 5 Pairs;	
// Result: List (word, Top5(RelatedWords))	

Search Assist 



- 17 - 

You Might Also Know 



- 18 - 

You Might Also Know 

•  Insight: You might also know Joe Smith if a lot of folks 
you know, know Joe Smith 

–  if you don’t know Joe Smith already 

•  Numbers: 
–  100 MM users 

–  Average connections per user is 100 



- 19 - 

19 

// Input: List(UserName, List(Connections))	

foreach u in UserList : // 100 MM	
    foreach x in Connections(u) : // 100	
        foreach y in Connections(x) : // 100	
            if (y not in Connections(u)) :	
                Count(u, y)++; // 1 Trillion Iterations	
    Sort (u,y) in descending order of Count(u,y);	
    Choose Top 3 y;	
    Store (u, {y0, y1, y2}) for serving;	

You Might Also Know 



- 20 - 

Performance 

•  101 Random accesses for each user 
–  Assume 1 ms per random access 

–  100 ms per user 

•  100 MM users 
–  100 days on a single machine 



- 21 - 

Map & Reduce 

•  Primitives in Lisp (& Other functional languages) 1970s 

•  Google Paper 2004 
–  http://labs.google.com/papers/mapreduce.html 



- 22 - 

Output_List = Map (Input_List)	

Square (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) =	

(1, 4, 9, 16, 25, 36,49, 64, 81, 100)	

Map 



- 23 - 

Output_Element = Reduce (Input_List)	

Sum (1, 4, 9, 16, 25, 36,49, 64, 81, 100) = 385	

Reduce 



- 24 - 

Parallelism 

•  Map is inherently parallel 
–  Each list element processed independently 

•  Reduce is inherently sequential 
–  Unless processing multiple lists 

•  Grouping to produce multiple lists 



- 25 - 

// Input: http://hadoop.apache.org	

Pairs = Tokenize_And_Pair ( Text ( Input ) )	

Output = {	
(apache, hadoop) (hadoop, mapreduce) (hadoop, streaming) 
(hadoop, pig) (apache, pig) (hadoop, DFS) (streaming, 
commandline) (hadoop, java) (DFS, namenode) (datanode, 
block) (replication, default)...	
}	

Search Assist Map 



- 26 - 

// Input: GroupedList (word, GroupedList(words))	

CountedPairs = CountOccurrences (word, RelatedWords)	

Output = {	
(hadoop, apache, 7) (hadoop, DFS, 3) (hadoop, streaming, 
4) (hadoop, mapreduce, 9) ...	
}	

Search Assist Reduce 



- 27 - 

Issues with Large Data 

•  Map Parallelism: Splitting input data 
–  Shipping input data 

•  Reduce Parallelism: 
–  Grouping related data 

•  Dealing with failures 
–  Load imbalance 



- 28 - 

Apache Hadoop 

•  January 2006: Subproject of Lucene 

•  January 2008: Top-level Apache project 

•  Latest Version: 0.20.x 

•  Major contributors: Yahoo!, Facebook, Powerset, Cloudera 



- 29 - 

Apache Hadoop 

•  Reliable, Performant Distributed file system 

•  MapReduce Programming framework 

•  Sub-Projects: HBase, Hive, Pig, Zookeeper, Chukwa 

•  Related Projects: Mahout, Hama, Cascading, Scribe, 
Cassandra, Dumbo, Hypertable, KosmosFS 



- 30 - 

Problem: Bandwidth to Data 

•  Scan 100TB Datasets on 1000 node cluster 
–  Remote storage @ 10MB/s = 165 mins 

–  Local storage @ 50-200MB/s = 33-8 mins 

•  Moving computation is more efficient than moving data 
–  Need visibility into data placement 



- 31 - 

Problem: Scaling Reliably 

•  Failure is not an option, it’s a rule ! 
–  1000 nodes, MTBF < 1 day 

–  4000 disks, 8000 cores, 25 switches, 1000 NICs, 2000 DIMMS 
(16TB RAM) 

•  Need fault tolerant store with reasonable availability 
guarantees 
–  Handle hardware faults transparently 



