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President Obama cites Communication Avoiding algorithms in 

the FY 2012 Department of Energy Budget Request to Congress: 
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CA-GMRES  

(Hoemmen, Mohiyuddin, et al.) 

“New Algorithm Improves Performance and Accuracy on Extreme-Scale 

Computing Systems. On modern computer architectures, communication 

between processors takes longer than the performance of a floating point 

arithmetic operation by a given processor. ASCR researchers have 

developed a new method, derived from commonly used linear algebra 

methods, to minimize communications between processors and the 

memory hierarchy, by reformulating the communication patterns specified 

within the algorithm. This method has been implemented in the 

TRILINOS framework, a highly-regarded suite of software, which 

provides functionality for researchers around the world to solve large 

scale, complex multi-physics problems.” 
 

FY 2010 Congressional Budget, Volume 4, FY2010 Accomplishments, Advanced Scientific 

Computing Research (ASCR), pages 65-67. 
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What is “Communication”? 

• Algorithms have 2 costs: 
– Arithmetic (FLOPS) 

– Movement of data 
• Two parameters: α – Latency, β – Reciprocal Bandwidth 

– Time to move n words of data is  α + nβ 
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Communication in the future… 
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• Gaps growing exponentially… 
 

• Floating point time << 1/Network BW << Network Latency 

• Improving   59%/year  vs.   26%/year  vs.  15%/year 

 

• Floating point time << 1/Memory BW << Memory Latency 

• Improving   59%/year  vs. 23%/year   vs.  5.5%/year  

 

• We want more than just “hiding” communication 

– Arbitrary speedups possible, vs. at most 2x speedup 
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Motivation: Sparse Matrices 

• Many algorithms for 

scientific applications require 

solving linear systems of 

equations: Ax = b 
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Figure: Simulating Pressure over Airfoil. 

Source: http://www.nada.kth.se 

• In many cases, the matrix A is sparse 

– Sparse matrix: a matrix with enough 

zero entries to be worth taking 

advantage of 

• This means that information is 

“local” instead of “global”. A 

given variable only depends on 

some of the other variables.   

– Example: Simulating Pressure 

around Airfoil 



Solving a Sparse Linear System 

• Iterative methods iteratively refine an 

approximate solution to the system 

– Used when 

• System is large and sparse – direct 

method too expensive 

• We only need an approximation – 

don‟t need to solve exactly, so less 

operations needed 

• A is not explicitly stored 

– Ex: Krylov Subspace Methods (KSMs) 
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• Direct methods solve a linear system in a 

finite sequence of operations 

– Often used to solve dense problems 

– Ex: Gaussian Elimination 
Direct Method for Solving Ax = b 

Initial guess 

Convergence? 
Return  

solution 

Yes 

No 

Refine 

Solution 

Iterative Method for Solving Ax = b 
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How do Krylov Subspace Methods Work? 

• A Krylov Subspace is defined as: 
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• In each iteration,  

– Sparse matrix-vector multiplication (SpMV) 

with A to create new basis vector  

• Adds a dimension to the Krylov Subspace 

– Use vector operations to choose the “best” 

approximation of the solution in the 

expanding Krylov Subspace (projection of a 

vector onto a subspace) 

• How “best” is defined distinguishes 

different methods 

• Examples: Conjugate Gradient (CG), Generalized Minimum 
Residual Methods (GMRES), Biconjugate Gradient (BiCG) 

projK(r) 



A Few Applications of Krylov Subspace Methods 

• Physical simulations 
– Solving PDEs 

• Often used in combination with Multigrid as bottom-solve 

• Ex: Simulating blood flow (Parlab‟s Health App)  

 

• Mobile/Cloud applications 
– Even more important where bandwidth is very limited, 

latency is long (or if this parameters are variable 
between machines!) 
• Auto-tuning becomes more important if we don‟t know our 

hardware 
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Figure: Contour Detection [CSNYMK10] 

• Image Processing 
Applications 
– Ex: Image segmentation, 

Contour detection 

Figure: ParLab Health App: 

Modeling Blood Blow in the 

Brain 



Krylov Subspace Methods are Communication-Bound 

• Problem: Calls to communication-bound kernels every 

iteration 

– SpMV (computing A*v) 

• Parallel: share/communicate source vector 

with neighbors 

• Sequential: read  A (and vectors) from slow 

memory 

– Vector operations 

– Orthogonalization 

» Dot products  

» Vector addition and scalar 

multiplication 

• Solution: 

