
EXASCALE VISUALIZATION
GET READY FOR A WHOLE NEW WORLD

17 JUNE 2011

Wes Bethel, Lawrence Berkeley National Laboratory

Visualization 101

  Transformation of numbers (data) into readily
comprehensible images.

  Plays an integral part in the scientific and analytic
processes.

  Data intensive.

Supercomputing 101

  Why simulation?
  Simulations are sometimes more cost effective than experiments.
  New model for science has three legs: theory, experiment, and simulation.

  What is the “exascale”?
  1 FLOP = 1 Floating point operation per second
  1 GigaFLOP = 1 billion FLOPs, 1 TeraFLOP = 1000 GigaFLOPs
  1 PetaFLOP = 1,000,000 GigaFLOPs, 1 ExaFLOP = 1 billion GigaFLOPs
  Petascale = PetaFLOPs (+ petabytes on disk + terabytes of memory)
  Exascale = ExaFLOPs (+ exabyte disk + petabytes of memory)

  Why exascale?
  More compute cycles, more memory, etc, lead for faster and/or more

accurate simulations.

Fable: The Boy Who Cried Wolf

  Once there was a shepherd boy who had to look
after a flock of sheep. One day, he felt bored and
decided to play a trick on the villagers. He
shouted, “Help! Wolf! Wolf!” The villagers heard
his cries and rushed out of the village to help the
shepherd boy. When they reached him, they asked,
“Where is the wolf?” The shepherd boy laughed
loudly, “Ha, Ha, Ha! I fooled all of you. I was only
playing a trick on you.”

Fable: The Boy Who Cried Wolf

  Once there was a viz expert who had to look
after customers. One day, he felt bored and
decided to play a trick on the villagers. He
shouted, “Help! Wolf! Wolf!” The villagers heard
his cries and rushed out of the village to help the
shepherd boy. When they reached him, they asked,
“Where is the wolf?” The shepherd boy laughed
loudly, “Ha, Ha, Ha! I fooled all of you. I was only
playing a trick on you.”

Fable: The Boy Who Cried Wolf

  Once there was a viz expert who had to look
after customers. One day, he needed funding and
decided to play a trick on his funders. He shouted,
“Help! Wolf! Wolf!” The villagers heard his cries
and rushed out of the village to help the shepherd
boy. When they reached him, they asked, “Where
is the wolf?” The shepherd boy laughed loudly,
“Ha, Ha, Ha! I fooled all of you. I was only playing
a trick on you.”

Fable: The Boy Who Cried Wolf

  Once there was a viz expert who had to look
after customers. One day, he needed funding and
decided to play a trick on his funders. He shouted,
“Help! Big Big Data!” The villagers heard his cries
and rushed out of the village to help the shepherd
boy. When they reached him, they asked, “Where
is the wolf?” The shepherd boy laughed loudly,
“Ha, Ha, Ha! I fooled all of you. I was only playing
a trick on you.”

Fable: The Boy Who Cried Wolf

  Once there was a viz expert who had to look
after customers. One day, he needed funding and
decided to play a trick on his funders. He shouted,
“Help! Big Big Data!” The funders heard his cries
and sent lots of money to help the viz expert.
When they reached him, they asked, “Where is the
wolf?” The shepherd boy laughed loudly, “Ha, Ha,
Ha! I fooled all of you. I was only playing a trick
on you.”

Fable: The Boy Who Cried Wolf

  Once there was a viz expert who had to look
after customers. One day, he needed funding and
decided to play a trick on his funders. He shouted,
“Help! Big Big Data!” The funders heard his cries
and sent lots of money to help the viz expert.
When petascale arrived, they asked, “Where is the
problem?” The shepherd boy laughed loudly, “Ha,
Ha, Ha! I fooled all of you. I was only playing a
trick on you.”

Fable: The Boy Who Cried Wolf

  Once there was a viz expert who had to look
after customers. One day, he needed funding and
decided to play a trick on his funders. He shouted,
“Help! Big Big Data!” The funders heard his cries
and sent lots of money to help the viz expert.
When petascale arrived, they asked, “Where is the
problem?” The viz expert shrugged and said, “The
problem isn’t quite here yet, but it will be soon.”

This is NOT the story of this talk.

