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Visualization 101 

  Transformation of numbers (data) into readily 
comprehensible images. 

  Plays an integral part in the scientific and analytic 
processes. 

  Data intensive. 



Supercomputing 101 

  Why simulation?  
  Simulations are sometimes more cost effective than experiments. 
  New model for science has three legs: theory, experiment, and simulation. 

  What is the “exascale”? 
  1 FLOP = 1 Floating point operation per second 
  1 GigaFLOP = 1 billion FLOPs, 1 TeraFLOP = 1000 GigaFLOPs 
  1 PetaFLOP = 1,000,000 GigaFLOPs, 1 ExaFLOP = 1 billion GigaFLOPs 
  Petascale = PetaFLOPs (+ petabytes on disk + terabytes of memory) 
  Exascale = ExaFLOPs (+ exabyte disk + petabytes of memory) 

  Why exascale? 
  More compute cycles, more memory, etc, lead for faster and/or more 

accurate simulations. 



Fable: The Boy Who Cried Wolf 

  Once there was a shepherd boy who had to look 
after a flock of sheep.  One day, he felt bored and 
decided to play a trick on the villagers.  He 
shouted, “Help!  Wolf! Wolf!”  The villagers heard 
his cries and rushed out of the village to help the 
shepherd boy.  When they reached him, they asked, 
“Where is the wolf?”  The shepherd boy laughed 
loudly, “Ha, Ha, Ha! I fooled all of you.  I was only 
playing a trick on you.” 



Fable: The Boy Who Cried Wolf 

  Once there was a  viz   expert  who had to look 
after customers.  One day, he felt bored and 
decided to play a trick on the villagers.  He 
shouted, “Help!  Wolf! Wolf!”  The villagers heard 
his cries and rushed out of the village to help the 
shepherd boy.  When they reached him, they asked, 
“Where is the wolf?”  The shepherd boy laughed 
loudly, “Ha, Ha, Ha! I fooled all of you.  I was only 
playing a trick on you.” 



Fable: The Boy Who Cried Wolf 

  Once there was a  viz   expert  who had to look 
after customers.  One day, he needed funding and 
decided to play a trick on his funders.  He shouted, 
“Help!  Wolf! Wolf!”  The villagers heard his cries 
and rushed out of the village to help the shepherd 
boy.  When they reached him, they asked, “Where 
is the wolf?”  The shepherd boy laughed loudly, 
“Ha, Ha, Ha! I fooled all of you.  I was only playing 
a trick on you.” 



Fable: The Boy Who Cried Wolf 

  Once there was a  viz   expert  who had to look 
after customers.  One day, he needed funding and 
decided to play a trick on his funders.  He shouted, 
“Help!  Big Big Data!”  The villagers heard his cries 
and rushed out of the village to help the shepherd 
boy.  When they reached him, they asked, “Where 
is the wolf?”  The shepherd boy laughed loudly, 
“Ha, Ha, Ha! I fooled all of you.  I was only playing 
a trick on you.” 



Fable: The Boy Who Cried Wolf 

  Once there was a  viz   expert  who had to look 
after customers.  One day, he needed funding and 
decided to play a trick on his funders.  He shouted, 
“Help!  Big Big Data!”  The funders heard his cries 
and sent lots of money to help the viz expert.  
When they reached him, they asked, “Where is the 
wolf?”  The shepherd boy laughed loudly, “Ha, Ha, 
Ha! I fooled all of you.  I was only playing a trick 
on you.” 



Fable: The Boy Who Cried Wolf 

  Once there was a  viz   expert  who had to look 
after customers.  One day, he needed funding and 
decided to play a trick on his funders.  He shouted, 
“Help!  Big Big Data!”  The funders heard his cries 
and sent lots of money to help the viz expert.  
When petascale arrived, they asked, “Where is the 
problem?”  The shepherd boy laughed loudly, “Ha, 
Ha, Ha! I fooled all of you.  I was only playing a 
trick on you.” 



