Large-scale Graph Analysis

Kamesh Madduri
Computational Research Division
Lawrence Berkeley National Laboratory
KMadduri@lbl.gov madduri.org

Discovery 2015: HPC and Cloud Computing Workshop
June 17, 2011
Talk Outline

• Large-scale graph analytics: Introduction and motivating examples

• Overview of parallel graph analysis algorithms and software

• Application case studies
 – Community Identification in social networks
 – RDF data analysis using compressed bitmap indexes
Large-scale data analysis

• Graph abstractions are very useful to analyze complex data sets.
• Sources of data: petascale simulations, experimental devices, the Internet, sensor networks
• Challenges: data size, heterogeneity, uncertainty, data quality

Astrophysics: massive datasets, temporal variations
Bioinformatics: data quality, heterogeneity
Social Informatics: new analytics challenges, data uncertainty

Data Analysis and Graph Algorithms in Systems Biology

- Study of the interactions between various components in a biological system
- Graph-theoretic formulations are pervasive:
 - Predicting new interactions: modeling
 - Functional annotation of novel proteins: matching, clustering
 - Identifying metabolic pathways: paths, clustering
 - Identifying new protein complexes: clustering, centrality

Graph –theoretic problems in social networks

- Targeted advertising: clustering and centrality
- Studying the spread of information
Network Analysis for Intelligence and Surveillance

- [Krebs ’04] Post 9/11 Terrorist Network Analysis from public domain information
- Plot masterminds correctly identified from interaction patterns: centrality

- A global view of entities is often more insightful
- Detect anomalous activities by exact/approximate subgraph isomorphism.

Image Source: http://www.orgnet.com/hijackers.html

Research in Parallel Graph Algorithms

Application Areas
- Social Network Analysis
- WWW
- Computational Biology
- Scientific Computing
- Engineering

Methods/Problems
- Find central entities
- Community detection
- Network dynamics
- Marketing
- Social Search
- Gene regulation
- Metabolic pathways
- Genomics
- Graph partitioning
- Matching
- Coloring
- VLSI CAD
- Route planning

Problem Complexity

Graph Algorithms
- Traversal
- Shortest Paths
- Connectivity
- Max Flow
- ...
- ...
- ...

Architectures
- GPUs
- FPGAs
- x86 multicore servers
- Massively multithreaded architectures
- Multicore Clusters
- Clouds

Data size
Characterizing Graph-theoretic computations

Input data
- paths
- clusters
- partitions
- matchings
- patterns
- orderings

Problem: Find ...

Graph kernel
- traversal
- shortest path algorithms
- flow algorithms
- spanning tree algorithms
- topological sort
 …..

Factors that influence choice of algorithm
- graph sparsity (m/n ratio)
- static/dynamic nature
- weighted/unweighted, weight distribution
- vertex degree distribution
- directed/undirected
- simple/multi/hyper graph
- problem size
- granularity of computation at nodes/edges
- domain-specific characteristics

Graph problems are often recast as **sparse linear algebra** (e.g., partitioning) or **linear programming** (e.g., matching) computations.
Massive data analytics & Informatics

- **Information networks**: social, collaborative, citation, biological, epidemiological networks, web crawls, …
- These are **fundamentally different** from graph topologies and computations in scientific computing!

Informatics: dynamic, high-dimensional, heterogeneous data

Image sources: www.visualComplexity.com; Yifan Hu, “A gallery of large graphs”
Informatics → “Small-world” complex networks

- Low graph diameter.
- Sparse: # of edges $m = O(n)$.
- Vertices, edges have multiple attributes.
- Skewed (“power law”) degree distribution of the number of neighbors.