The message from this talk…

Petascale Visualization Exascale Visualization

I/O Bandwidth I/O Bandwidth
Data Movement

Data Movement’s
4 Angry Pups

Outline

  The Terascale Strategy
  The I/O Wolf & Petascale Visualization
  An Overview of the Exascale Machine
  The Data Movement Wolf and Its 4 Angry Pups
  Under-represented topics
  Conclusions

Outline

  The Terascale Strategy
  The I/O Wolf & Petascale Visualization
  An Overview of the Exascale Machine
  The Data Movement Wolf and Its 4 Angry Pups
  Under-represented topics
  Conclusions

The terascale visualization strategy

P0!
P1!

P3!

P2!

P8! P7!P6!
P5!

P4!

P9!

Pieces of
data

(on disk)

Read Process Render

Processor 0

Read Process Render

Processor 1

Read Process Render

Processor 2

Parallel visualization
program

P0! P3!P2!

P5!P4! P7!P6!

P9!P8!

P1!

Parallel Simulation
Code

I refer to this technique as “pure parallelism”.

Pure parallelism

  Pure parallelism: “brute force” … processing full
resolution data using data-level parallelism

  Pros:
 Easy to implement

  Cons:
 Requires large I/O capabilities
 Requires large amount of primary memory

Pure parallelism and today’s tools

  VisIt, ParaView, & EnSight primarily employ a pure
parallelism + client-server strategy.
 All tools working on advanced techniques as well

  Of course, there’s lots more technology out there
besides those three tools…

Outline

  The Terascale Strategy
  The I/O Wolf & Petascale Visualization
  An Overview of the Exascale Machine
  The Data Movement Wolf and Its 4 Angry Pups
  Under-represented topics
  Conclusions

I/O and visualization
  Pure parallelism is almost

always >50% I/O and
sometimes 98% I/O

  Amount of data to visualize
is typically O(total mem)

FLOPs	
 Memory	
 I/O	

Terascale	
 machine	

“Petascale	
 machine”	

  Two big factors:
①  how much data you have to read
②  how fast you can read it

   Relative I/O (ratio of total memory and I/O) is key

Trends in I/O

Machine Year Time to write memory

ASCI Red 1997 300 sec

ASCI Blue Pacific 1998 400 sec

ASCI White 2001 660 sec

ASCI Red Storm 2004 660 sec

ASCI Purple 2005 500 sec

Jaguar XT4 2007 1400 sec

Roadrunner 2008 1600 sec

Jaguar XT5 2008 1250 sec

c/o David Pugmire, ORNL

Why is relative I/O getting slower?

  I/O is quickly becoming a dominant cost in the
overall supercomputer procurement.
 And I/O doesn’t pay the bills.

  Simulation codes aren’t as exposed.

We need to de-emphasize I/O in our
visualization and analysis techniques.

How are we responding?

  Enable downstream tools to operate on smaller-
sized representations: multi-resolution methods.

  Operate on data “in place:” in situ visualization and
analysis.

  Load less of the data: data subsetting.

Multi-resolution techniques

  Idea: create multiple versions of a data set at
different resolutions.

  Pros
  Can drastically reduce I/O & memory requirements

  (Sometimes better) confidence in pictures; multi-res hierarchy addresses
“many cells to one pixel issue”

  Cons
  Not always meaningful to process simplified version of the data.

  How do we generate hierarchical representations during dump? What
costs do they incur (data movement costs, storage costs)?

In situ

  In situ processing can mean multiple things
  Idea: perform vis/analysis processing on data while it is still

resident in memory.
 Will discuss this more later in the talk

  Common perceptions of in situ
  Pros:

  No I/O & plenty of compute

 Cons:
  Operates in a memory constrained environment.
  Some operations not possible

  Once the simulation has advanced, you cannot go back and analyze it

  User must know what to look for a priori.

Data Subsetting

  Data Subsetting:
 Idea: load and process only “interesting data.”
 Examples: reducing data processed via meta-data,

query-driven visualization (forensic cybersecurity
example, if we have time)

 Pro: Less data to process (less I/O, less memory).

 Con: Not applicable to all algorithms.

Out-of-core methods

  Out-of-core methods
  Idea: rather than load the entire data set, load only

smaller portions, or windows, and execute the vis/
analysis pipeline on that piece.

 Pros:
 Lower requirement for primary memory
 Doesn’t require big machines

 Con:
  Still paying large I/O costs (slow!)
  Can result in I/O “multiplier” effect.

Assertion: we are going to need a
lot of solutions.