– Replace Communication-bound kernels by 

Communication-Avoiding ones 

– Reformulate KSMs to use these kernels 
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Example: GMRES 
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Pseudocode to perform s steps of original algorithm: 

SpMV operation in every iteration: 

requires communication of current 

entries of v (parallel) / reading A and 

vectors from slow memory (sequential) 

 

Vector operations in every iteration: 

 requires global communication 

(parallel) / reading O(n) words from 

slow memory (sequential) 
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Communication-Avoiding KSMs 

• We need to break the dependency 
between communication bound 
kernels and KSM iterations 

 

• Idea: Expand the subspace s 
dimensions (s SpMVs with A), then 
do s steps of refinement 
– unrolling the loop s times 

 

• To do this we need two new 
Communication-Avoiding kernels  
– “Matrix Powers Kernel” replaces 

SpMV 

– “Tall Skinny QR” (TSQR) replaces 
orthogonalization operations 
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The Matrix Powers Kernel 
• Given A, v, and s, Matrix powers kernel computes 

               {v, Av, A2v, …, As-1v} 

• If we figure out dependencies beforehand, we can do all the 

communication for s steps of the algorithm only 

reading/communicating A  o(1) times! 

– Parallel case: Reduces latency by a factor of s  at the cost of 

redundant computations 

– Sequential case: reduces latency and bandwidth by a factor of s, no 

redundant computation  

• Simple example: a tridiagonal matrix 
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Communication Avoiding Kernels: TSQR 

• TSQR = Tall Skinny QR  (#rows >> #cols) 

– QR: factors a matrix A into the product 

of 

• An orthogonal matrix (Q) 

• An upper triangular matrix (R) 

– Here, A is the matrix of the Krylov 

Subspace Basis Vectors  

• output of the matrix powers kernel 

– Q and R allow us to easily expand the 

dimension of the Krylov Subspace 

 

• Usual Algorithm 

• Compute Householder vector for each 

column O(n log P) messages 

•  Communication Avoiding Algorithm 

•  Reduction operation, with QR as 

operator O(log P) messages 
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Figure: [ABDK10] 

• Shape of reduction tree depends on 

architecture 

– Parallel: use “deep” tree, saves 

messages/latency 

– Sequential: use flat tree, saves 

words/bandwidth 

– Multicore: use mixture 

 



Example: CA-GMRES 
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s steps of CA algorithm: 

s steps of original algorithm: 

s powers of A for no extra 

latency cost 

 

s steps of QR for one step of 

latency 
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[MHDY09] Platform: Intel Clovertown, 8 cores 



Current CA Krylov Subspace Methods 

• CG, Lanczos, Arnoldi (Hoemmen, 2010),  

• GMRES (Hoemmen, Mohiyuddin, Demmel, Yelick, 2009) 

• BiCG, CGS, BiCGStab (Carson, Knight, Demmel, 2011).  

 

• Factor of s less communication than standard version. 

 

• General approach for CG-like methods: 
– In each outer loop,  compute s basis vectors from previous  

iteration‟s residual vectors 

– Perform s inner loop iterations 

• Compute current recurrence coefficients 

• Replace SpMVs with local basis vector operations 

• Replace dot products with shorter, local dot products 

– continue until convergence…. 
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Challenges: Stability and Convergence 

• Stability of Communication-Avoiding Krylov 
Subspace Methods depends on s  

 

• Does                            look familiar? 
– Power Method! Converges to principle eigenvector 

– Expected linear dependence of basis vectors 
• Means the Krylov Subspace can‟t expand any more – method 

breaks down, convergence stalls 

 

• Can we remedy this problem to remain stable for 
larger s values? 
– Yes! Other possible basis choices: 

• Newton 

• Chebyshev 
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Summary of Preliminary Results 

• Our CA variants (generally) maintain stability for s in between 2 and 10  

– Which basis (Monomial, Newton, or Chebyshev) is most effective 

depends on the specific Krylov method we use and the condition number 

of A (and other spectral properties of A) 

– Reduces communication costs by a factor of s 

• So, if s = 10, possible speedup is 10x! 

 

• In general, as s increases, the number of iterations needed to converge 

increases, and after a certain point, the method breaks down 

– Could be remedied by preconditioning, extended precision, etc. 

 

• Must choose s to maintain stability 
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Challenges: Performance 

• How to choose s? 
– Assuming that stability is not an issue… 

– After some value of s, the matrix is too dense to avoid 
communication using the Matrix Powers Kernel 

– But exactly computing this value of s requires 
computing the matrix powers! 

