

CloudCRV, Virtual Cluster Appliance and ATLAS

Deploy Your Cluster to the Cloud with 1-Click

Yushu Yao
Lawrence Berkeley National Laboratory

Overview

- We are trying to investigate if cloud will help ATLAS.
- There have been a lot of debate on performance, cost, operation model of it.
- However, to do any of the above, we need an easy way to deploy an ATLAS Computing Cluster onto the cloud, and send our workload there.
- We developed a tool to do that, and sharing it here...

The Cloud is Good

- With the help of laaS* cloud (Such as Amazon EC2), anyone can lease a large amount of Computing Resource
- E.g. get 100 linux computers
- The idea is: Any cloud user can setup their own cluster, and benefit from the scalability that the cloud provides.
- However, what do I do with the 100 computers?

*laaS: Infrastructure as a Service, e.g EC2, Eucalyptus, Nimbus, Open Nebula?

Load Balanced
Web Server Cluster

Auto-Scaling Batch Cluster (Condor Pool, etc)

Try This? (The ATLAS Cluster)

Really Good?

- I would like the machines to work as a complex cluster. How to configure them?
- I'm not an IT professional, I don't know how to do it
- Even if I know how to configure, it's too much work to login to 100 machines and do it by hand
- How can I scale the size of the cluster on-demand?

An Analogy

Manufacture

Parts in a Fridge

A Cluster \iff A Fridge

Various of Apps and Services Parts in a Fridge

Computing Power from Cloud <>> Electricity

Cluster Designer Fridge Manufacturer

Cluster Manager/Deployer < > Fridge User

The guy who needs to deploy a Cluster

Design a Cluster Manufacture a Fridge (Need expert)

Deploy a Cluster \iff Plug the Fridge to the Wall (Simple)

Substances

Actors

Actions

Pack and Ship a Cluster like a Fridge

The Components (roles) in a Complex Cluster

Create a Virtual Cluster Appliance

Ship to cluster manager

Remember those univ. profs with credit cards? Or his postdoc?

Virtual Cluster Appliance (VCA)

Virtual Appliance

What if my
tasks need
more than one
VM to
perform?

Define Multiple Virtual Machines to hold these services/applications

How they work together

Virtual Cluster Appliance

Pre-installed pre-configured OS and Application Stack That performs certain tasks

Virtual
Cluster
Appliance

=

Multiple Virtual Machines

**
Multiple Services/Applications

**
Their Relationships

Lifecycle of a VCA

Design

Distribute

Deploy

- ♦ VCAs are Designed by Experts:
 - ◆ Use scripts (bash, puppet, cfengine, etc) to define:
 - ♦ How to configure each computer
 - → How one computer work with the rest
- ◆ Virtual Cluster Appliances are Packaged into a set of Scripts and specifications
 - ◆ Easy to ship/copy

- ◆ To deploy a VCA, one need a tool to:
 - ◆ Control the lifetime of the VMs inside the cluster
 - ◆ Configure the VMs to work together
- ◆ CloudCRV (Cluster-Roles-VMs) is a tool to do this

Deploying a VCA like Plugging in a Fridge

2-min Demo

Why we need VCA

- For Cluster Managers (Users):
 - No need to know the details of how to configure a cluster, just launch it.
- For Cluster Designers (Software Manufacturers):
 - Easier user interface, help promoting the product.
- For Cloud Providers:
 - Easier launching clusters meaning more clusters launched, meaning more revenue.

Not only on laaS Cloud

- We showed an example on laaS
- CloudCRV can not only deploy to EC2 like clouds. It also support other resource pools, e.g. libvirt based VMs, raw hardware via gPXE
- To add support for a new "resource pool", simply extend the interface and implement 3 functions.

Heterogeneous cluster

- CloudCRV allows "pre-existed" roles that are not deployed/configured by CloudCRV.
- I.e. if you already have a running HPC cluster, you can easily use CloudCRV to scale it up into the cloud, without changing the existing one.

- laaS Cloud only gives you computers, but not functional clusters.
 - A Virtual Cluster Appliance is an expert-designed cluster that can be easily deployed by non-expert users
- CloudCRV deploys a Virtual Cluster Appliance to laaS Cloud (and other platforms)
- More Info:
 - Project: http://code.google.com/p/cloudcrv/
 - Poster: http://indico.cern.ch/getFile.py/access?contribld=26&sessionId=5&resId=0&materialId=poster&confld=92498

Want to try it?

 For early adopters, give us your requirements, we can provide you a VCA to start with.

yyao@lbl.gov

ATLAS & LHC

ATLAS & LHC

ATLAS & LHC

ATLAS Detector

The ATLAS Project

~3000 Scientists around the world (with very different funding situation)

Very Large Software Stack

Huge Computing Needs (Both CPU and Storage)

ATLAS In the Cloud?