All visualization and analysis work

Multi-res

In situ

Out-of-core

Data subsetting

Do remaining ~5% on SC
w/ pure parallelism

In situ
(exascale)

Outline

  The Terascale Strategy
  The I/O Wolf & Petascale Visualization
  An Overview of the Exascale Machine
  The Data Movement Wolf and Its 4 Angry Pups
  Under-represented topics
  Conclusions

Exascale assumptions

  The machine will be capable of one exaflop.
  The machine will cost < $200M.
  The machine will use < 20MW.
  The machine may arrive as early as 2018.

Hurdle #1: power requires slower
clocks and greater concurrency

c/o SciDAC Review 16, February 2010

Hurdle #2: memory capacity eats
up the entire fiscal budget

$0.00

$100.00

$200.00

$300.00

$400.00

$500.00

$600.00

16 32 64 128 256

C
os

t i
n

M
ill

io
ns

 o
f

D
ol

la
rs

Petabytes of Memory

Cost in $M (8 gigabit modules)

Cost in $M (16 Gigabit modules)

1/2 of $200M system

c/o John Shalf, LBNL

Hurdle #3: memory bandwidth
eats up the entire power budget

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 0.2 0.5 1 2

M
em

or
y

Po
w

er
 C

on
su

m
pt

io
n

in
 M

eg
aw

at
ts

 (
M

W
)

Bytes/FLOP ratio (# bytes per peak FLOP)

Stacked JEDEC 30pj/bit 2018 ($20M)

Advanced 7pj/bit Memory ($100M)

Enhanced 4pj/bit Advanced Memory ($150M
cumulative)

Feasible Power Envelope (20MW)

c/o John Shalf, LBNL

Summarizing exascale visualization

  Power is king.
  Costly to move data off the machine.

 And we can’t read it in if we do get it off.

  Costly to even move it around the machine.

   Beneficial to process the data in situ.

Outline

  The Terascale Strategy
  The I/O Wolf & Petascale Visualization
  An Overview of the Exascale Machine
  The Data Movement Wolf and Its 4 Angry Pups

 Pup #1: In Situ Systems Research

  Under-represented topics
  Conclusions

Summarizing flavors of in situ
In Situ
Technique

Aliases Description Negative Aspects

Tightly
coupled

Synchronous,
co-processing

Visualization and analysis
have direct access to
memory of simulation code

1)  Very memory
constrained

2)  Large potential impact
(performance, crashes)

Loosely
coupled

Asynchronous,
concurrent

Visualization and analysis
run on concurrent resources
and access data over
network

1)  Data movement costs
2)  Requires separate

resources

Hybrid Data is reduced in a
tightly coupled setting and
sent to a concurrent
resource

1)  Complex
2)  Shares negative aspects

(to a lesser extent) of
others

Possible in situ visualization scenarios

Visualization could be a service in this system (tightly coupled)…

… or visualization could be done on a separate node located nearby dedicated to
visualization/analysis/IO/etc. (loosely coupled)

Physics #1
Physics #2

Physics #n
…

Services Viz

Physics #1
Physics #2

Physics #n
…

Services Viz

Physics #1
Physics #2

Physics #n
…

Services Viz

Physics #1
Physics #2

Physics #n
…

Services Viz

Physics #1
Physics #2

Physics #n
…

Services Viz

…

Physics #1
Physics #2

Physics #n
…

Services

Physics #1
Physics #2

Physics #n
…

Services

Physics #1
Physics #2

Physics #n
…

Services

Physics #1
Physics #2

Physics #n
…

Services

One of many
nodes dedicated
to vis/analysis/IO

Accelerator, similar
to HW on rest of
exascale machine
(e.g. GPU)

… or maybe this is
a high memory
quad-core running
Linux!

Specialized vis &
analysis resources

… or maybe the data
is reduced and sent to
dedicated resources
off machine!

… And likely many more configurations

Viz

Viz

Viz

Viz

We don’t know what the best technique
will be for this machine.

And it might be situation dependent.

Outline

  The Terascale Strategy
  The I/O Wolf & Petascale Visualization
  An Overview of the Exascale Machine
  The Data Movement Wolf and Its 4 Angry Pups

 Pup #2: Programming Languages

  Under-represented topics
  Conclusions

Angry Pup #2: Programming Language

  VTK: enables the community to develop diverse
algorithms for diverse execution models for diverse
data models
  Important benefit: “write once, use many”
 Substantial investment

  We need something like this for exascale.
 Will also be a substantial investment

  Must be:
 Lightweight
 Efficient
 Able to run in a many core environment

OK, what language is this in?
OpenCL? DSL?