Image source: Seokhee Hong
The locality challenge: “Large memory footprint, low spatial and temporal locality impede performance”

Serial Performance of “approximate betweenness centrality” on a 2.67 GHz Intel Xeon 5560 (12 GB RAM, 8MB L3 cache)
Input: Synthetic R-MAT graphs (# of edges $m = 8n$)

![Graph showing performance drop with problem size increase](image)

- No Last-level Cache (LLC) misses
- $O(m)$ LLC misses

$\sim 5X$ drop in performance
The parallel scaling challenge: “Classical parallel graph algorithms perform poorly on current parallel systems”

- Graph topology assumptions in classical algorithms do not match real-world datasets
- Parallelization strategies at loggerheads with techniques for enhancing memory locality
- Classical “work-efficient” graph algorithms may not fully exploit new architectural features
 - Increasing complexity of memory hierarchy, processor heterogeneity, wide SIMD.
- Tuning implementation to minimize parallel overhead is non-trivial
 - Shared memory: minimizing overhead of locks, barriers.
 - Distributed memory: bounding message buffer sizes, bundling messages, overlapping communication w/ computation.
SNAP: Small-world Network Analysis and Partitioning

- Parallel framework for small-world complex graph analysis
- **10-100x faster** than competing graph analysis software.
 - Parallelism, algorithm engineering, exploiting graph topology.
- Can process graphs with **billions** of vertices and edges.
- Open-source: snap-graph.sf.net

![SNAP parallel framework](image-source: visualcomplexity.com)
SNAP Optimizations for real-world graphs

• **Preprocessing kernels** (connected components, biconnected components, sparsification) significantly reduce computation time.
 – ex. A high number of isolated and degree-1 vertices
 ▪ store BFS/Shortest Path trees from high degree vertices and reuse them
 ▪ Typically **3-5X** performance improvement

• **Exploit small-world network properties** (low graph diameter)
 – Load balancing in the level-synchronous parallel BFS algorithm
 – SNAP data structures are **optimized for unbalanced degree distributions**
Libraries and Frameworks for graph analysis

- Boost Graph Library
 - C++, graph interface and components are generic
- JUNG
 - Java-based, graph algorithms + visualization engine
- igraph
 - C library with R and Python interfaces
- MultiThreaded Graph Library (MTGL)
 - Boost Graph library-like, for multithreaded architectures
- ...
- Network Workbench
 - GUI for analysis, workflow
- Cytoscape
 - Biological network analysis, user-contributed plug-ins,
- ...
Graph 500 “Search” Benchmark (graph500.org)

• BFS (from a single vertex) on a static, undirected R-MAT network with average vertex degree 16.

• Evaluation criteria: largest problem size that can be solved on a system, minimum execution time.

• Reference MPI, shared memory implementations provided.

• NERSC Franklin system is ranked #2 on Nov 2010 list.
 – BFS using 500 nodes of Franklin

• Graph 500 June 2011 list submissions
 – NERSC Hopper, 25 GTEPS, SCALE 37, 1800 nodes
 – NERSC Franklin, 16 GTEPS, SCALE 36, 4000 nodes

A. Buluc, K. Madduri, Proc. SC 2011
Talk Outline

• Large-scale graph analytics: Introduction and motivating examples

• Designing parallel graph analysis algorithms and software

• Application case studies
 – Community Identification in social networks
 – RDF data analysis using compressed bitmap indexes
Community Identification

• Implicit communities in large-scale networks are of interest in many cases.
 – WWW
 – Social networks
 – Biological networks

• Formulated as a graph clustering problem.
 – Informally, identify/extract “dense” sub-graphs.

• Several different objective functions exist.
 – Metrics based on intra-cluster vs. inter-cluster edges, community sizes, number of communities, overlap …

• Highly studied research problem
 – 100s of papers yearly in CS, Social Sciences, Physics, Comp. Biology, Applied Math journals and conferences.
Modularity: A popular optimization metric

• Measure based on *optimizing inter-cluster density over intra-cluster sparsity*.