- 32 - 

Hadoop Goals 

•  Scalable: Petabytes (1015 Bytes) of data on thousands on 
nodes 

•  Economical: Commodity components only 

•  Reliable 
–  Engineering reliability into every application is expensive 



- 33 - 

HDFS 

•  Data is organized into files and directories 

•  Files are divided into uniform sized blocks (default 
64MB) and distributed across cluster nodes 

•  HDFS exposes block placement so that computation 
can be migrated to data 



- 34 - 

HDFS 

•  Blocks are replicated (default 3) to handle hardware 
failure 

•  Replication for performance and fault tolerance (Rack-
Aware placement) 

•  HDFS keeps checksums of data for corruption detection 
and recovery 



- 35 - 

HDFS 

•  Master-Worker Architecture 

•  Single NameNode 

•  Many (Thousands) DataNodes 



- 36 - 

HDFS Master (NameNode) 

•  Manages filesystem namespace 

•  File metadata (i.e. “inode”) 

•  Mapping inode to list of blocks + locations 

•  Authorization & Authentication 

•  Checkpoint & journal namespace changes 



- 37 - 

Namenode 

•  Mapping of datanode to list of blocks 

•  Monitor datanode health 

•  Replicate missing blocks 

•  Keeps ALL namespace in memory 

•  60M objects (File/Block) in 16GB 



- 38 - 

Datanodes 

•  Handle block storage on multiple volumes & block integrity 

•  Clients access the blocks directly from data nodes 

•  Periodically send heartbeats and block reports to 
Namenode 

•  Blocks are stored as underlying OS’s files 



- 39 - 

HDFS Architecture 



- 40 - 

Replication 

•  A file’s replication factor can be changed dynamically 
(default 3) 

•  Block placement is rack aware 

•  Block under-replication & over-replication is detected by 
Namenode 

•  Balancer application rebalances blocks to balance 
datanode utilization 



- 41 - 

hadoop fs [-fs <local | file system URI>] [-conf <configuration file>]	
[-D <property=value>] [-ls <path>] [-lsr <path>] [-du <path>]	
[-dus <path>] [-mv <src> <dst>] [-cp <src> <dst>] [-rm <src>]	
[-rmr <src>] [-put <localsrc> ... <dst>] [-copyFromLocal <localsrc> ... <dst>]	
[-moveFromLocal <localsrc> ... <dst>] [-get [-ignoreCrc] [-crc] <src> <localdst>	
[-getmerge <src> <localdst> [addnl]] [-cat <src>]	
[-copyToLocal [-ignoreCrc] [-crc] <src> <localdst>] [-moveToLocal <src> <localdst>]	
[-mkdir <path>] [-report] [-setrep [-R] [-w] <rep> <path/file>]	
[-touchz <path>] [-test -[ezd] <path>] [-stat [format] <path>]	
[-tail [-f] <path>] [-text <path>]	
[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]	
[-chown [-R] [OWNER][:[GROUP]] PATH...]	
[-chgrp [-R] GROUP PATH...]	
[-count[-q] <path>]	
[-help [cmd]]	

Accessing HDFS 



- 42 - 

// Get default file system instance	
fs = Filesystem.get(new Configuration());	
// Or Get file system instance from URI	
fs = Filesystem.get(URI.create(uri),	
                    new Configuration());	

// Create, open, list, … 	

OutputStream out = fs.create(path, …);	
InputStream in = fs.open(path, …);	
boolean isDone = fs.delete(path, recursive);	
FileStatus[] fstat = fs.listStatus(path);	

HDFS Java API 



- 43 - 

Hadoop MapReduce 

•  Record = (Key, Value) 

•  Key : Comparable, Serializable 

•  Value: Serializable 

•  Input, Map, Shuffle, Reduce, Output 



- 44 - 

cat /var/log/auth.log* | \ 	
grep “session opened” | cut -d’ ‘ -f10 | \	
sort | \	
uniq -c > \	
~/userlist 	

Seems Familiar ? 