 

• How to partition the matrix for Asx?  
– As above, computing dependencies requires 

computing matrix powers 

– The redundant work (“ghost zones”) are induced by 
the partition. So how can we achieve load balance? 
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Partitioning for CA-KSMs 

• Minimizing communication in matrix powers reduces to hypergraph 

partitioning s-level column-nets. 

• Problem: Computational and storage cost: 

• s × Boolean sparse matrix-matrix multiplies! 

(s-level) row-nets represent 

domain of dependence: 
(s-level) column-nets represent 

domain of influence: 
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Parallel communication for 

 y = As x, 

given 1D rowwise layout of As  

Parallel communication for 

Asx(A,s,x) = [x, Ax, A2x, …, Asx], 

given overlapping partition of A 
= 

(assuming no 

cancellation and 

nonzero 

diagonal) 



Partitioning for CA KSMs 

• Solution: Use reachability estimation [Cohen ‟94] 

– O(nnz) time randomized algorithm for estimating size of transitive 

closure. 

• Calculating transitive closure costs O(n*nnz) 

 

• Can be used to estimate nnz-per-column in matrix product As in O(nnz) 

time  

– Can be used to sparsify the hypergraph – Drop large nets during 

construction 

– Reduces size of data structure and computational cost, while still 

providing a good partition 

 

• Can be used to estimate overlap between columns – the number of nonzero 

rows two column have in common 

– This could allow us to heuristically load balance 
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Challenges: Performance for Stencil-like Matrices 

• What if A is stencil-like (in general, 

o(n) cost to read)? 

– In the sequential algorithm… 

• Not communication-bound 

due to reading A, but… 

• Communication bottleneck is 

now reading Krylov vectors 

– O(kn) cost to read 

Krylov basis vectors 

every k steps 

 

• Can we reduce the communication 

cost of k steps from O(kn) to O(n)? 
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(i, j) 

(i-1, j) 

(i+1, j) 

(i, j+1) 

(i, j-1) 

Figure: 2D 5-point stencil. Each grid-

point is updated at each time-step 

using only nearest neighbor values 



Streaming Matrix Powers Computation 

• Idea: Don‟t explicitly store basis vectors 

– Streaming Matrix Powers: Interleave matrix powers computation and 

construction of the Gram Matrix G 

– Part i computes G+=Vi
TVi  , discards Vi      

 

 

 

 

 

 

 

 

 

• Tradeoff: requires two matrix powers invocations, but 

bandwidth reduced by a factor of k 

•  OK if reading and applying A is inexpensive (e.g., stencil, AMR 

base case, others? )     

• Overall communication  reduced from O(kn) to O(n) ! 
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Auto-tuning for CA-KSMs 

• Auto-tuning for stability 

– Choice of basis to use 

• Depends on s, condition number of A, method, etc.  

 

• Auto-tuning for performance 

– Partitioning A amongst parallel processors to minimize 

communication 

– Partitioning for cache blocking to maximize cache reuse 

– Determine which variant of the matrix powers kernel to use 

• E.g., “streaming” if A is stencil-like 

– Many other standard parallel and sequential optimizations… 

 

• Eventually will be built into pOSKI (Parallel Optimized Sparse Kernel 

Interface), an auto-tuning library for sparse matrix computations  
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What is preconditioning? 
• The number of iterations a KSM takes to converge depends on the 

“condition number” of A 

– Condition number is a property of a matrix/system (not of the algorithm 

or precision used) 

• For Ax=b, roughly denotes how error in b affects error in x 

– The lower the condition number, the fewer iterations needed for 

convergence 

 

• Preconditioning: Instead of solving Ax=b, solve (MA)x = Mb, where the 

matrix MA has a lower condition number than A 

– Many methods exist for finding a matrix M which has this property 

• “Sparse Approximate Inverse”, “Incomplete LU”, “Polynomial 

Preconditioning”, etc.  

 

• This technique is used in almost all practical applications of KSMs 
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What About Preconditioning in CA-KSMs? 
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• Problem: CA preconditioning approach requires a 
different approach/implementation for each type of 
preconditioner! 

 

• Existing algorithms 

• Polynomial preconditioners (Saad, Toledo) 

• M is polynomial in A – easily incorporated into Matrix 
Powers Kernel 

• CA-Left and Right preconditioning (Hoemmen, 2010) 

• For 2 non-trivial classes of preconditioners 

• 1 + o(1) more messages than single SpMV, 1 
preconditioner solve 

• Tradeoff: computation cost increases significantly 

• Can require twice as many flops as s SPMVs! 
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Related Work: s-step Methods 
Author Algorithm Basis Preconditioning Matrix 

Powers? 