• For a weighted, directed network with vertices partitioned into non-overlapping clusters, modularity is defined as

\[
Q = \frac{1}{2w} \sum_{i \in V} \sum_{j \in V} \left(w_{ij} - \frac{w_{i}^{out} w_{j}^{in}}{2w} \right) \delta(C_i, C_j)
\]

\[
w_{i}^{out} = \sum_{j} w_{ij}, \quad w_{j}^{in} = \sum_{i} w_{ij}, \quad 2w = \sum_{j} \sum_{i} w_{ij}
\]

\[
\delta(C_i, C_j) = 1 \text{ if } C_i = C_j, \quad 0 \text{ otherwise.}
\]

• If a particular clustering has no more intra-cluster edges than would be expected by random chance, \(Q=0 \). Values greater than 0.3 typically indicate community structure.

• Maximizing modularity is *NP-complete*.
Modularity

For an unweighted and undirected network, modularity is given by:

\[Q = \frac{1}{2m} \sum_{i \in V} \sum_{j \in V} \left(e_{ij} - \frac{d_i d_j}{2m} \right) \delta(C_i, C_j) \]

Where:
- \(e_{ij} = 1 \) if \(\langle i, j \rangle \in E \)
- \(\delta(C_i, C_j) = 1 \) if \(C_i = C_j \),
- 0 otherwise.

And in terms of clusters/modules, it is equivalently:

\[Q = \sum_s \left(\frac{m_s}{m} - \left(\frac{\sum_{v \in s} d_v}{2m} \right)^2 \right) \]

Resolution limit: Modules will not be found, optimizing modularity, if

\[m_s < \sqrt{m/2} - 1 \]
Our Contributions

- **New parallel algorithms** for modularity-optimizing community identification.
 - Divisive: edge betweenness-based, spectral
 - Agglomerative
 - Hybrid, multi-level
- **Several algorithmic optimizations** for small-world networks.
- Analysis of **large-scale** complex networks constructed from **real data**.
- Note: No single “right” community detection algorithm exists. Community structure analysis should be **user-driven** and **application-specific**, combining various fast algorithms.

Divisive Clustering, Parallelization

- **Top-down** approach: Start with entire network as one community, recursively split the graph to yield smaller modules.

- Two popular methods:
 - **Edge-betweenness** based: iteratively remove high-centrality edges.
 \[BC(e) = \sum_{s,t \in V} \frac{\sigma_{st}(e)}{\sigma_{st}} \]
 - Centrality computation is the compute-intensive step, parallelize it.
 - **Spectral**: apply recursive spectral bisection on the “modularity matrix” \(B \), whose elements are defined as \(B_{ij} = A_{ij} - d_id_j/2m \). Modularity can be expressed in terms of \(B \) as:
 \[Q = \frac{1}{4m} s^T Bs \]
 - Parallelize the eigenvalue computation step (dominated by sparse matrix-vector products).
Agglomerative Clustering, Parallelization

- **Bottom-up** approach: Start with n singleton communities, iteratively merge pairs to form larger communities.
 - What measure to minimize/maximize? *modularity*
 - How do we order merges? *priority queue*
- **Parallelization:** perform multiple “independent” merges simultaneously.

![Diagram of agglomerative clustering and parallelization](image-url)
Other Community Identification Approaches

- Simulated annealing
- Extremal optimization
- Linear programming
- Statistical inference
- Spin models, random walks
- Clique percolation
- …
Engineering a hybrid parallel community identification algorithm

• How would a memory-efficient, near linear-work greedy approach perform on real data?

• Helpful preprocessing steps
 – 2-Core reduction of the graph
 ▪ High-percentage of degree-1 vertices in networks with exponential and power-law degree distributions.

 – Filter very high-degree vertices ($d > d_H \approx \sqrt{n}$)
 ▪ Ambiguity on what cluster they belong to.
Hybrid approaches: Parallelization

• Coarsen/sparsify graph
 – Local search at vertices to identify dense components, completely relax priority queue constraint => abundant parallelism.
 – Future work: Identify network-specific motifs (bipartite cliques).

• Run greedy agglomerative approach once graph is less than size threshold.
Real-world data

Assembled a collection for algorithm performance analysis, from some of the largest publicly-available network data.