- 45 - 

45 

Map 

•  Input: (Key1, Value1) 

•  Output: List(Key2, Value2) 

•  Projections, Filtering, Transformation 



- 46 - 

Shuffle 

•  Input: List(Key2, Value2) 

•  Output 
–  Sort(Partition(List(Key2, List(Value2)))) 

•  Provided by Hadoop 



- 47 - 

Reduce 

•  Input: List(Key2, List(Value2)) 

•  Output: List(Key3, Value3) 

•  Aggregation 



- 48 - 

48 

Example: Unigrams 

•  Input: Huge text corpus 
–  Wikipedia Articles (40GB uncompressed) 

•  Output: List of words sorted in descending order of 
frequency 



- 49 - 

$ cat ~/wikipedia.txt | \	
sed -e 's/ /\n/g' | grep . | \	
sort | \	
uniq -c > \	
~/frequencies.txt	

$ cat ~/frequencies.txt | \	
# cat | \	
sort -n -k1,1 -r |	
# cat > \	
~/unigrams.txt	

Unigrams 



- 50 - 

mapper (filename, file-contents):	
  for each word in file-contents:	
    emit (word, 1)	

reducer (word, values):	
  sum = 0	
  for each value in values:	
    sum = sum + value	
  emit (word, sum)	

MR for Unigrams 



- 51 - 

mapper (word, frequency):	
  emit (frequency, word)	

reducer (frequency, words):	
  for each word in words:	
    emit (word, frequency)	

MR for Unigrams 



- 52 - 

Java Mapper 

52 

public static class Map extends MapReduceBase implements 	 		
                      Mapper<LongWritable, Text, Text, IntWritable> {	

	      private final static IntWritable one = new IntWritable(1);	
	      private Text word = new Text();	

    	public void map(LongWritable key, Text value, OutputCollector<Text, 
IntWritable> output, 	
               Reporter reporter) throws IOException 	
{	

	        String line = value.toString();	
	        StringTokenizer tokenizer = new StringTokenizer(line);	
	        while (tokenizer.hasMoreTokens()) {	
	          word.set(tokenizer.nextToken());	
	          output.collect(word, one);	
	        }	
	  }	

 }	



- 53 - 

Java Reducer 

53 

public static class Reduce extends MapReduceBase implements 	
	 	 	 	Reducer<Text, IntWritable, Text, IntWritable> {	
	      public void reduce(Text key,	
	 	 	 	Iterator<IntWritable> values, 	
	 	 	 	OutputCollector<Text, IntWritable> output, 	

 	 	 	   Reporter reporter) throws IOException {	
	        int sum = 0;	
	        while (values.hasNext()) {sum += values.next().get(); }	

            output.collect(key, new IntWritable(sum));	
	      }	

    }	



- 54 - 

Java Main 

54 

public static void main(String[] args) throws Exception {	
	     JobConf conf = new JobConf(Unigrams.class);	
	     conf.setJobName(”unigrams");	

	     conf.setOutputKeyClass(Text.class);	
	     conf.setOutputValueClass(IntWritable.class);	

	     conf.setMapperClass(Map.class);	
	     conf.setCombinerClass(Reduce.class);	
	     conf.setReducerClass(Reduce.class);	

	     conf.setInputFormat(TextInputFormat.class);	
	     conf.setOutputFormat(TextOutputFormat.class);	

	     FileInputFormat.setInputPaths(conf, new Path(args[0]));	
	     FileOutputFormat.setOutputPath(conf, new Path(args[1]));	

	     JobClient.runJob(conf);	
}	



- 55 - 

MR Dataflow 



- 56 - 

Pipeline Details 



- 57 - 

Hadoop Streaming 

•  Hadoop is written in Java 
–  Java MapReduce code is “native” 

•  What about Non-Java Programmers ? 
–  Perl, Python, Shell, R 

–  grep, sed, awk, uniq as Mappers/Reducers 

•  Text Input and Output 



- 58 - 

Hadoop Streaming 

•  Thin Java wrapper for Map & Reduce Tasks 

•  Forks actual Mapper & Reducer 

•  IPC via stdin, stdout, stderr 

•  Key.toString() \t Value.toString() \n 
•  Slower than Java programs 

–  Allows for quick prototyping / debugging 



- 59 - 

$ bin/hadoop jar hadoop-streaming.jar \	
      -input in-files -output out-dir \	
      -mapper mapper.sh -reducer reducer.sh	

# mapper.sh	

sed -e 's/ /\n/g' | grep .	