Fable: The Boy Who Cried Wolf 

  Once there was a  viz   expert  who had to look 
after customers.  One day, he needed funding and 
decided to play a trick on his funders.  He shouted, 
“Help!  Big Big Data!”  The funders heard his cries 
and sent lots of money to help the viz expert.  
When petascale arrived, they asked, “Where is the 
problem?”  The viz expert shrugged and said, “The 
problem isn’t quite here yet, but it will be soon.” 

This is NOT the story of this talk. 



The message from this talk… 

Petascale Visualization Exascale Visualization 

I/O Bandwidth I/O Bandwidth 
Data Movement 

Data Movement’s     
4 Angry Pups 
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The terascale visualization strategy 
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Parallel visualization 
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P9!P8!

P1!

Parallel Simulation 
Code 

I refer to this technique as “pure parallelism”. 



Pure parallelism 

  Pure parallelism: “brute force” … processing full 
resolution data using data-level parallelism 

  Pros: 
 Easy to implement 

  Cons: 
 Requires large I/O capabilities 
 Requires large amount of primary memory 



Pure parallelism and today’s tools 

  VisIt, ParaView, & EnSight primarily employ a pure 
parallelism + client-server strategy. 
 All tools working on advanced techniques as well 

  Of course, there’s lots more technology out there 
besides those three tools… 
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I/O and visualization 
  Pure parallelism is almost 

always >50% I/O and 
sometimes 98% I/O 

  Amount of data to visualize 
is typically O(total mem) 

FLOPs	
   Memory	
   I/O	
  

Terascale	
  machine	
  

“Petascale	
  machine”	
  

  Two big factors:  
①  how much data you have to read 
②  how fast you can read it 

   Relative I/O (ratio of total memory and I/O) is key 



Trends in I/O 

Machine Year Time to write memory 

ASCI Red 1997 300 sec 

ASCI Blue Pacific 1998 400 sec 

ASCI White 2001 660 sec 

ASCI Red Storm 2004 660 sec 

ASCI Purple 2005 500 sec 

Jaguar XT4 2007 1400 sec 

Roadrunner 2008 1600 sec 

Jaguar XT5 2008 1250 sec 

c/o David Pugmire, ORNL 



Why is relative I/O getting slower? 

  I/O is quickly becoming a dominant cost in the 
overall supercomputer procurement. 
 And I/O doesn’t pay the bills. 

  Simulation codes aren’t as exposed. 

We need to de-emphasize I/O in our 
visualization and analysis techniques. 



How are we responding? 

  Enable downstream tools to operate on smaller-
sized representations: multi-resolution methods. 

  Operate on data “in place:” in situ visualization and 
analysis. 

  Load less of the data: data subsetting. 



Multi-resolution techniques 

  Idea: create multiple versions of a data set at 
different resolutions. 

  Pros 
  Can drastically reduce I/O & memory requirements 

  (Sometimes better) confidence in pictures; multi-res hierarchy addresses 
“many cells to one pixel issue” 

  Cons 
  Not always meaningful to process simplified version of the data. 

  How do we generate hierarchical representations during dump?  What 
costs do they incur (data movement costs, storage costs)? 



In situ 

  In situ processing can mean multiple things 
  Idea: perform vis/analysis processing on data while it is still 

resident in memory. 
 Will discuss this more later in the talk 

  Common perceptions of in situ 
  Pros: 

  No I/O & plenty of compute 

 Cons: 
  Operates in a memory constrained environment. 
  Some operations not possible 

  Once the simulation has advanced, you cannot go back and analyze it 

  User must know what to look for a priori. 



Data Subsetting 

  Data Subsetting: 
 Idea: load and process only “interesting data.” 
 Examples: reducing data processed via meta-data, 

query-driven visualization (forensic cybersecurity 
example, if we have time) 

 Pro: Less data to process (less I/O, less memory). 

