
Communication-Avoiding

Iterative Methods

Erin Carson

UC Berkeley Parallel Computing Lab

BeBop Group

Discovery 2015: HPC and Cloud Computing

Workshop, June 2011

President Obama cites Communication Avoiding algorithms in

the FY 2012 Department of Energy Budget Request to Congress:

2

CA-GMRES

(Hoemmen, Mohiyuddin, et al.)

“New Algorithm Improves Performance and Accuracy on Extreme-Scale

Computing Systems. On modern computer architectures, communication

between processors takes longer than the performance of a floating point

arithmetic operation by a given processor. ASCR researchers have

developed a new method, derived from commonly used linear algebra

methods, to minimize communications between processors and the

memory hierarchy, by reformulating the communication patterns specified

within the algorithm. This method has been implemented in the

TRILINOS framework, a highly-regarded suite of software, which

provides functionality for researchers around the world to solve large

scale, complex multi-physics problems.”

FY 2010 Congressional Budget, Volume 4, FY2010 Accomplishments, Advanced Scientific

Computing Research (ASCR), pages 65-67.

Talk Outline
• What is communication?

• What are Krylov Subspace Methods?

• Communication-Avoiding Krylov Subspace Methods
– New Communication-Avoiding Kernels

• Challenges in Communication-Avoiding Krylov Subspace
Methods
– Stability and Convergence

– Performance

• Preconditioning

• Related Work: “s-step methods”

• Future Work

3

Talk Outline
• What is communication?

• What are Krylov Subspace Methods?

• Communication-Avoiding Krylov Subspace Methods
– New Communication-Avoiding Kernels

• Challenges in Communication-Avoiding Krylov Subspace
Methods
– Stability and Convergence

– Performance

• Preconditioning

• Related Work: “s-step methods”

• Future Work

4

What is “Communication”?

• Algorithms have 2 costs:
– Arithmetic (FLOPS)

– Movement of data
• Two parameters: α – Latency, β – Reciprocal Bandwidth

– Time to move n words of data is α + nβ

5

CPU

Cache

DRAM

CPU

DRAM
CPU

DRAM

CPU

DRAM

CPU

DRAM

 Sequential Parallel

Communication in the future…

6

• Gaps growing exponentially…

• Floating point time << 1/Network BW << Network Latency

• Improving 59%/year vs. 26%/year vs. 15%/year

• Floating point time << 1/Memory BW << Memory Latency

• Improving 59%/year vs. 23%/year vs. 5.5%/year

• We want more than just “hiding” communication

– Arbitrary speedups possible, vs. at most 2x speedup

Talk Outline
• What is communication?

• What are Krylov Subspace Methods?

• Communication-Avoiding Krylov Subspace Methods
– New Communication-Avoiding Kernels

• Challenges in Communication-Avoiding Krylov Subspace
Methods
– Stability and Convergence

– Performance

• Preconditioning

• Related Work: “s-step methods”

• Future Work

7

Motivation: Sparse Matrices

• Many algorithms for

scientific applications require

solving linear systems of

equations: Ax = b

8

Figure: Simulating Pressure over Airfoil.

Source: http://www.nada.kth.se

• In many cases, the matrix A is sparse

– Sparse matrix: a matrix with enough

zero entries to be worth taking

advantage of

• This means that information is

“local” instead of “global”. A

given variable only depends on

some of the other variables.

– Example: Simulating Pressure

around Airfoil

Solving a Sparse Linear System

• Iterative methods iteratively refine an

approximate solution to the system

– Used when

• System is large and sparse – direct

method too expensive

• We only need an approximation –

don‟t need to solve exactly, so less

operations needed

• A is not explicitly stored

– Ex: Krylov Subspace Methods (KSMs)
9

= x

 A L U

• Direct methods solve a linear system in a

finite sequence of operations

– Often used to solve dense problems

– Ex: Gaussian Elimination
Direct Method for Solving Ax = b

Initial guess

Convergence?
Return

solution

Yes

No

Refine

Solution

Iterative Method for Solving Ax = b

0

r

K

How do Krylov Subspace Methods Work?