<table>
<thead>
<tr>
<th>Name</th>
<th># vertices</th>
<th># edges</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon-2003</td>
<td>473.30 K</td>
<td>3.50 M</td>
<td>co-purchaser</td>
</tr>
<tr>
<td>eu-2005</td>
<td>862.00 K</td>
<td>19.23 M</td>
<td>www</td>
</tr>
<tr>
<td>Flickr</td>
<td>1.86 M</td>
<td>22.60 M</td>
<td>social</td>
</tr>
<tr>
<td>wiki-Talk</td>
<td>2.40 M</td>
<td>5.02 M</td>
<td>collab</td>
</tr>
<tr>
<td>orkut</td>
<td>3.07 M</td>
<td>223.00 M</td>
<td>social</td>
</tr>
<tr>
<td>cit-Patents</td>
<td>3.77 M</td>
<td>16.50 M</td>
<td>cite</td>
</tr>
<tr>
<td>Livejournal</td>
<td>5.28 M</td>
<td>77.40 M</td>
<td>social</td>
</tr>
<tr>
<td>uk-2002</td>
<td>18.50 M</td>
<td>198.10 M</td>
<td>www</td>
</tr>
<tr>
<td>USA-road</td>
<td>23.90 M</td>
<td>29.00 M</td>
<td>Transp.</td>
</tr>
<tr>
<td>webbase-2001</td>
<td>118.14 M</td>
<td>1.02 B</td>
<td>www</td>
</tr>
</tbody>
</table>
SNAP vs. Other Implementations (serial performance)

Webbase-2001 (n=118M, m=1.02B)

Largest network analyzed in prior papers.
SNAP 4x faster! Requires 12 GB memory vs. 30 GB for Louvain algorithm.

Amazon-2003 (n=473K, m=3.5M)

igraph: C library for network analysis.
SNAP requires 0.5 GB memory vs. 12 GB+ for igraph CNM implementation!

igraph time ~ 8 hours.

Results on a Intel Xeon 5560 ("Nehalem") system
- 2 sockets x 4 cores x 2-way SMT
- 12 GB DRAM, 8 MB shared L3
- 51.2 GBytes/sec peak bandwidth
- 2.66 GHz proc.
SNAP Algorithms: Comparative Performance

Amazon-2003 (n=473K, m=3.5M)

- Smallest network in the test suite.
- Divisive edgeBC and basic agglomerative clustering algorithm (CNM) highly compute-intensive.
- CNM-RAT (comm. sizes factored in) significantly faster than CNM.

Performance results on a Intel Xeon 5560 (Nehalem) system.
Communities: Sizes and Cardinality

Amazon-2003 (n=473K, m=3.5M)

of communities
- CNM: 240
- Spectral: 10K
- Hybrid: 196

Spectral alg. fails to resolve communities beyond one level of the agglomerative clustering dendrogram!
Communities: Modularity

- Hybrid approach performs surprisingly well.
- # of communities from CNM-RAT and Hybrid roughly the same.
- CNM-RAT suffers in modularity quality.
- CNM did not finish (>6hrs) for most networks.
Dynamic graph computations

- Analysis of dynamic graphs becoming increasingly important: detect trends (WWW), allegiance switching, emerging communities (social networks).
- Goal: Avoid computing from scratch.
- Consider path-based problems:
 - Are there paths connecting s and t between time T_1 and T_2?
 - Does the path between s and t shorten drastically?
 - Is a vertex suddenly very central?
- Contribution: New **space-efficient data structures**, fast algorithms

Madduri and Bader, IPDPS’09.
Talk Outline

• Large-scale graph analytics: Introduction and motivating examples

• Designing parallel graph analysis algorithms and software

• Application case studies
 – Community Identification in social networks
 – RDF data analysis using compressed bitmap indexes
Semantic data analysis

- The **RDF** (Resource Description Framework) data model is a popular abstraction for linked data repositories
 - *triple* form `[<subject> <predicate> <object>]`

- Data sets with a few billion triples quite common

- Emergence of “triple stores”, custom databases for storage and retrieval of RDF data
 - Jena, Virtuoso, Sesame
FastBit-RDFJoin

• We use the compressed bitmap indexing software FastBit to index RDF data
• Search queries on RDF data can be accelerated with use of compressed bitmap indexes

• Our Contributions:
 – Parallel bitmap index construction (we store the sparse graphs corresponding to each unique predicate)
 – New query-answering approach: pattern matching queries on RDF data are modified to use bitmap indexes.