… not even clear how to start

Message-passing remains important at
the exascale, but we lose its universality

Pax MPI

(1994 - 2010)

MPI will be
combined with
other
paradigms
within a shared
memory node
(OpenMP,
OpenCL,
CUDA, etc.)

Codes will not
be hardware-
universal
again, until a
lengthy
evolutionary
period passes

c/o David Keyes, KAUST

Visualization and Hybrid
Parallelism

40

State of Parallelism in Scientific
Computing
  Most production codes written using MPI, vendor

MPI implementations optimized for their
architecture.

  HPC community wondering how well MPI will scale
to high concurrency, particularly on 100-core CPUs.

  What to do?
 Some alternatives: data parallel languages (CUDA),

PGAS languages (UPC), global shared memory (CAF).
 Various research projects explore different aspects of

this space: Chombo in Titanium, autotuning, hybrid
parallelism.

41

This Study

  First-ever study of hybrid parallelism on
visualization: raycasting volume rendering.
 Parallels similar work done for scientific computing.

  Hybrid-parallel implementation/architecture.
  Performance study.

 Runs at 216K-way parallel: 6x larger than any
published results (circa May 2010).

 Look at:
 Costs of initialization, Memory use comparison, Scalability,

Absolute runtime.

42

Algorithm Studied: Raycasting VR
  Overview of Levoy’s method

 For each pixel in image plane:
 Find intersection of ray and volume
 Sample data (RGBa) along ray,

integrate samples to compute final
image pixel color

43

Parallelizing Volume Rendering

  Image-space decomposition.
  Each process works on a disjoint subset of the final image (in

parallel)
  Processes may access source voxels more than once, will

access a given output pixel only once.
 Great for shared memory parallelism.

  Object-space decomposition.
  Each process works on a disjoint subset of the input data (in

parallel).
  Processes may access output pixels more than once.
 Output requires image composition (ordering semantics).
  Typical approach for distributed memory parallelism.

44

Hybrid Parallel Volume Rendering

  Hybrid-parallelism a blend of shared- and
distributed-memory parallelism.

  Distributed-memory parallelism:
  Each socket assigned a spatially disjoint subset of source data, produces

an image of its chunk.

  All subimages composited together into final image.

  MPI implementation.

  Shared-memory parallelism:
  Inside a socket, threads use image-space partitioning, each thread

responsible for a subset of the final image.
  What is the best image tile size? (Autotuning presentation)

  Implementations (2): pthreads, OpenMP.

45

Hybrid Parallel Volume Rendering

  Our hybrid-parallel architecture:

Shared memory parallel

Distributed-memory parallel

46

Our Experiment

  Thesis: hybrid-parallel will exhibit favorable performance,
resource utilization characteristics compared to traditional
approach.

  How/what to measure?
  Memory footprint, communication traffic load, scalability characteristics,

absolute runtime.
  Across a wide range of concurrencies.
  Algorithm performance somewhat dependent upon viewpoint, data:

  Vary viewpoints over a set that cut through data in different
directions: will induce different memory access patterns.

  Strong scaling study: hold problem size constant, vary amount
of resources.

47

Experiment: Platform and Source
Data
  Platform: JaguarPF, a Cray XT5 system at ORNL

  18,688 nodes, dual-socket, six-core AMD Opteron (224K cores)

  Source data:
  Combustion simulation results, hydrogen flame (data courtesy J. Bell,

CCSE, LBNL)

  Effective AMR resolution: 10243, flattened to 5123, runtime upscaled to
46083 (to avoid I/O costs).

  Target image size: 46082 image.
  Want approx 1:1 voxels to pixels.

  Strong scaling study:
  As we increase the number of procs/cores, each proc/core works on a

smaller-sized problem.

  Time-to-solution should drop.

48

Memory Use – MPI_Init()

  Per PE memory:
 About the same at 1728, over 2x at 216000.

  Aggregate memory use:
 About 6x at 1728, about 12x at 216000.
 At 216000, -only requires 2GB of memory for

initialization per node!!!

49

Memory Use – Ghost Zones

  Two layers of ghost cells required for this problem:
  One for trilinear interpolation during ray integration loop.

  Another for computing a gradient field (central differences) for shading.