# reducer.sh	

uniq -c | awk '{print $2 "\t" $1}'	

Hadoop Streaming 



- 60 - 

MapReduce Architecture 



- 61 - 

Job Submission 



- 62 - 

Initialization 



- 63 - 

Scheduling 



- 64 - 

Execution 



- 65 - 

Reduce Task 



- 66 - 

Hadoop Scheduler 



- 67 - 

Capacity Scheduler 
•  Multiple Queues for users to submit a job to the JobTracker 
•  Multiple users (ACL) can be associated with a queue to submit one or more 

jobs to the queue. 
•  Queues are guaranteed a fraction of the total capacity of the cluster  

–  Capacity is measured in terms of total map/reduce slots 
–  All jobs submitted to a queue will have access to the capacity guaranteed to 

the queue 
–  Total guaranteed capacity across all queues should be 100% 

•  Free resources can be allocated to any queue beyond its guaranteed capacity.  
–  If needed, excess resources allocated will be reclaimed to meet the guaranteed 

capacity needs of the other queues.   
•  The scheduler guarantees that excess resources taken from a queue will be 

restored to it within N minutes of its need for them 
•  Queues optionally support job priorities 

–  Preemption of low priority jobs is not done to serve high priority jobs 
•  Support for maximum % resource limit per user per queue  
•  Support for memory-intensive jobs 



- 68 - 

Capacity Scheduler 
•  How it picks a Job (map/reduce task from the job) to run 

–  When a slot on a TaskTracker is free 
–  Select a queue 

•  One which is running with lower than guaranteed capacity for relatively longer 
time 

•  If no such queue then use one with more free space (i.e. ratio of running slots 
to guaranteed capacity is lowest)  

–  Select a job by <priority, submit-time> order  
•  If Job user is not currently using more than its max. resource limit 
•  If TaskTracker has enough memory to spare for the current job’s task (if job 

has special memory requirements)   

•  How it reclaims the capacity 
–  Periodically, it notes the amount of resources to be reclaimed and the 

reclaim time remaining for any queue  
•  if it is short of its guaranteed capacity  and at least one task is pending to 

execute 

–  If queue has not received its guaranteed capacity and reclaim time is 
about to expire, it starts killing the latest tasks from over capacity queues. 



- 69 - 

Capacity Scheduler Configuration 
•  Keep the <hadoop-*-capacity-scheduler.jar> in class path or in 

$HADOOP_HOME/lib 

•  Set the following parameters in site configuration 
–  mapred.jobtracker.taskScheduler = 

org.apache.hadoop.mapred.CapacityTaskScheduler 
–  mapred.queue.names=<comma separated queue names> 
–  mapred.acls.enabled=<true/false> 

–  mapred.queue.queue-name.acl-submit-job=<list of users/groups for queue> 
–  mapred.queue.queue-name.acl-administer-job=<list of admin user/groups> 

•  To Configure queue properties  
–  Use $HADOOP_HOME/conf/capacity-scheduler.xml  

–  mapred.capacity-scheduler.queue.<queue-name>.guaranteed-capacity 
–  mapred.capacity-scheduler.queue.<queue-name>.reclaim-time-limit  (in Secs) 

–  mapred.capacity-scheduler.queue.<queue-name>.supports-priority (true/false) 
–  mapred.capacity-scheduler.queue.<queue-name>.minimum-user-limit-percent 

•  To configure scheduler behavior 
–  mapred.capacity-scheduler.reclaimCapacity.interval    (default 5 Secs) 



- 70 - 

Fair Scheduler 
•  One large static cluster with one instance of M/R & HDFS daemons 

–  Divided into multiple logical pools (aka. queues) 
–  Each pool has minimum guaranteed resource capacity.   