 Con: Not applicable to all algorithms. 



Out-of-core methods 

  Out-of-core methods 
  Idea: rather than load the entire data set, load only 

smaller portions, or windows, and execute the vis/
analysis pipeline on that piece. 

 Pros: 
 Lower requirement for primary memory 
 Doesn’t require big machines 

 Con:  
  Still paying large I/O costs (slow!) 
  Can result in I/O “multiplier” effect. 



Assertion: we are going to need a 
lot of solutions. 

All visualization and analysis work 

Multi-res 

In situ 

Out-of-core 

Data subsetting 

Do remaining ~5% on SC  
w/ pure parallelism 

In situ  
(exascale) 
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Exascale assumptions 

  The machine will be capable of one exaflop. 
  The machine will cost < $200M. 
  The machine will use < 20MW. 
  The machine may arrive as early as 2018. 



Hurdle #1: power requires slower 
clocks and greater concurrency 

c/o SciDAC Review 16, February 2010 



Hurdle #2: memory capacity eats 
up the entire fiscal budget 
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Hurdle #3: memory bandwidth 
eats up the entire power budget 
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Summarizing exascale visualization 

  Power is king. 
  Costly to move data off the machine. 

 And we can’t read it in if we do get it off. 

  Costly to even move it around the machine. 

   Beneficial to process the data in situ. 
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Summarizing flavors of in situ 
In Situ 
Technique 

Aliases Description Negative Aspects 

Tightly 
coupled 

Synchronous, 
co-processing 

Visualization and analysis 
have direct access to 
memory of simulation code 

1)  Very memory 
constrained 

2)  Large potential impact 
(performance, crashes) 

Loosely 
coupled 

Asynchronous, 
concurrent 

Visualization and analysis 
run on concurrent resources 
and access data over 
network 

1)  Data movement costs 
2)  Requires separate 

resources 

Hybrid Data is reduced in a 
tightly coupled setting and 
sent to a concurrent 
resource 

1)  Complex 
2)  Shares negative aspects 

(to a lesser extent) of 
others 



Possible in situ visualization scenarios 

Visualization could be a service in this system (tightly coupled)… 

… or visualization could be done on a separate node located nearby dedicated to 
visualization/analysis/IO/etc. (loosely coupled) 

Physics #1 
Physics #2 

Physics #n 
… 

Services Viz 

Physics #1 
Physics #2 

Physics #n 
… 

Services Viz 

Physics #1 
Physics #2 

Physics #n 
… 

Services Viz 

Physics #1 
Physics #2 

Physics #n 
… 

Services Viz 

Physics #1 
Physics #2 

Physics #n 
… 

Services Viz 

… 

Physics #1 
Physics #2 

Physics #n 
… 

Services 

Physics #1 
Physics #2 

Physics #n 
… 

Services 

Physics #1 
Physics #2 

Physics #n 
… 

Services 

Physics #1 
Physics #2 

Physics #n 
… 

Services 

One of many 
nodes dedicated 
to vis/analysis/IO 

Accelerator, similar 
to HW on rest of 
exascale machine 
(e.g. GPU) 

… or maybe this is 
a high memory 
quad-core running 
Linux! 

Specialized vis & 
analysis resources 

… or maybe the data 
is reduced and sent to 
dedicated resources 
off machine! 

… And likely many more configurations 

Viz 

Viz 

Viz 

Viz 

We don’t know what the best technique 
will be for this machine. 

And it might be situation dependent. 
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Angry Pup #2: Programming Language 

  VTK: enables the community to develop diverse 
algorithms for diverse execution models for diverse 
data models 
  Important benefit: “write once, use many” 
 Substantial investment 

  We need something like this for exascale. 
 Will also be a substantial investment 

  Must be: 
 Lightweight 
 Efficient 
 Able to run in a many core environment 

OK, what language is this in?  
OpenCL?  DSL? 