• Speedup insight: SPARQL queries can be expressed as fast and I/O optimal bit vector operations.

Answering a SPARQL Query with Bitmap Indexes

Search Query: list of all scientists born in a city in USA, who have/had a Doctoral advisor born in Chinese city.

SPARQL Query

Select ?p where {
 ?p <type> 'scientist' .
 ?city1 <locatedIn> 'USA' .
 ?city2 <locatedIn> 'China' .
 ?p <hasDoctoralAdvisor> ?adv .
}

The ordering of bit vector operations determines query work performed.
Performance results: LUBM benchmark

- LUBM SPARQL test query evaluation time in milliseconds, performance on a 2.67 GHz Intel Xeon processor.

<table>
<thead>
<tr>
<th></th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
<th>Q7</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUBM-1M, Cold caches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FastBit</td>
<td>0.078</td>
<td>16.2</td>
<td>0.098</td>
<td>0.150</td>
<td>0.118</td>
<td>2.85</td>
<td>0.12</td>
</tr>
<tr>
<td>RDF-3X</td>
<td>15.5</td>
<td>32.3</td>
<td>7.3</td>
<td>1.27</td>
<td>1.14</td>
<td>92.4</td>
<td>1.25</td>
</tr>
<tr>
<td>LUBM-1M, Warm caches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FastBit</td>
<td>0.008</td>
<td>15.7</td>
<td>0.026</td>
<td>0.042</td>
<td>0.028</td>
<td>2.59</td>
<td>0.032</td>
</tr>
<tr>
<td>RDF-3X</td>
<td>0.385</td>
<td>10.2</td>
<td>0.385</td>
<td>0.553</td>
<td>1.11</td>
<td>76.1</td>
<td>0.89</td>
</tr>
<tr>
<td>Speedup</td>
<td>48.1×</td>
<td>0.65×</td>
<td>14.8×</td>
<td>13.16×</td>
<td>39.6×</td>
<td>29.4×</td>
<td>27.8×</td>
</tr>
<tr>
<td>LUBM-50M, Cold caches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FastBit</td>
<td>0.30</td>
<td>1320</td>
<td>1.26</td>
<td>0.65</td>
<td>0.34</td>
<td>139</td>
<td>0.643</td>
</tr>
<tr>
<td>RDF-3X</td>
<td>0.43</td>
<td>572</td>
<td>2.9</td>
<td>0.75</td>
<td>2.1</td>
<td>4150</td>
<td>4.62</td>
</tr>
<tr>
<td>LUBM-50M, Warm caches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FastBit</td>
<td>0.167</td>
<td>1311</td>
<td>0.92</td>
<td>0.40</td>
<td>0.19</td>
<td>135</td>
<td>0.46</td>
</tr>
<tr>
<td>RDF-3X</td>
<td>0.31</td>
<td>544</td>
<td>0.193</td>
<td>0.70</td>
<td>1.95</td>
<td>4021</td>
<td>1.52</td>
</tr>
<tr>
<td>Speedup</td>
<td>1.86×</td>
<td>0.42×</td>
<td>0.21×</td>
<td>1.75×</td>
<td>10.26×</td>
<td>29.8×</td>
<td>3.30×</td>
</tr>
</tbody>
</table>
Summary: Our Research Enables Complex Data-intensive Applications

• The SNAP (snap-graph.sf.net) framework offers novel parallel methods for social and information network analytics
 – Two orders of magnitude faster than competing “serial” software approaches
• We have designed the first parallel methods for several community detection formulations
• Ongoing research projects
 – Semantic data analytics using compressed bitmap indexes
 – Eulerian path-based de novo genome assembly
• Future research direction: Modeling network dynamics; persistent monitoring of dynamically changing properties
Collaborators, Acknowledgments

• Scientific Data Management & Future Technologies research groups, LBNL
• Prof. David A. Bader, Georgia Institute of Technology
• Jonathan Berry, Bruce Hendrickson (Sandia National Laboratories)
• John Feo, Daniel Chavarria (Pacific Northwest National Laboratories)
• PNNL CASS-MT Center and Cray Inc. for access to their XMT systems.
• Par Lab @ UC Berkeley for access to their Millennium cluster systems.
• Research supported in part by DOE Office of Science under contract number DE-AC02-05CH11231.
Thank you!