–  Multiple users are associated with a pool can submit one or more 
jobs to the pool to share the pool capacity 

•  Jobs submitted to any pool may use the unutilized resource capacity 
from other pools. 

–  It is possible to configure maximum number of running jobs per 
pool and per user within a pool.   

•  All jobs submitted to the cluster should on an average get equal 
share of resources over the time 
–  Default JobTracker Scheduler forms a queue of jobs 

–  Fair scheduler allows small jobs to finish in reasonable time while 
not starving long jobs. 



- 71 - 

Fair Scheduler – Implementation 
•  Job Weight ~= Fn (Job Priority, Job Size, Pool Weight) 

–  Job Priority = Normal, High, Very High 

•  Fair Share = Job Weight * Cluster Capacity 
•  Actual Share = Num Job Tasks / Cluster Capacity (over last 100 

milliseconds)  

•  Deficit = Fair Share – Actual Share 
•  Job to Schedule  

–  Next freed up slot allocated to a job w/ max deficit 
–  If any jobs not getting minimum guaranteed capacity of their pool 

are prioritized (again based on their deficit) 

•  Jobs to run  
–  Sorted list of jobs per <priority, submit time> 

–  Limited by max number of jobs per pool & user.  



- 72 - 72 

Hadoop Software Ecosystem 
•  Pig – Yahoo! 

–  Parallel Programming Language and Runtime 

•  Zookeeper – Yahoo! 
–  High-Availability Directory and Configuration Service 

•  Oozie 
–  Oozie is the workflow/scheduling solution for the Grid.  

•  Hbase – Powerset.com/Miscrosoft 
–  TableStore layered on HDFS 

•  JACL – IBM 
–  JSON / SQL inspired programming Hadoop language 

•  Mahout – Individual apache members 
–  Machine learning libraries for Hadoop 

•  Tashi – Intel, CMU 
–  Virtual machine provisioning service (soon) 

•  Hive – Facebook.com 
–  Data warehousing framework on Hadoop (soon) 



- 73 - 73 

What’s ahead 

•  Improved scalability 
–  E.g. 10s K nodes through Federation 

–  Federated applications across clusters and data centers 
•  Hadoop 22 

•  Improved performance  
–  YARN  

•  Enhanced features 

•  Further extensions  
–  on-line service grid? 

•  More applications, from many fields! 

The Hadoop eco-system is growing and has the 
potential to have a lot of impact across the 

internet industry, and many others! 



- 74 - 

Hadoop uses beyond 
Yahoo! 

74 



- 75 - 

BigData…Not Just for Internet 
Companies 

Slide courtesy Randy Bryant	





- 76 - 76 

Hadoop In Action 

•  GrepTheWebby Amazon 
–  Hadoop on AWS, using EC2 

–  Mining the Web using the Alexa web content 

•  Building Ground Models of Southern California  
–  Research by Intel and CMU 

•  Online search for engineering design content by Autodesk  

•  The New York Times uses it to process their archives 
–  http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-

computing-fun/ 

•  Rapidly growing number of commercial applications 



- 77 - 77 

Research & Education  @ Univ of Maryland 

•  Cloud Computing Pilot Course in Spring 2008 

•  Integration of research and education 

•  Hadoop cluster from IBM/Google 

•  13 students: 3 undergrads, 3 masters, 7 PhDs  

•  6 teams working on web-scale research problems 
–  Machine translation 

–  Reference resolution in email archives 

–  Language modeling 

–  Biomedical text retrieval 

–  Text-image separation in children’s books 

–  Biological sequence alignment  



- 78 - 

Performance Analysis of Map-Reduce 
•  MR performance requires 

–  Maximizing Map input transfer rate 

–  Pipelined writes from Reduce 

–  Small intermediate output 

–  Opportunity to Load Balance 



- 79 - 

Performance Example 
•  Bob wants to count lines in text files totaling several 

hundred gigabytes 

•  He uses 
–  Identity Mapper (input: text, output: same text) 

–  A single Reducer that counts the lines and outputs the total  

•  What is he doing wrong ? 