… not even clear how to start 



Message-passing remains important at 
the exascale, but we lose its universality 

Pax MPI 

(1994 - 2010) 

MPI will be 
combined with 
other 
paradigms 
within a shared 
memory node 
(OpenMP, 
OpenCL, 
CUDA, etc.) 

Codes will not 
be hardware- 
universal 
again, until a 
lengthy 
evolutionary 
period passes 

c/o David Keyes, KAUST 



Visualization and Hybrid 
Parallelism 
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State of Parallelism in Scientific 
Computing 
  Most production codes written using MPI, vendor 

MPI implementations optimized for their 
architecture. 

  HPC community wondering how well MPI will scale 
to high concurrency, particularly on 100-core CPUs. 

  What to do? 
 Some alternatives: data parallel languages (CUDA), 

PGAS languages (UPC), global shared memory (CAF). 
 Various research projects explore different aspects of 

this space: Chombo in Titanium, autotuning, hybrid 
parallelism. 
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This Study 

  First-ever study of hybrid parallelism on 
visualization: raycasting volume rendering. 
 Parallels similar work done for scientific computing. 

  Hybrid-parallel implementation/architecture. 
  Performance study. 

 Runs at 216K-way parallel: 6x larger than any 
published results (circa May 2010). 

 Look at: 
 Costs of initialization, Memory use comparison, Scalability, 

Absolute runtime. 
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Algorithm Studied: Raycasting VR 
  Overview of Levoy’s method 

 For each pixel in image plane: 
 Find intersection of ray and volume 
 Sample data (RGBa) along ray, 

integrate samples to compute final 
image pixel color 
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Parallelizing Volume Rendering 

  Image-space decomposition. 
  Each process works on a disjoint subset of the final image (in 

parallel) 
  Processes may access source voxels more than once, will 

access a given output pixel only once. 
 Great for shared memory parallelism. 

  Object-space decomposition. 
  Each process works on a disjoint subset of the input data (in 

parallel). 
  Processes may access output pixels more than once.  
 Output requires image composition (ordering semantics). 
  Typical approach for distributed memory parallelism. 
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Hybrid Parallel Volume Rendering 

  Hybrid-parallelism a blend of shared- and 
distributed-memory parallelism. 

  Distributed-memory parallelism: 
  Each socket assigned a spatially disjoint subset of source data, produces 

an image of its chunk. 

  All subimages composited together into final image. 

  MPI implementation. 

  Shared-memory parallelism: 
  Inside a socket, threads use image-space partitioning, each thread 

responsible for a subset of the final image. 
  What is the best image tile size? (Autotuning presentation) 

  Implementations (2): pthreads, OpenMP. 
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Hybrid Parallel Volume Rendering 

  Our hybrid-parallel architecture: 

Shared memory parallel 

Distributed-memory parallel 
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Our Experiment 

  Thesis: hybrid-parallel will exhibit favorable performance, 
resource utilization characteristics compared to traditional 
approach. 

  How/what to measure? 
  Memory footprint, communication traffic load, scalability characteristics, 

absolute runtime. 
  Across a wide range of concurrencies. 
  Algorithm performance somewhat dependent upon viewpoint, data: 

  Vary viewpoints over a set that cut through data in different 
directions: will induce different memory access patterns. 

  Strong scaling study: hold problem size constant, vary amount 
of resources. 
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Experiment: Platform and Source 
Data 
  Platform: JaguarPF, a Cray XT5 system at ORNL 

  18,688 nodes, dual-socket, six-core AMD Opteron (224K cores) 

  Source data: 
  Combustion simulation results, hydrogen flame (data courtesy J. Bell, 

CCSE, LBNL) 

  Effective AMR resolution: 10243, flattened to 5123, runtime upscaled to 
46083 (to avoid I/O costs). 

  Target image size: 46082 image.  
  Want approx 1:1 voxels to pixels. 

  Strong scaling study: 
  As we increase the number of procs/cores, each proc/core works on a 

smaller-sized problem. 