  Hybrid approach uses fewer, but larger data blocks.
  ~40% less memory required for ghost zones (smaller surface area)

  Reduced communication costs

50

Scalability – Raycasting Phase
  Near linear scaling since no

interprocess communication.
  -hybrid shows sublinear

scaling due to oblong block
shape.

  -only shows slightly better
than linear due to reduced
work caused by perspective
foreshortening.

51

Scalability – Compositing

  How many compositors to use?
  Previous work: 1K to 2K for 32K

renderers (Peterka, 2009).

  Our work: above ~46K renderers,
4K to 8K works better.

  -hybrid cases always performs
better: fewer messages.

  Open question: why the critical
point?

52

Absolute Runtime

  -hybrid outperforms –only at every concurrency
level.
 At 216K-way parallel, -hybrid is more than twice as

fast as –only.
 Compositing times begin to dominate: communication

costs.

53

Summary of Results

  Absolute runtime: -hybrid twice as fast as –only
at 216K-way parallel.

  Memory footprint: -only requires 12x more
memory for MPI initialization then –hybrid
  Factor of 6x due to 6x more MPI PEs.

  Additional factor of 2x at high concurrency, likely
a vendor MPI implementation (an N2 effect).

  Communication traffic:
  -hybrid performs 40% less communication than -

only for ghost zone setup.

  -only requires 6x the number of messages for
compositing.

  Image: 46082 image of a ~45003 dataset
generated using 216,000 cores on JaguarPF in
~0.5s (not counting I/O time).

Outline

  The Terascale Strategy
  The I/O Wolf & Petascale Visualization
  An Overview of the Exascale Machine
  The Data Movement Wolf and Its 4 Angry Pups

 Pup #3: Memory Footprint

  Under-represented topics
  Conclusions

Memory efficiency

  64 PB of memory for 1 billion cores means 64MB
per core
  (May be 10 billion cores and 6.4MB per core)

  Memory will be the 2nd most precious resource on
the machine.
 There won’t be a lot left over for visualization and

analysis.

  Zero copy in situ is an obvious start
 Templates? Virtual functions?

  Ensure fixed limits for memory footprints
(Streaming?)

Outline

  The Terascale Strategy
  The I/O Wolf & Petascale Visualization
  An Overview of the Exascale Machine
  The Data Movement Wolf and Its 4 Angry Pups

 Pup #4: In Situ-Fueled Exploration

  Under-represented topics
  Conclusions

Do we have our use cases covered?

  Three primary use cases:
 Exploration
 Confirmation
 Communication

Examples:
Scientific discovery
Debugging

Examples:
Data analysis
Images / movies
Comparison
Debugging Examples:

Data analysis
Images / movies

?

In situ

Can we do exploration in situ?

Having a human in the loop may prove
to be too inefficient.

(This is a very expensive resource to
hold hostage.)

Enabling exploration via in situ
processing
  Requirement: must transform the data in a way that

both reduces and enables meaningful exploration.
  Subsetting

  Exemplar subsetting approach: query-driven visualization
  User applies repeated queries to better understand data
  New model: produce set of subsets in situ, explore it with

postprocessing

  Multi-resolution
 Old model: user looks at coarse data, but can dive down to

original data.
 New model: branches of the multi-res tree are pruned if

they are very similar. (compression!)

It is not clear what the best way is to
use in situ processing to enable

exploration with post-processing …
it is only clear that we need to do it.

Outline

  The Terascale Strategy
  The I/O Wolf & Petascale Visualization
  An Overview of the Exascale Machine
  The Data Movement Wolf and Its 4 Angry Pups
  Under-represented topics
  Conclusions

Under-represented topics in this talk.

  We will have quintillions of data points … how do we
meaningfully represent that with millions of pixels?

  Data is going to be different at the exascale:
ensembles, multi-physics, etc.
 The outputs of visualization software will be different.

  Accelerators on exascale machine are likely not to have
cache coherency
 How well do our algorithms work in a GPU-type setting?
 We have a huge investment in CPU-SW. What now?

  What do we have to do to support resiliency issue?

Outline

  The Terascale Strategy
  The I/O Wolf & Petascale Visualization
  An Overview of the Exascale Machine
  The Data Movement Wolf and Its 4 Angry Pups
  Under-represented topics
  Conclusions

It is funny how this happens…

  All processing techniques still are very relevant.
  In situ: data movement wolf
 Out-of-core: Pup #3: memory efficiency
 Multi-res: Pup #4: exploration
 Data subsetting: Pup #4: exploration
 Pure parallelism: experiences at massive concurrency

will be critical

Summary

  We are unusual: we are data consumers, not data
producers, and the exascale machine is being
designed for data producers

  So the exascale machine will almost certainly lead
to a paradigm shift in the way visualization
programs process data.
 Where to process data and what data to move will be

a central issue.