•  This happened, really ! 
–  I am not kidding ! 



- 80 - 

Intermediate Output 
•  Almost always the most expensive component 

–  M * R Transfers over the network 

–  Merging and Sorting 

•  How to improve performance: 
–  Avoid shuffling/sorting if possible 

–  Minimize redundant transfers 

–  Compress 



- 81 - 

Avoid shuffling/sorting 
•  Set number of reducers to zero 

–  Known as map-only computations 

–  Filters, Projections, Transformations 

•  Beware of number of files generated 
–  Each map task produces a part file 

–  Make map produce equal number of output files as input files 
•  How? 



- 82 - 

Minimize Redundant Transfers 
•  Combiners 

•  When maps produce many repeated keys 
–  It is often useful to do a local aggregation following the map 
–  Done by specifying a Combiner 

–  Goal is to decrease size of the transient data 
–  Combiners have the same interface as Reduces, and often are 

the same class. 

–  Combiners must not have side effects, because they run an 
indeterminate number of times. 

–  conf.setCombinerClass(Reduce.class); 



- 83 - 

Compress Output 
•  Compressing the outputs and intermediate data will often yield 

huge performance gains 
–  Can be specified via a configuration file or set programmatically 

–  Set mapred.output.compress to true to compress job output 

–  Set mapred.compress.map.output to true to compress map outputs 

•  Compression Types (mapred.[map.]output.compression.type) 
–  “block” - Group of keys and values are compressed together 

–  “record” - Each value is compressed individually 

–  Block compression is almost always best 

•  Compression Codecs (mapred.[map.]output.compression.codec) 
–  Default (zlib) - slower, but more compression 

–  LZO - faster, but less compression 



- 84 - 

Opportunity to Load Balance 
•  Load imbalance inherent in the application 

–  Imbalance in input splits 

–  Imbalance in computations 

–  Imbalance in partition sizes 

•  Load imbalance due to heterogeneous hardware 
–  Over time performance degradation 

•  Give Hadoop an opportunity to do load-balancing 
–  How many nodes should I allocate ? 



- 85 - 

Load Balance (contd.) 
•  M = total number of simultaneous map tasks 

•  M = map task slots per task tracker * nodes 

•  Choose nodes such that total mappers is between 5*M and 
10*M. 



- 86 - 

Configuring Task Slots 
•  mapred.tasktracker.map.tasks.maximum 

•  mapred.tasktracker.reduce.tasks.maximum 

•  Tradeoffs: 
–  Number of cores 

–  Amount of memory 

–  Number of local disks 

–  Amount of local scratch space 

–  Number of processes 

•  Also consider resources consumed by Tasktracker & 
Datanode  



- 87 - 

Speculative execution 
•  The framework can run multiple instances of slow tasks 

–  Output from instance that finishes first is used 

–  Controlled by the configuration variable mapred.[map|
reduce].speculative.execution=[true|false] 

–  Can dramatically bring in long tails on jobs 



- 88 - 

Performance Summary 
•  Is your input splittable? 

–  Gzipped files are NOT splittable 

•  Are partitioners uniform? 

•  Buffering sizes (especially io.sort.mb) 

•  Do you need to Reduce? 

•  Only use singleton reduces for very small data 
–  Use Partitioners and cat to get a total order 

•  Memory usage 
–  Please do not load all of your inputs into memory! 



- 89 - 

Debugging & Diagnosis 
•  Run job with the Local Runner 

–  Set mapred.job.tracker to “local” 
–  Runs application in a single process and thread 

•  Run job on a small data set on a 1 node cluster 
–  Can be done on your local dev box 

•  Set keep.failed.task.files to true 
–  This will keep files from failed tasks that can be used for 

debugging 
–  Use the IsolationRunner to run just the failed task 

•  Java Debugging hints 
–  Send a kill -QUIT to the Java process to get the call stack, 

locks held, deadlocks 



- 90 - 

JobTracker UI 



- 91 - 

Job Details 



- 92 - 

List of reduces, all successful 



- 93 - 

Task Details 



- 94 - 

Task Logs 