• A Krylov Subspace is defined as:

10

• In each iteration,

– Sparse matrix-vector multiplication (SpMV)

with A to create new basis vector

• Adds a dimension to the Krylov Subspace

– Use vector operations to choose the “best”

approximation of the solution in the

expanding Krylov Subspace (projection of a

vector onto a subspace)

• How “best” is defined distinguishes

different methods

• Examples: Conjugate Gradient (CG), Generalized Minimum
Residual Methods (GMRES), Biconjugate Gradient (BiCG)

projK(r)

A Few Applications of Krylov Subspace Methods

• Physical simulations
– Solving PDEs

• Often used in combination with Multigrid as bottom-solve

• Ex: Simulating blood flow (Parlab‟s Health App)

• Mobile/Cloud applications
– Even more important where bandwidth is very limited,

latency is long (or if this parameters are variable
between machines!)
• Auto-tuning becomes more important if we don‟t know our

hardware
11

Figure: Contour Detection [CSNYMK10]

• Image Processing
Applications
– Ex: Image segmentation,

Contour detection

Figure: ParLab Health App:

Modeling Blood Blow in the

Brain

Krylov Subspace Methods are Communication-Bound

• Problem: Calls to communication-bound kernels every

iteration

– SpMV (computing A*v)

• Parallel: share/communicate source vector

with neighbors

• Sequential: read A (and vectors) from slow

memory

– Vector operations

– Orthogonalization

» Dot products

» Vector addition and scalar

multiplication

• Solution:

– Replace Communication-bound kernels by

Communication-Avoiding ones

– Reformulate KSMs to use these kernels

12

x =

Example: GMRES

13

Pseudocode to perform s steps of original algorithm:

SpMV operation in every iteration:

requires communication of current

entries of v (parallel) / reading A and

vectors from slow memory (sequential)

Vector operations in every iteration:

 requires global communication

(parallel) / reading O(n) words from

slow memory (sequential)

Talk Outline
• What is communication?

• What are Krylov Subspace Methods?

• Communication-Avoiding Krylov Subspace Methods
– New Communication-Avoiding Kernels

• Challenges in Communication-Avoiding Krylov Subspace
Methods
– Stability and Convergence

– Performance

• Preconditioning

• Related Work: “s-step methods”

• Future Work

14

Communication-Avoiding KSMs

• We need to break the dependency
between communication bound
kernels and KSM iterations

• Idea: Expand the subspace s
dimensions (s SpMVs with A), then
do s steps of refinement
– unrolling the loop s times

• To do this we need two new
Communication-Avoiding kernels
– “Matrix Powers Kernel” replaces

SpMV

– “Tall Skinny QR” (TSQR) replaces
orthogonalization operations

15

Avk
vk+1

SpMV

Orthogonalize

The Matrix Powers Kernel
• Given A, v, and s, Matrix powers kernel computes

 {v, Av, A2v, …, As-1v}

• If we figure out dependencies beforehand, we can do all the

communication for s steps of the algorithm only

reading/communicating A o(1) times!

– Parallel case: Reduces latency by a factor of s at the cost of

redundant computations

– Sequential case: reduces latency and bandwidth by a factor of s, no

redundant computation

• Simple example: a tridiagonal matrix

16

Sequential

Parallel

A3v

A2v

Av

v

A3v

A2v

Av

v

Communication Avoiding Kernels: TSQR

• TSQR = Tall Skinny QR (#rows >> #cols)

– QR: factors a matrix A into the product

of

• An orthogonal matrix (Q)

• An upper triangular matrix (R)

– Here, A is the matrix of the Krylov

Subspace Basis Vectors

• output of the matrix powers kernel

– Q and R allow us to easily expand the

dimension of the Krylov Subspace

• Usual Algorithm

• Compute Householder vector for each

column O(n log P) messages

• Communication Avoiding Algorithm

• Reduction operation, with QR as

operator O(log P) messages

17
Figure: [ABDK10]

• Shape of reduction tree depends on

architecture

– Parallel: use “deep” tree, saves

messages/latency

– Sequential: use flat tree, saves

words/bandwidth

– Multicore: use mixture

Example: CA-GMRES

18

s steps of CA algorithm:

s steps of original algorithm:

s powers of A for no extra

latency cost

s steps of QR for one step of

latency

19
[MHDY09] Platform: Intel Clovertown, 8 cores

Current CA Krylov Subspace Methods

• CG, Lanczos, Arnoldi (Hoemmen, 2010),

• GMRES (Hoemmen, Mohiyuddin, Demmel, Yelick, 2009)

• BiCG, CGS, BiCGStab (Carson, Knight, Demmel, 2011).