• Questions?
Backup Slides
Graph 500 and Parallel BFS
Graph representation

- **Compressed Sparse Row-like**

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Degree</th>
<th>Adjacencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>2 5 7 7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0 3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2 4 7</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3 6 8</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0 8</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>1 4 8 9</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>0 0 3 8</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>4 5 6 7</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

Index into adjacency array

| 0 | 4 | 5 | 7 | ... | 28 |

Adjacencies

| 2 | 5 | 7 | 7 | 6 | 0 | 3 | 2 | 4 | ... | 6 | 7 | 6 |

Size: \(2 \times m\)
Distributed Graph representation

• Each processor stores the entire graph (“full replication”)
• Each processor stores n/p vertices and all adjacencies out of these vertices (“1D partitioning”)
• How to create these “p” vertex partitions?
 – Graph partitioning algorithms: recursively optimize for conductance (edge cut/size of smaller partition)
 – Randomly shuffling the vertex identifiers ensures that edge count/processor are roughly the same
2D graph partitioning

- Consider a logical 2D processor grid \((p_r \times p_c = p)\) and the matrix representation of the graph.
- Assign each processor a sub-matrix (i.e., the edges within the sub-matrix).

9 vertices, 9 processors, 3x3 processor grid
Graph traversal (BFS) problem definition

Output:

source vertex

Memory requirements (# of machine words):
- Sparse graph representation: m+n
- Stack of visited vertices: n
- Distance array: n
Parallel BFS Strategies

1. Expand current frontier (level-synchronous approach, suited for low diameter graphs)

2. Stitch multiple concurrent traversals (Ullman-Yannakakis approach, suited for high-diameter graphs)
A deeper dive into the “level synchronous” strategy

Locality (where are the random accesses originating from?)

1. Ordering of vertices in the “current frontier” array, i.e., accesses to adjacency indexing array, cumulative accesses $O(n)$.
2. Ordering of adjacency list of each vertex, cumulative $O(m)$.
3. Sifting through adjacencies to check whether visited or not, cumulative accesses $O(m)$.

1. Access Pattern: idx array -- 53, 31, 74, 26
2,3. Access Pattern: d array -- 0, 84, 0, 84, 93, 44, 63, 0, 0, 11
Performance Observations

Youtube social network

Flickr social network

Graph expansion

Edge filtering
Graph500 BFS: SCALE 32 performance on Hopper (Cray XE6, 24 cores per node)
Graph500 BFS: SCALE 32 communication time on Hopper (lower is better)
De novo Genome Assembly
De novo Genome Assembly

- Genome Assembly: “a big jigsaw puzzle”
- De novo: Latin expression meaning “from the beginning”
 - No prior reference organism
 - Computationally falls within the **NP-hard** class of problems
Eulerian path-based assembly strategies

- Break up the (short) reads into overlapping strings of length k.
 $k = 5$

 ACGTTATATATTCTA → ACGTT CGTTA GTTAT
 TTATA TTCTA

 CCATGATATATTCTA → CCATG CATGA ATGAT
 TGATA TTCTA

- Construct a de Bruijn graph (a directed graph representing overlap between strings)
de Bruijn graph-based Assembly

• Each \((k-1)\)-mer represents a node in the graph
• Edge exists between node \(a\) to \(b\) iff there exists a \(k\)-mer such that its prefix is \(a\) and suffix is \(b\).