Summary

  In addition to the I/O “wolf”, we will now have to
deal with a data movement “wolf”, plus its 4 pups:
1)  In Situ System
2)  Programming Language
3)  Memory Efficiency
4)  In Situ-Fueled Exploration

Acknowledgments

  Many of these slides courtesy Hank Childs (LBNL)
who gave an Exascale Visualization keynote at
EGPGV 2011 in May 2011.

  This work was supported by the Director, Office of
Advanced Scientific Computing Research, Office of
Science, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

69

QDV – Detecting Distributed Scans

  The data:
 42 weeks’ of connection records from Bro (NERSC).
 281GB for raw data, 78GB for compressed bitmap

indices.
  “Hero-sized problem”

 No previous network analysis work has ever
attempted to perform interactive visual analytics on
data of this scale (ca. 2006).

 Result: what once took days (if at all possible) now
takes seconds.

70

QDV – Detecting Distributed Scans

  The starting point:
  You are a network security analyst

  Your beeper goes off [at lunch, in the shower…]

  You receive an alert that “something odd is happening with the network…IDS
showing unusual levels of activity on port 5554”

  Your job – answer questions:
  What’s going on now?
  How long has this been happening?
  Implications?

71

QDV – Detecting Distributed Scans

1.  Query to produce a histogram of
unsuccessful connection attempts over a
42-week period at one-day temporal
resolution (upper left)."

2.  Drill into the data, query to produce a new
histogram covering a four-week period at
one-hour temporal resolution (lower left)."

3.  Generate a histogram of one-hour
resolution over a two-day period around
day 290 (upper right)."

1.

2.

3.

72

QDV – Detecting Distributed Scans 5. Query to generate a histogram of
unsuccessful connection attempts over a five-
day period sampled at one-minute temporal
resolution (middle, left). Regular attacks occur at
21:15L, followed by a second wave 50 minutes
later."

6. Query to generate histogram over a two-hour
period at one-minute temporal resolution (lower
left)."

7. Query to generate a 3D histogram showing
the coverage of attacks in destination address
space (lower right)."

5.

6.

7.

73

QDV – Detecting Distributed Scans

After establishing that (1) a temporally regular
activity is occurring, and (2) that it is in fact a
systematic probe (scan) of entire blocks of network
addresses, the next task is to determine the set of
remote hosts participating in the attack."
Working backwards, we isolate the A, B, C and D
address octets of the hosts participating in the
attack."
8. This image shows a 3D histogram of the
destination address space being attacked by each of
20 different hosts. The vertical axis is time – a
seven-minute window at one-second temporal
resolution."

8.

74

Performance Experiment
  How fast?

 3 to 6 orders of
magnitude faster than
shell-based tools.

 2-3 orders of
magnitude faster than
ROOT, the “gold
standard” for search/
analysis in the HEP
community.

 Shows favorable
scaling characteristics
up to 32P on an SMP.

Conditional 2D histogram processing time"

Query: (1000 < DP < 11000) AND (50 <=
tsyday <= 350) AND (state==1) AND (12 <=

tshour <=14), 10K total bins."

1D Histogram, per-bin queries"

75

QDV – Detecting Distributed Scans

  Our analysis was performed in statistical space
only.
 We never accessed the raw data.
 Our processing and visualization used only the index

data.
 Performance study focuses on parallel algorithms for

multidimensional, conditional histogram computation
from compressed bitmap indices.

76

Visual Interface of the Application
– Histograms!

EXASCALE VISUALIZATION:
GET READY FOR A WHOLE NEW WORLD

Hank Childs, Lawrence Berkeley Lab & UC Davis April 10, 2011

Backup slides

How does increased computing power
affect the data to be visualized?

Large # of time steps

Large ensembles

High-res meshes

Large # of variables
/ more physics

Your mileage may vary; some
simulations produce a lot of data

and some don’t.
Thanks!: Sean Ahern & Ken Joy

Vis clusters

  Today’s vis clusters are designed to be proportional
to the “big iron”.
 Typical rule of thumb is that the little iron should have

10% of the memory of the big iron.
  (Most vis clusters have fallen short of the 10% rule for

the last few years.)