• Factor of s less communication than standard version.

• General approach for CG-like methods:
– In each outer loop, compute s basis vectors from previous

iteration‟s residual vectors

– Perform s inner loop iterations

• Compute current recurrence coefficients

• Replace SpMVs with local basis vector operations

• Replace dot products with shorter, local dot products

– continue until convergence….

20

Talk Outline
• What is communication?

• What are Krylov Subspace Methods?

• Communication-Avoiding Krylov Subspace Methods
– New Communication-Avoiding Kernels

• Challenges in Communication-Avoiding Krylov Subspace
Methods
– Stability and Convergence

– Performance

• Preconditioning

• Related Work: “s-step methods”

• Future Work

21

Challenges: Stability and Convergence

• Stability of Communication-Avoiding Krylov
Subspace Methods depends on s

• Does look familiar?
– Power Method! Converges to principle eigenvector

– Expected linear dependence of basis vectors
• Means the Krylov Subspace can‟t expand any more – method

breaks down, convergence stalls

• Can we remedy this problem to remain stable for
larger s values?
– Yes! Other possible basis choices:

• Newton

• Chebyshev

22

23

24

25

26

Summary of Preliminary Results

• Our CA variants (generally) maintain stability for s in between 2 and 10

– Which basis (Monomial, Newton, or Chebyshev) is most effective

depends on the specific Krylov method we use and the condition number

of A (and other spectral properties of A)

– Reduces communication costs by a factor of s

• So, if s = 10, possible speedup is 10x!

• In general, as s increases, the number of iterations needed to converge

increases, and after a certain point, the method breaks down

– Could be remedied by preconditioning, extended precision, etc.

• Must choose s to maintain stability

27

Talk Outline
• What is communication?

• What are Krylov Subspace Methods?

• Communication-Avoiding Krylov Subspace Methods
– New Communication-Avoiding Kernels

• Challenges in Communication-Avoiding Krylov Subspace
Methods
– Stability and Convergence

– Performance

• Preconditioning

• Related Work: “s-step methods”

• Future Work

28

Challenges: Performance

• How to choose s?
– Assuming that stability is not an issue…

– After some value of s, the matrix is too dense to avoid
communication using the Matrix Powers Kernel

– But exactly computing this value of s requires
computing the matrix powers!

• How to partition the matrix for Asx?
– As above, computing dependencies requires

computing matrix powers

– The redundant work (“ghost zones”) are induced by
the partition. So how can we achieve load balance?

29

Partitioning for CA-KSMs

• Minimizing communication in matrix powers reduces to hypergraph

partitioning s-level column-nets.

• Problem: Computational and storage cost:

• s × Boolean sparse matrix-matrix multiplies!

(s-level) row-nets represent

domain of dependence:
(s-level) column-nets represent

domain of influence:

30

Parallel communication for

 y = As x,

given 1D rowwise layout of As

Parallel communication for

Asx(A,s,x) = [x, Ax, A2x, …, Asx],

given overlapping partition of A
=

(assuming no

cancellation and

nonzero

diagonal)

Partitioning for CA KSMs

• Solution: Use reachability estimation [Cohen ‟94]

– O(nnz) time randomized algorithm for estimating size of transitive

closure.

• Calculating transitive closure costs O(n*nnz)

• Can be used to estimate nnz-per-column in matrix product As in O(nnz)

time

– Can be used to sparsify the hypergraph – Drop large nets during

construction

– Reduces size of data structure and computational cost, while still

providing a good partition

• Can be used to estimate overlap between columns – the number of nonzero

rows two column have in common

– This could allow us to heuristically load balance

31

Challenges: Performance for Stencil-like Matrices

• What if A is stencil-like (in general,

o(n) cost to read)?

– In the sequential algorithm…

• Not communication-bound

due to reading A, but…

• Communication bottleneck is

now reading Krylov vectors

– O(kn) cost to read

Krylov basis vectors

every k steps

• Can we reduce the communication

cost of k steps from O(kn) to O(n)?