TSQR? 

Van Rosendale, 

1983 

CG Monomial Polynomial No - 

Leland, 1989 CG Monomial Polynomial No - 

Walker, 1988 GMRES Monomial None No No 

Chronopoulos 

and Gear, 1989 

CG Monomial None No - 

Chronopoulos 

and Kim, 1990 

Orthomin, 

GMRES 

Monomial 

 

None 

 

No No 

Chronopoulos, 

1991 

MINRES Monomial 

 

None 

 

No No 

Kim and 

Chronopoulos, 

1991 

Symm. 

Lanczos, 

Arnoldi 

Monomial 

 

None 

 

No No 

Sturler, 1991 GMRES Chebyshev None No No 
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Related Work, contd. 
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Author Algorithm Basis Preconditioning Matrix Powers? TSQR? 

Joubert and Carey, 

1992 

GMRES Chebyshev None Yes (stencil only) No 

Chronopoulos and 

Kim, 1992 

Nonsymm

. Lanczos 

Monomial None No -  

Bai, Hu, and Reichel, 

1991 

GMRES Newton None No 

 

No 

 

Erhel, 1995 GMRES Newton None No 

 

No 

 

 De Sturler and van 

der Vorst, 2005 

GMRES Chebyshev General No 

 

No 

 

Toledo, 1995 CG Monomial Polynomial Yes (stencil only) - 

Chronopoulos and 

Swanson, 1990 

CGR, 

Orthomin 

Monomial None No 

 

- 

 

Chronopoulos and 

Kinkaid, 2001 

Orthodir Monomial None No 

 

- 
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Future Work 
• Other CA Krylov Subspace methods? 

 

• Evaluate current preconditioning methods 
– and extend CA approach to other classes of preconditioners 

 
• Parallel Implementations 

– Performance tests 
 

 
• Improving stability 

– Extended precision 

 

• Auto-tuning work 
– Incorporation of Matrix Powers into pOSKI (Jong-Ho Byun, et al., UCB) 

– Code generation for Matrix Powers (collaborating with Ras Bodik, Michelle 
Strout) 

– Exploring co-tuning for  CA-KSMS (i.e., Matrix Powers and TSQR) 

 

• Looking forward: how do Communication-Avoiding algorithms relate to 
energy efficiency? 
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Thank you! 

 

 

 

Questions? 
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CA-BiCG 
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(Saad, 2000) 



(Saad, 2000) 



(Saad, 2000) 



Communication-Avoiding 

Krylov Subspace Methods 

Tall Skinny QR 
Matrix Powers 

Kernel 
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Algorithm Overview 
• Initially assign r-vector of rankings (a1,…, ar), (sampled from 

exponential R.V., λ = 1) to each vertex v 

 

• In each iteration (up to s), for each vertex v, take the coordinate-wise 
minima  of the r-vectors reachable from v (denoted S(v), non-zeros 
in column of A corresponding to v) 

 

• Apply estimator:  

 

• Intuition: lowest-ranked node in S(v) is highly correlated with |S(v)| 
– Example: If S(v) contains half the nodes, we expect the lowest rank of 

nodes in S(v) is very small.  

 

 where T is the actual size of the transitive closure, r is the number 
of randomized rankings per vector 
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Preliminary Experiments 

• Set of small test matrices from UFSMC [Davis „94] 

 

• tol = 0.5 (half-dense), 4 parts, s∈{2, 3, 4} depending on 
fill in As 

 

• Comparison of hypergraph size and communication 
volume for four strategies: 
– s-level column nets 

– Sparsified column nets (somewhere between s- and 1-level) 

– 1-level column nets 

– Graph partitioning (A+AT) 
 

• Software: PaToH [Catalyurek, Aykanat, „99] and Metis 
[Karypis, Kumar „98] 
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Matrix Application n nnz Spy plot 

arc130 Materials 

Science 

130 1037  
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Engineering 

132 413  

 

 

str_0 LP 363 2454  

 

 

gre_343 Directed 

graph 

343 1032  

 

 

mcca Astrophysics 180 2659  

 

 

rw496 Markov 

Chain Model 

496 1859  

 

 

str_200 LP 363 3068  
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As 
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Results and Observations 

• Sparsified nets lead to comparable partition 

quality for significantly reduced hypergraph 

size 

 

• Tuning parameter tol gives flexibility to trade 

off: 

– Quality of partition 

– Computation and storage costs 
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