  Time-to-solution should drop.  



48 

Memory Use – MPI_Init() 

  Per PE memory: 
 About the same at 1728, over 2x at 216000. 

  Aggregate memory use: 
 About 6x at 1728, about 12x at 216000. 
 At 216000, -only requires 2GB of memory for 

initialization per node!!! 
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Memory Use – Ghost Zones  

  Two layers of ghost cells required for this problem: 
  One for trilinear interpolation during ray integration loop. 

  Another for computing a gradient field (central differences) for shading. 

  Hybrid approach uses fewer, but larger data blocks. 
  ~40% less memory required for ghost zones (smaller surface area) 

  Reduced communication costs 
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Scalability – Raycasting Phase 
  Near linear scaling since no 

interprocess communication. 
  -hybrid shows sublinear 

scaling due to oblong block 
shape. 

  -only shows slightly better 
than linear due to reduced 
work caused by perspective 
foreshortening. 
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Scalability – Compositing  

  How many compositors to use? 
  Previous work: 1K to 2K for 32K 

renderers (Peterka, 2009). 

  Our work: above ~46K renderers, 
4K to 8K works better. 

  -hybrid cases always performs 
better: fewer messages. 

  Open question: why the critical 
point? 



52 

Absolute Runtime 

  -hybrid outperforms –only at every concurrency 
level.  
 At 216K-way parallel, -hybrid is more than twice as 

fast as –only. 
 Compositing times begin to dominate: communication 

costs. 



53 

Summary of Results 

  Absolute runtime: -hybrid twice as fast as –only 
at 216K-way parallel.  

  Memory footprint: -only requires 12x more 
memory for MPI initialization then –hybrid 
  Factor of 6x due to 6x more MPI PEs. 

  Additional factor of 2x at high concurrency, likely 
a vendor MPI implementation (an N2 effect). 

  Communication traffic: 
  -hybrid performs 40% less communication than -

only for ghost zone setup. 

  -only requires 6x the number of messages for 
compositing. 

  Image: 46082 image of a ~45003 dataset 
generated using 216,000 cores on JaguarPF in 
~0.5s (not counting I/O time). 
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Memory efficiency 

  64 PB of memory for 1 billion cores means 64MB 
per core 
  (May be 10 billion cores and 6.4MB per core) 

  Memory will be the 2nd most precious resource on 
the machine. 
 There won’t be a lot left over for visualization and 

analysis. 

  Zero copy in situ is an obvious start 
 Templates?  Virtual functions? 

  Ensure fixed limits for memory footprints 
(Streaming?) 
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Do we have our use cases covered? 

  Three primary use cases: 
 Exploration 
 Confirmation 
 Communication 

Examples: 
Scientific discovery 
Debugging 

Examples: 
Data analysis 
Images / movies 
Comparison 
Debugging Examples: 

Data analysis 
Images / movies 

? 

In situ 



Can we do exploration in situ? 

Having a human in the loop may prove 
to be too inefficient.   

(This is a very expensive resource to 
hold hostage.) 



Enabling exploration via in situ 
processing 
  Requirement: must transform the data in a way that 

both reduces and enables meaningful exploration. 
  Subsetting 

  Exemplar subsetting approach: query-driven visualization 
  User applies repeated queries to better understand data 
  New model: produce set of subsets in situ, explore it with 

postprocessing 

  Multi-resolution 
 Old model: user looks at coarse data, but can dive down to 

original data. 
 New model: branches of the multi-res tree are pruned if 

they are very similar.  (compression!)   

It is not clear what the best way is to 
use in situ processing to enable 

exploration with post-processing …     
it is only clear that we need to do it. 
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Under-represented topics in this talk. 

  We will have quintillions of data points … how do we 
meaningfully represent that with millions of pixels? 

  Data is going to be different at the exascale: 
ensembles, multi-physics, etc. 
 The outputs of visualization software will be different. 