AAGACTCCGACTGGGACTTT
ACTCCGACTGGGACTTTTGAC

• Traverse the graph (if possible, identifying an Eulerian path) to form contigs.
• However, correct assembly is just one of the many possible Eulerian paths.
Application: Identification of biomass-degrading Genes and Genomes from cow rumen

Goal: Identify *microbial enzymes* that aid in deconstruction of plant polysaccharides. Cow rumen microbes known to be particularly effective in breaking down switchgrass.

Image Source: Hess et al., Science 331(6016), 463-467, 2011.
Metagenomes

- Two major complications for de novo assembly:
 - Likely uneven representation of organisms within a sample
 - Likely polymorphisms between closely related members in an environment
- Assembly is difficult even if we have an estimate of organism representation in a sample
- If coverage is not known, Poisson likelihood estimates used by isolate genome assemblers break down.
Towards designing a metagenome assembler

- Given the challenges, what approach do we take?

- We can still construct the de Bruijn graph
 - Try out various values of k, use base quality information
 - Require parallel computation for dealing with the large data sizes

- Understand data set characteristics to suggest algorithmic changes in current assemblers
 - Can we automate selection of k?
 - What is the genome coverage like?
 - Can we predict the approximate size of the metagenome?
Steps in the new de Bruijn graph-based assembly scheme

1. Preprocessing
 - FASTQ input data
 - Sequences after error resolution

2. Kmer spectrum
 - Determine appropriate value of k to use

3. Preliminary de Bruijn graph construction

4. Vertex/edge compaction (lossless transformations)

5. Error resolution + further graph compaction

6. Scaffolding

Compute and memory-intensive
1. Preprocessing

- Process base quality information
- Mark ambiguous bases
- Try to merge paired reads
- Write back filtered reads
- Parallelization strategy: split input files into “P” parts; each node processes its file independently
 - Predominantly I/O bound
2. Kmer spectrum construction

• Need a dictionary to track occurrences of each kmer
• Velvet uses a splay tree to track unique kmers
 – Splaying expensive for large data sizes; maintaining an ordered set unnecessary when kmer updates are predominantly insert-only (“cow rumen” dataset)
• Alternative: Ingest all kmers, perform lexicographical sort
• Parallelization: enumerate kmers independently + one global sort to get kmer count
Finding unique kmers: hashing vs sorting

Splay tree update time for a data set of 19.5 million (125 bp) reads (k=61)

Serial performance results on a 512 GB system (2.6 GHz Opteron processor)

- 51 GB memory
- Serial sort, 18.6 GB memory
- 4.2x faster
3. Graph construction

- Store edges only, represent vertices (kmers) implicitly.
- Distributed graph representation
- Sort by start vertex
- Edge storage format:

Read ‘x’:

Store edge (ACTAGGCA), orientation, originating read id (x), edge count
Use 2 bits per nucleotide
4. Vertex compaction

• High percentage of unique kmers
 ⇒ Try compacting kmers from same read first
 – If kmer length is k, potentially k-times space reduction!

• Parallelization: computation can be done locally by sorting by read ID, traversing unit-cardinality kmers.
5. Redistributing reads for Velvetg execution

- Identify connected components in the string graph
- Error resolution and scaffolding can be concurrently performed on multiple independent components

Compress/remove whiskers

Identify and fix “low coverage” edges
Parallel Implementation Details

• Current data set (after preprocessing) requires 320 GB for in-memory graph construction
 – Experiments with 64 nodes (256-way parallelism) and 128 nodes (512-way) of NERSC Franklin (Cray XT4 system, 2.3 GHz quad-core Opteron processor)

• MPI across nodes + OpenMP within a node

• Local sort: multicore-parallel quicksort

• Global sort: sample sort
• Comparison: *Velveth* (up to graph construction) takes ~12 hours on the 512 GB Opteron system.
Observations

• Very conservative graph assembly
 – No filtering, getting exact global counts of kmers

• 20% of time spent in MPI communication (including global sort)

• 3.3x intra-node speedup for parallel sort (~7 GB array), execution time 32 seconds

• I/O (preprocessing and kmer freq.) not a bottleneck up to 128 nodes