Key ComponentsNeeded for us to use the Cloud

- Software Stack
- Data Handling
- Job Scheduling
- Cluster Control/ Management

Software Stack

Cluster Control

Job Scheduling

Data Handling

We need them to be scalable, efficient, and user friendly

Auto-Scale ATLAS Cluster on Magellan

- Scale on-demand
- Storage on Worker (HDFS)

- Panda Based
- High Speed Data Link

Performance and Cost (on EC2)

Measured Throughput

- ml.xlarge is very slow
- ccl.4xlarge is about the same speed as local/native
- Tested I Point for cc1.4xlarge, others in progress

How about cost?

Cost Estimate (Cost per IK Evt)

Assume we run 8 concurrent jobs for all cases, the cost per 1k event is calculated.

Cost / 1K Event (USD)	EC2		Small ATLAS Center (<400	Large Center
	m1.xlarge	cc1.4xlarge	cores)	(hundreds K cores)
Simulation	37	26	11	5
Reconstruction	1.88+Storage	1.24+Storage	0.48	0.24

EC2 cost doesn't include storage (in/out/store), which is very significant as well!!!!

Cost?

Cost / 1K Event (USD)	EC2		Tier3 Size	Large Center
	m1.xlarge	cc1.4xlarge	Center	(hundreds K cores)
Simulation	37	26	11	5
Reconstruction	1.88+Storage	1.24+Storage	0.48	0.24

- Who said Cloud is cheaper?
- EC2 is making too much money!!!
- No Doubt, the laaS model is very attractive. But to make it cost-effective, we need to be our own cloud-provider.
 (Or a non-profit cloud provider might also work :-)

Summary

- Still remember what VCA and CloudCRV are?
 - Want to try it? contact me: yyao@lbl.gov
- With the help of CloudCRV, we are building an auto-scaling ATLAS compute cluster on laaS cloud (e.g. Magellan)
- EC2 is costly for us, it might be cheaper with spot pricing. Best for backup computing power.

More details in the backup slides.

Questions?

Backup

CloudCRV Details

Components of CloudCRV

VMs talk to a blackboard so the Roles know how to work with each other

Roles Interact with each other via broker

- ResourceManager: Allocate/Deallocate resource in the resource pools (Turn on/offVMs)
- ProfileManager: Realize a RoleDef to a Role that's sitting on a VM
- Web Interface:
 - Let the Cluster Manager Control the deployment of the Cluster and Monitor the status
 - Provide a media for VMs (Roles) to talk with each other so that the all VMs/Roles can work together as a cluster

The CloudCRV Server and Clients

Reusability

- VCAs are defined as module-based scripts
 - Designers can easily reuse components in other VCAs or combine several VCA to a new one
 - Much faster development cycle
- E.g. Adding High Availability MySQL to Web Server cluster is simple

Security

- SVN Repository/Scripts can prevent unauthorized use
- CloudCRV manages its own CA, all web service are HTTPS based
 - Manger UI enforce user/pass authentication
 - REST API enforce PKI based authentication each VM has its own Cert.
- Puppet network traffic is encrypted and authenticated with PKI, using the Certs provided by CloudCRV

How to Design a Cluster

- I. Know how to setup individual services
- 2.Write a script for each role (preferable Puppet scripts)
- 3. One Python script to define the relations of the roles/vms in a cluster
- 4. Put everything to an SVN repository

Python Part

#Create Resource Pool

#Role Definitions

rdGangliaSrv=**RoleDef**('GangliaSrv', 'Ganglia Server (MetaDaemon and WebFront)', 'at3_ganglia_srv', "puppet") rdGangliaClient=**RoleDef**('GangliaClient', 'Ganglia Client (Monitoring Daemon)', 'at3_ganglia_daemon', "puppet")

#remote dependency

rdGangliaClient.addDependOn(rdGangliaSrv)

rdProxy=RoleDef('Proxy',"Proxy Server","at3_proxy","puppet")

#Local dependency

rdProxy.addDependOn(rdGangliaClient,local=True)

#the cluster

cl=Cluster("tier3")

#roles

rGangliaSrv=**cl.addRole**(name="rGangliaSrv", roledef=rdGangliaSrv, vm=rp.newVM("vmGangliaSrv"), enabled=True) rProxy=**cl.addRole**(name="rProxy", roledef=rdProxy, vm=rpprivate.newVM("vmProxy"), enabled=True)

•••

Define a Role with Puppet Script

Ganglia Server (gmetad, web-front)