  Accelerators on exascale machine are likely not to have 
cache coherency 
 How well do our algorithms work in a GPU-type setting? 
 We have a huge investment in CPU-SW.  What now? 

  What do we have to do to support resiliency issue? 
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It is funny how this happens… 

  All processing techniques still are very relevant. 
  In situ: data movement wolf 
 Out-of-core: Pup #3: memory efficiency 
 Multi-res: Pup #4: exploration 
 Data subsetting: Pup #4: exploration 
 Pure parallelism: experiences at massive concurrency 

will be critical 



Summary 

  We are unusual: we are data consumers, not data 
producers, and the exascale machine is being 
designed for data producers 

  So the exascale machine will almost certainly lead 
to a paradigm shift in the way visualization 
programs process data. 
 Where to process data and what data to move will be 

a central issue. 



Summary 

  In addition to the I/O “wolf”, we will now have to 
deal with a data movement “wolf”, plus its 4 pups: 
1)  In Situ System 
2)  Programming Language 
3)  Memory Efficiency 
4)  In Situ-Fueled Exploration   
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QDV – Detecting Distributed Scans 

  The data: 
 42 weeks’ of connection records from Bro (NERSC). 
 281GB for raw data, 78GB for compressed bitmap 

indices. 
  “Hero-sized problem” 

 No previous network analysis work has ever 
attempted to perform interactive visual analytics on 
data of this scale (ca. 2006). 

 Result: what once took days (if at all possible) now 
takes seconds. 
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QDV – Detecting Distributed Scans 

  The starting point: 
  You are a network security analyst 

  Your beeper goes off [at lunch, in the shower…] 

  You receive an alert that “something odd is happening with the network…IDS 
showing unusual levels of activity on port 5554” 

  Your job – answer questions: 
  What’s going on now? 
  How long has this been happening? 
  Implications? 
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QDV – Detecting Distributed Scans 

1.  Query to produce a histogram of 
unsuccessful connection attempts over a 
42-week period at one-day temporal 
resolution (upper left)."

2.  Drill into the data, query to produce a new 
histogram covering a four-week period at 
one-hour temporal resolution (lower left)."

3.  Generate a histogram of one-hour 
resolution over a two-day period around 
day 290 (upper right)."

1. 

2. 

3. 
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QDV – Detecting Distributed Scans 5. Query to generate a histogram of 
unsuccessful connection attempts over a five-
day period sampled at one-minute temporal 
resolution (middle, left). Regular attacks occur at 
21:15L, followed by a second wave 50 minutes 
later."

6. Query to generate histogram over a two-hour 
period at one-minute temporal resolution (lower 
left)."

7. Query to generate a 3D histogram showing 
the coverage of attacks in destination address 
space (lower right)."

5. 

6. 

7. 
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QDV – Detecting Distributed Scans 

After establishing that (1) a temporally regular 
activity is occurring, and (2) that it is in fact a 
systematic probe (scan) of entire blocks of network 
addresses, the next task is to determine the set of 
remote hosts participating in the attack."
Working backwards, we isolate the A, B, C and D 
address octets of the hosts participating in the 
attack."
8. This image shows a 3D histogram of the 
destination address space being attacked by each of 
20 different hosts. The vertical axis is time – a 
seven-minute window at one-second temporal 
resolution."

8. 
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Performance Experiment 
  How fast? 

 3 to 6 orders of 
magnitude faster than 
shell-based tools. 

 2-3 orders of 
magnitude faster than 
ROOT, the “gold 
standard” for search/
analysis in the HEP 
community. 

 Shows favorable 
scaling characteristics 
up to 32P on an SMP. 

Conditional 2D histogram processing time"

Query: (1000 < DP < 11000) AND (50 <= 
tsyday <= 350) AND (state==1) AND (12 <= 

tshour <=14), 10K total bins."