  Exascale machine = $200M, ~1/3rd of which is for
memory. Memory for proposed vis cluster = $6.7M.

  I personally view it as unlikely that we will have
10%-sized vis clusters.
 Additional issue with getting data off machine.

Accelerator technologies

  Currently simultaneously
thinking about two different
accelerator technologies:
  IBM BlueGene’s successor – some

architectural merger of BlueGene,
Power, and Cell

  GPU / GPU evolution

  Referred to as “swim lanes”: a
visual element used in process flow
diagrams, or flowcharts, that
visually distinguishes
responsibilities for sub-processes
of a business process.

I/O Disk

Accelerator

GPU BG
Net-
wor
k

…

The change in memory bandwidth to compute
ratio will lead to new approaches.

  Example: linear solvers
  They start with a rough approximation and converge

through an iterative process.
  1.125  1.1251  1.125087  1.12508365

  Each iteration requires sending some numbers to
neighboring processors to account for neighborhoods split
over multiple nodes.

  Proposed exascale technique: devote some threads of the
accelerator to calculating the difference from the previous iteration
and just sending the difference.
  Takes advantage of “free” compute and minimizes expensive

memory movement.

Inspired by David Keyes, KAUST

The trade space for exascale is
very complex.

memory

nodes

c/o A. White, LANL

Total system
cost

Minimum
memory per

node
requirement

One exaflop

Feasible
systems

Exascale: a heterogeneous, distributed
memory GigaHz KiloCore MegaNode system

~3

c/o P. Beckman, Argonne

Architectural changes will make
writing fast and reading slow.
  Great idea: put SSDs on the node

 Great idea for the simulations …
 … scary world for visualization and analysis

 We have lost our biggest ally in lobbying the HPC
procurement folks

 We are unique as data consumers.

  $200M is not enough…
 The quote: “1/3 memory, 1/3 I/O, 1/3 networking …

and the flops are free”
 Budget stretched to its limit and won’t spend more on

I/O.

Jack Dongarra
Pete Beckman

Terry Moore
Patrick Aerts

Giovanni Aloisio
Jean-Claude Andre

David Barkai
Jean-Yves Berthou

Taisuke Boku
Bertrand Braunschweig

Franck Cappello
Barbara Chapman

Xuebin Chi

Alok Choudhary
Sudip Dosanjh
Thom Dunning
Sandro Fiore

Al Geist
Bill Gropp

Robert Harrison
Mark Hereld

Michael Heroux
Adolfy Hoisie

Koh Hotta
Yutaka Ishikawa
Fred Johnson

Sanjay Kale
Richard Kenway

David Keyes
Bill Kramer

Jesus Labarta
Alain Lichnewsky
Thomas Lippert

Bob Lucas
Barney Maccabe
Satoshi Matsuoka

Paul Messina
Peter Michielse

Bernd Mohr

Matthias Mueller
Wolfgang Nagel

Hiroshi Nakashima
Michael E. Papka

Dan Reed
Mitsuhisa Sato

Ed Seidel
John Shalf

David Skinner
Marc Snir

Thomas Sterling
Rick Stevens
Fred Streitz

Bob Sugar
Shinji Sumimoto

William Tang
John Taylor

Rajeev Thakur
Anne Trefethen
Mateo Valero

Aad van der Steen
Jeffrey Vetter
Peg Williams

Robert Wisniewski
Kathy Yelick

SPONSORS

ROADMAP 1.0

International Exascale Software Project
www.exascale.org

The International Exascale
Software Roadmap,
J. Dongarra, P. Beckman, et al.,
International Journal of High
Performance Computer
Applications 25(1), 2011, ISSN
1094-3420. (Publ. 6 Jan 2011)

Reducing data to results (e.g. pixels
or numbers) can be hard.

  Must to reduce data every step of the way.
 Example: contour + normals + render

  Important that you have less data in pixels than you had
in cells. (*)

 Could contouring and sending triangles be a better
alternative?

 Easier example: synthetic diagnostics

Physics #1
Physics #2

Physics #n
…

Services

Physics #1
Physics #2

Physics #n
…

Services

Physics #1
Physics #2

Physics #n
…

Services

Physics #1
Physics #2

Physics #n
…

Services

One of many
nodes dedicated
to vis/analysis/IO Viz

Viz

Viz

Viz