32

(i, j)

(i-1, j)

(i+1, j)

(i, j+1)

(i, j-1)

Figure: 2D 5-point stencil. Each grid-

point is updated at each time-step

using only nearest neighbor values

Streaming Matrix Powers Computation

• Idea: Don‟t explicitly store basis vectors

– Streaming Matrix Powers: Interleave matrix powers computation and

construction of the Gram Matrix G

– Part i computes G+=Vi
TVi , discards Vi

• Tradeoff: requires two matrix powers invocations, but

bandwidth reduced by a factor of k

• OK if reading and applying A is inexpensive (e.g., stencil, AMR

base case, others?)

• Overall communication reduced from O(kn) to O(n) !
33

Auto-tuning for CA-KSMs

• Auto-tuning for stability

– Choice of basis to use

• Depends on s, condition number of A, method, etc.

• Auto-tuning for performance

– Partitioning A amongst parallel processors to minimize

communication

– Partitioning for cache blocking to maximize cache reuse

– Determine which variant of the matrix powers kernel to use

• E.g., “streaming” if A is stencil-like

– Many other standard parallel and sequential optimizations…

• Eventually will be built into pOSKI (Parallel Optimized Sparse Kernel

Interface), an auto-tuning library for sparse matrix computations
34

Talk Outline
• What is communication?

• What are Krylov Subspace Methods?

• Communication-Avoiding Krylov Subspace Methods
– New Communication-Avoiding Kernels

• Challenges in Communication-Avoiding Krylov Subspace
Methods
– Stability and Convergence

– Performance

• Preconditioning

• Related Work: “s-step methods”

• Future Work

35

What is preconditioning?
• The number of iterations a KSM takes to converge depends on the

“condition number” of A

– Condition number is a property of a matrix/system (not of the algorithm

or precision used)

• For Ax=b, roughly denotes how error in b affects error in x

– The lower the condition number, the fewer iterations needed for

convergence

• Preconditioning: Instead of solving Ax=b, solve (MA)x = Mb, where the

matrix MA has a lower condition number than A

– Many methods exist for finding a matrix M which has this property

• “Sparse Approximate Inverse”, “Incomplete LU”, “Polynomial

Preconditioning”, etc.

• This technique is used in almost all practical applications of KSMs
36

What About Preconditioning in CA-KSMs?

37

• Problem: CA preconditioning approach requires a
different approach/implementation for each type of
preconditioner!

• Existing algorithms

• Polynomial preconditioners (Saad, Toledo)

• M is polynomial in A – easily incorporated into Matrix
Powers Kernel

• CA-Left and Right preconditioning (Hoemmen, 2010)

• For 2 non-trivial classes of preconditioners

• 1 + o(1) more messages than single SpMV, 1
preconditioner solve

• Tradeoff: computation cost increases significantly

• Can require twice as many flops as s SPMVs!

Talk Outline
• What is communication?

• What are Krylov Subspace Methods?

• Communication-Avoiding Krylov Subspace Methods
– New Communication-Avoiding Kernels

• Challenges in Communication-Avoiding Krylov Subspace
Methods
– Stability and Convergence

– Performance

• Preconditioning

• Related Work: “s-step methods”

• Future Work

38

Related Work: s-step Methods
Author Algorithm Basis Preconditioning Matrix

Powers?

TSQR?

Van Rosendale,

1983

CG Monomial Polynomial No -

Leland, 1989 CG Monomial Polynomial No -

Walker, 1988 GMRES Monomial None No No

Chronopoulos

and Gear, 1989

CG Monomial None No -

Chronopoulos

and Kim, 1990

Orthomin,

GMRES

Monomial

None

No No

Chronopoulos,

1991

MINRES Monomial

None

No No

Kim and

Chronopoulos,

1991

Symm.

Lanczos,

Arnoldi

Monomial

None

No No

Sturler, 1991 GMRES Chebyshev None No No

39

Related Work, contd.

40

Author Algorithm Basis Preconditioning Matrix Powers? TSQR?

Joubert and Carey,

1992

GMRES Chebyshev None Yes (stencil only) No

Chronopoulos and

Kim, 1992

Nonsymm

. Lanczos

Monomial None No -

Bai, Hu, and Reichel,

1991

GMRES Newton None No

No

Erhel, 1995 GMRES Newton None No

No

 De Sturler and van

der Vorst, 2005

GMRES Chebyshev General No

No

Toledo, 1995 CG Monomial Polynomial Yes (stencil only) -

Chronopoulos and

Swanson, 1990

CGR,

Orthomin

Monomial None No

-

Chronopoulos and

Kinkaid, 2001

Orthodir Monomial None No

-

Talk Outline
• What is communication?