1D Histogram, per-bin queries"
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QDV – Detecting Distributed Scans 

  Our analysis was performed in statistical space 
only. 
 We never accessed the raw data. 
 Our processing and visualization used only the index 

data. 
 Performance study focuses on parallel algorithms for 

multidimensional, conditional histogram computation 
from compressed bitmap indices. 
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Visual Interface of the Application 
– Histograms! 





EXASCALE VISUALIZATION: 
GET READY FOR A WHOLE NEW WORLD 

Hank Childs, Lawrence Berkeley Lab & UC Davis April 10, 2011 



Backup slides 



How does increased computing power 
affect the data to be visualized? 

Large # of time steps 

Large ensembles 

High-res meshes 

Large # of variables 
/ more physics 

Your mileage may vary; some 
simulations produce a lot of data 

and some don’t. 
Thanks!: Sean Ahern & Ken Joy 



Vis clusters 

  Today’s vis clusters are designed to be proportional 
to the “big iron”. 
 Typical rule of thumb is that the little iron should have 

10% of the memory of the big iron. 
  (Most vis clusters have fallen short of the 10% rule for 

the last few years.) 

  Exascale machine = $200M, ~1/3rd of which is for 
memory.  Memory for proposed vis cluster = $6.7M. 

  I personally view it as unlikely that we will have 
10%-sized vis clusters. 
 Additional issue with getting data off machine.  



Accelerator technologies 

  Currently simultaneously 
thinking about two different 
accelerator technologies: 
  IBM BlueGene’s successor – some 

architectural merger of BlueGene, 
Power, and Cell 

  GPU / GPU evolution 

  Referred to as “swim lanes”: a 
visual element used in process flow 
diagrams, or flowcharts, that 
visually distinguishes 
responsibilities for sub-processes 
of a business process.  

I/O Disk 

Accelerator 

GPU BG 
Net-
wor
k 

… 



The change in memory bandwidth to compute 
ratio will lead to new approaches. 

  Example: linear solvers 
  They start with a rough approximation and converge 

through an iterative process. 
  1.125  1.1251  1.125087  1.12508365 

  Each iteration requires sending some numbers to 
neighboring processors to account for neighborhoods split 
over multiple nodes. 

  Proposed exascale technique: devote some threads of the 
accelerator to calculating the difference from the previous iteration 
and just sending the difference. 
  Takes advantage of “free” compute and minimizes expensive 

memory movement. 

Inspired by David Keyes, KAUST 



The trade space for exascale is 
very complex. 

memory 

nodes 

c/o A. White, LANL 

Total system 
cost 

Minimum 
memory per 

node 
requirement 

One exaflop 

Feasible 
systems 



Exascale: a heterogeneous, distributed 
memory GigaHz KiloCore MegaNode system 

~3 

c/o P. Beckman, Argonne  



Architectural changes will make 
writing fast and reading slow. 
  Great idea: put SSDs on the node 

 Great idea for the simulations … 
 … scary world for visualization and analysis 

 We have lost our biggest ally in lobbying the HPC 
procurement folks 

 We are unique as data consumers. 

  $200M is not enough… 
 The quote: “1/3 memory, 1/3 I/O, 1/3 networking … 

and the flops are free” 
 Budget stretched to its limit and won’t spend more on  

I/O. 
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Reducing data to results (e.g. pixels 
or numbers) can be hard. 

  Must to reduce data every step of the way. 
 Example: contour + normals + render 

  Important that you have less data in pixels than you had 
in cells. (*) 

 Could contouring and sending triangles be a better 
alternative? 

 Easier example: synthetic diagnostics 

Physics #1 
Physics #2 

Physics #n 
… 

Services 

Physics #1 
Physics #2 

Physics #n 
… 

Services 

Physics #1 
Physics #2 

Physics #n 
… 

Services 

Physics #1 
Physics #2 

Physics #n 
… 

Services 

One of many 
nodes dedicated 
to vis/analysis/IO Viz 

Viz 

Viz 

Viz 