Ganglia Client (gmond)

```
define at3_ganglia_srv($webaddr="", $roleid="") {
  #Get some attributes from its dependents
  $clientlist=get_dependent_attrlist($webaddr,$roleid,"GangliaClientAddr")
  #Install necessary RPMs
  package { ["ganglia", "ganglia-web", "ganglia-gmetad", "httpd"]:
   ensure => installed, }
  #Create configuration file
  file { "/etc/gmetad.conf": ... ... notify => Service["gmetad"], }
  #Start Service
  service { ["gmetad", "httpd"]: ensure => running, enable => true, ......
   require => [Package ["httpd", "ganglia", "ganglia-web", "ganglia-gmetad"], File ["/etc/
gmetad.conf"]] } }
  #Publish its IP so that its dependents know where the server is
  set_role_attr($webaddr,$roleid,"GangliaSrvAddr","$ipaddress")
define at3 ganglia daemon($webaddr="", $roleid="") {
  #Figure out where the Ganglia Server is
  $gangliasrvaddr=get_provider_attr($webaddr,$roleid,"GangliaSrvAddr")
  #Install RPMs
  package { ["ganglia", "ganglia-gmond"]: ensure => installed }
  #Config files
  file { "/etc/gmond.conf":... ... notify => Service["gmond"], }
  #Start Service
  service { [ "gmond"]: ensure => running, enable => true, ... ...
   require => [Package["ganglia", "ganglia-gmond"], File["/etc/gmond.conf"]] } }
  #Publish its IP so that server can authenticate it
  set_role_attr($webaddr,$roleid,"GangliaClientAddr","$ipaddress")
                    42
```

Puppet

- Configuration Management system
- Use a language to describe a service:

```
class ssh {
   package { ssh: ensure => installed }
   file { sshd_config:
        name => "/etc/ssh/sshd_config",
        owner => root,
        group => root,
        source => "puppet://server/apps/ssh/sshd_config",
        after => Package[ssh]
   }
   service { sshd:
        ensure => running,
        subscribe => [Package[ssh], File[sshd_config]]
   }
}
```


Demo in Pictures

Login

List of Clusters

List of Roles

List of ResourcePool/VM

Click the Start Button

Resources Allocated

Roles Defined

Cluster Ready

Testing The Cluster

ATLAS Cloud Needs

Modes of Operation?

Centralized:

- Like a tier2 in the sky, deployed by one, run jobs for many.
- E.g. the cluster we are building on Magellan (details later in the talk)

De-centralized:

 Deployed (and paid) by one, run jobs for himself (e.g. a univ. prof with a credit card and a paper deadline)

Both modes are possible. Independent of which mode, we face the same problems...

Cloud Problems What do we need to solve?

- Agility (Super Scalable! Isn't it supposed to be a benefit?)
 - Yes, but there's no easy way to use it so far (how to setup the resource to run ATLAS, how to distribute jobs, etc)
- Data (Two aspects):
 - Getting data from/to cloud is expensive and inefficient
 - Storing the data in the cloud is tricky.

Several Key Components are need to solve these problems...

Thanks to CernVM(-FS)

- Web-based read-only FS ideal to distribute many small files to many clients.
- Use CernVM we also get an OS for free
- With proxy servers, it can scale as big as we need
- Cloud Ready, Great!

Details: Google CernVM

Data Handling

Key Components for ATLAS on the Cloud

- Storage on Worker:
 - Very Important: we can't dedicate too many storage nodes, that's waste of money (when no worker is running)
- Smarter Data Transfer
 - Pre-staging dataset, reuse of data across jobs, etc
- Possible Solutions:
 - Mount HDFS across the scalable cluster
 - transparent add/remove node (Agility required)
 - Simplify data staging (I-step staging, no need to move from storage to worker)
 - Xrootd confederation (discover/transfer data better)
 - Reserved links (when possible, reduces transfer time)
 -

Panda

- Well tested, works well for ATLAS jobs
- Low overhead (management, etc)
- "Data Smart", sort of
- Schedule whole node jobs with AthenaMP (much easier to handle when trying to take a node offline)

Cluster Control/Management Key Components for ATLAS on the Cloud

Software Stack

Cluster Control

Data Handling

We need a tool to:

- Allocate cloud resource when needed, release resource when done
- Configure the resources to do ATLAS work
 - tasks like: install CernVM-FS, configure HDFS, setup Panda, etc.
 - note that: each of the above task needs an expert to do
- Any one who need to setup such a cluster should be able to do this with one button click (especially for de-centralized modes)

And we have CloudCRV

Cost Calculation Assumptions

Not for accurate calculation, cost might be different for individual computer center.

- ml.xlarge: \$0.19 per core-hour (Storage excluded)
- cl.xlarge: \$0.20 per core-hour (Storage excluded)
- For US ATLAS Tier3 Center a rough estimate is around \$0.05-0.10 per core-hour (including initial hardware and support), we use the number \$0.08 (Storage included)
- Large data centers (hundreds of K cores),
 \$0.02-0.06 per core-hour, we use the number
 \$0.04 (Storage included)