• What are Krylov Subspace Methods?

• Communication-Avoiding Krylov Subspace Methods
– New Communication-Avoiding Kernels

• Challenges in Communication-Avoiding Krylov Subspace
Methods
– Stability and Convergence

– Performance

• Preconditioning

• Related Work: “s-step methods”

• Future Work

41

Future Work
• Other CA Krylov Subspace methods?

• Evaluate current preconditioning methods
– and extend CA approach to other classes of preconditioners

• Parallel Implementations

– Performance tests

• Improving stability

– Extended precision

• Auto-tuning work
– Incorporation of Matrix Powers into pOSKI (Jong-Ho Byun, et al., UCB)

– Code generation for Matrix Powers (collaborating with Ras Bodik, Michelle
Strout)

– Exploring co-tuning for CA-KSMS (i.e., Matrix Powers and TSQR)

• Looking forward: how do Communication-Avoiding algorithms relate to
energy efficiency?

42

Thank you!

Questions?

43

Extra Slides

CA-BiCG

45

(Saad, 2000)

(Saad, 2000)

(Saad, 2000)

Communication-Avoiding

Krylov Subspace Methods

Tall Skinny QR
Matrix Powers

Kernel

Choice of Basis Stability and

Roundoff Error
Preconditioning

(Algorithms)

(Numerical Analysis)

Algorithm Overview
• Initially assign r-vector of rankings (a1,…, ar), (sampled from

exponential R.V., λ = 1) to each vertex v

• In each iteration (up to s), for each vertex v, take the coordinate-wise
minima of the r-vectors reachable from v (denoted S(v), non-zeros
in column of A corresponding to v)

• Apply estimator:

• Intuition: lowest-ranked node in S(v) is highly correlated with |S(v)|
– Example: If S(v) contains half the nodes, we expect the lowest rank of

nodes in S(v) is very small.

 where T is the actual size of the transitive closure, r is the number
of randomized rankings per vector

50

r2(1) … r2(r) r3(1) … r3(r) r4(1) … r4(r)

r3(1) … r3(r)

r5(1) … r5(r)

r4(1) … r4(r) r4(1) … r4(r)

r1(1) … r1(r)

r2(1) … r2(r) r3(1) … r3(r) r4(1) … r4(r)

r3(1) … r3(r)

r5(1) … r5(r) r1(1) … r1(r)

r4(1) … r4(r)

r2(i) = min(

r1(i), r2(i), r3(i))

r2(1) … r2(r)

r2(1) … r2(r) r3(1) … r3(r) r4(1) … r4(r)

r3(1) … r3(r)

r5(1) … r5(r) r1(1) … r1(r)

r4(1) … r4(r) r4(1) … r4(r)

r3(i) = min(

r2(i), r3(i), r4(i))

r2(1) … r2(r) r3(1) … r3(r) r4(1) … r4(r)

r3(1) … r3(r)

r5(1) … r5(r) r1(1) … r1(r)

r4(1) … r4(r) r4(1) … r4(r)

r4(i) = min(

r3(i), r4(i), r5(i))

r3(1) … r3(r) r4(1) … r4(r) r4(1) … r4(r)

r3(i) = min(

r2(i), r3(i), r4(i))

r3(1) … r3(r)

Preliminary Experiments

• Set of small test matrices from UFSMC [Davis „94]

• tol = 0.5 (half-dense), 4 parts, s∈{2, 3, 4} depending on
fill in As

• Comparison of hypergraph size and communication
volume for four strategies:
– s-level column nets

– Sparsified column nets (somewhere between s- and 1-level)

– 1-level column nets

– Graph partitioning (A+AT)

• Software: PaToH [Catalyurek, Aykanat, „99] and Metis
[Karypis, Kumar „98]

56

Matrix Application n nnz Spy plot

arc130 Materials

Science

130 1037

west0132 Chemical

Engineering

132 413

str_0 LP 363 2454

gre_343 Directed

graph

343 1032

mcca Astrophysics 180 2659

rw496 Markov

Chain Model

496 1859

str_200 LP 363 3068

58

As

59

Results and Observations

• Sparsified nets lead to comparable partition

quality for significantly reduced hypergraph

size

• Tuning parameter tol gives flexibility to trade

off:

– Quality of partition

– Computation and storage costs

60

